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hAbstra
t In the syn
hronous periodi
 task model, a set �1; : : : ; �n of tasks is given, ea
h releasingjobs of running time 
i and relative deadline di at ea
h integer multiple of the period pi. It is a
lassi
al result that Earliest Deadline First (EDF) is an optimal preemptive uni-pro
essor s
hedulingpoli
y. For 
onstrained deadlines, i.e. di � pi, the EDF-s
hedule is feasible if and only if8Q � 0 : n
Xi=1 „—Q� dipi � + 1« � 
i � Q:Though an enormous amount of literature deals with this topi
, the 
omplexity status of this testhas remained unknown. We prove that testing EDF-s
hedulability of su
h a task system is (weakly)
oNP-hard. This solves Problem 2 from the survey �Open Problems in Real-time S
heduling� byBaruah & Pruhs. The hardness result is a
hieved by applying re
ent results on inapproximabilityof Diophantine approximation.1 Introdu
tionNowadays more and more devi
es are 
ontrolled by embedded mi
ropro
essors, for example in powerplants, 
ar ele
troni
s, �ight 
ontrol systems, roboti
s and tele
ommuni
ation systems, see Buttazzo [1℄for an extensive introdu
tion. Sin
e many appli
ations are safety 
riti
al, ea
h task running on su
h apro
essor must produ
e the output not only 
orre
tly but also on time. Several tasks may run on thesame pro
essor and a Real-time s
heduling poli
y de
ides whi
h task should be a
tive in whi
h intervals,to guarantee that all deadlines are kept.In the simple, but important periodi
 task model a set �1; : : : ; �n of tasks is given, where ea
h �i isan in�nite sequen
e of jobs, de�ned by an exe
ution time 
i 2 Q+ , a (relative) deadline di 2 Q+ and aperiod pi 2 Q+ . We assume that the tasks are syn
hronous, i.e. there is a time, say 0, at whi
h all tasksrelease a job simultaneously. In other words for ea
h i 2 f1; : : : ; ng and z 2 Z�0, a job of running time 
iand absolute deadline z � pi + di is released at z � pi. Furthermore we assume 
onstrained-deadlines, hen
edi � pi for ea
h i 2 f1; : : : ; ng.We 
onsider preemptive uni-pro
essor s
hedules, i.e. at any time a running job may be preemptedand resumed later. As the name suggests, in the Earliest Deadline First (EDF) poli
y, at any time thatjob from the queue of released and not yet a

omplished jobs is a
tive, whose (absolute) deadline 
omesnext. The EDF-s
hedule is provably optimal in this setting, meaning that if there is a s
hedule in whi
hall jobs meet their deadlines, then the EDF-s
hedule is feasible as well (see Dertouzos [2℄).The main question of feasibility analysis however remains: Will ea
h of the in�nitely many jobs be�nished in time? First observe, that �Q� dipi �+ 1yields the number of jobs of �i that have both, their release time and deadline in the interval [0; Q℄.Consequently the quantity DBF(�i; Q) = ��Q� dipi �+ 1� � 
igives the amount of running time that, regardless of the used s
heduling poli
y, has to be spent on �i inthis interval. More general, the demand bound fun
tionDBF(S; Q) = nXi=1 ��Q� dipi �+ 1� � 
i
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gives the running time of all jobs, whi
h have their release time and deadline in the interval [0; Q℄. Asa 
onsequen
e, for feasibility it is ne
essary, that DBF(S; Q) � Q for all Q � 0. Baruah et al. [3℄ showedthat this 
ondition is in fa
t su�
ient, hen
e an EDF-s
hedulability test is a test whi
h 
he
ks validity ofthe following formula 8Q � 0 : nXi=1 ��Q� dipi �+ 1� � 
i � Q;see Figure 1 for an illustration.
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Figure 1. Constrained deadline task system S = f�1; �2g with �1 = (2; 3; 4); �2 = (3; 5; 6), using notation�i = (
i; di; pi). One has DBF(S;Q) > Q for Q = 11, thus S is not EDF-s
hedulable.Mu
h e�ort has been spent on developing su�
ient polynomial or exa
t pseudo-polynomial time testsfor EDF-s
hedulability of periodi
 tasks, see [4,5,3,6,7℄. But none of the algorithms suggested in thesepapers was able to de
ide EDF-s
hedulability on a unit speed pro
essor 
orre
tly and in polynomial timefor all instan
es. The question whether EDF-s
hedulability 
an be de
ided in polynomial time is statedas a major open problem in the survey of Baruah & Pruhs [8℄ on open problems in Real-time s
heduling.We settle the 
omplexity status of testing EDF-s
hedulability by proving the following theorem.Theorem 1. Given a set S = f�1; : : : ; �ng of syn
hronous, periodi
, 
onstrained-deadline tasks de�nedby rational numbers 0 � 
i � di � pi, it is (weakly) 
oNP-hard to de
ide, whether S is EDF-s
hedulable,i.e. testing the 
ondition 8Q � 0 : nXi=1 ��Q� dipi �+ 1� � 
i � Q;is (weakly) 
oNP-hard. This holds even if di = pi for i = 1; : : : ; n� 1.This, together with the result in [3℄ implies the following 
orollary.Corollary 1. Given a set S = f�1; : : : ; �ng of sporadi
 tasks with worst-
ase exe
ution time 
i, relativedeadline di and minimum inter-arrival time pi it is (weakly) 
oNP-hard to determine, whether the EDF-s
hedule of S is feasible.Related workOne approa
h to obtain algorithms to test EDF-feasibility lies in bounding the interval, in whi
h thedemand bound fun
tion has to be evaluated. Let u =Pni=1 
ipi be the utilization of a task system. Giventhat S is not EDF-s
hedulable, the smallest Q > 0, 
ertifying the infeasibility must haveQ < u1� u maxi=1;:::;nfpi � dig;



see e.g. [9,10℄. This admits a pseudo-polynomial time algorithm for the feasibility test, if the utilizationof S is bounded by 1� " for some 
onstant " > 0.Albers & Slomka [11℄ gave an FPTAS for approximating the speed of a pro
essor, needed to makethe EDF-s
hedule of S feasible. Their algorithm is also interpreted as follows. It either asserts that thetasks are feasible, or it asserts that the tasks are infeasible on a pro
essor of speed 1� ". A similar resultwas also provided in the setting of �xed priority s
heduling [12℄. See [1℄ for more details on �xed prioritys
heduling poli
ies and [6,4,7,13℄ for further approa
hes to feasibility analyzes of EDF-s
hedules. Re
ently,Bonifa
i et al. [14℄ extended the result of Albers & Slomka to the 
ase of multipro
essor s
heduling withmigration. The algorithm asserts that a set of tasks is feasible on m speed-(2 � 1=m + ") ma
hines orinfeasible on m speed-1 ma
hines.In a popular spe
ial 
ase, the tasks have impli
it-deadlines, i.e. di = pi for all i. In that 
ase the
ondition DBF(S;Q) � Q has only to evaluated at Q = s
m(p1; : : : ; pn) and the set is EDF-s
hedulable ifand only if the utilization is bounded by 1, see Liu & Layland [15℄. In other words, the EDF-s
hedulabilityin this spe
ial 
ase is de
idable in polynomial time. If the tasks may be asyn
hronous, i.e. ea
h task has ono�set ai, su
h that jobs are released at z � pi + ai, then testing the feasibility is strongly 
oNP-hard [16℄.This even holds if the utilization of the system is bounded from above by an arbitrarily small 
onstant.In the sporadi
 task model neither release times nor running times are predetermined. There, 
idenotes the worst-
ase exe
ution time and pi denotes the minimum inter-arrival time. But the worst-
aseis attained in a syn
hronous arrival sequen
e, that is when all tasks release jobs at time 0, all jobs fully usethe worst-
ase exe
ution time 
i and jobs arrive as early as permissible, see Baruah, Mok & Rosier [3℄. Inother words, the sporadi
 task system is EDF-s
hedulable if and only if this is true for the 
orrespondingsyn
hronous periodi
 task system.2 Diophantine approximationThe EDF-s
hedulability test 
ontains only one single unknown variable Q. This is unusual forNP/
oNP-hard problems and helps us to narrow down the sear
h forNP/
oNP-hard remote relatives. The relativethat we found helpful for problems in Real-time s
heduling is Diophantine approximation, a problem inthe �eld of algorithmi
 number theory (see e.g. [17℄). Roughly speaking, there the obje
tive is to repla
ea number or a ve
tor, by another number or ve
tor whi
h is very 
lose to the original, but less 
omplexin terms of fra
tionality.More pre
isely, a sequen
e �1; : : : ; �n of rational numbers together with a bound N 2 N and an errorbound " 2 Q+ is given. One has to de
ide whether9Q 2 f1; : : : ; Ng : maxi=1;:::;n j bQ�ie �Q�ij � "; (1)where bxe is the integer 
losest to x 2 R. In a seminal work, Lagarias [18℄ has shown, that testing (1) isNP-hard. This was later extended by Rössner & Seifert [19℄ and Chen & Meng [20℄ to inapproximabilityresults. In [21℄, the authors of this paper applied these results to show that response-time 
omputationof tasks in a Rate-monotoni
 s
hedule is NP-hard, where tasks with smaller period always preempt thatof larger period.The EDF-s
hedulability test uses a rounding operation, where one repla
es a rational by the 
losestinteger whi
h is equal or smaller, i.e, one rounds down. In Diophantine approximation, one rounds upor down to the nearest integer. The variant of Diophantine approximation, where one has to round upis 
alled dire
ted Diophantine approximation (DDA). Re
ently the authors of this paper provided thefollowing hardness result for dire
ted Diophantine approximation.Theorem 2 (Hardness of DDA� [22℄). There exists a 
onstant 
 > 0, su
h that the following Dire
tedDiophantine Approximation problem (DDA�) with gap parameter � = bn
= log logn
 is NP-hard: Givennumbers �1; : : : ; �n 2 Q, a bound N 2 N and an error bound " 2 Q+ as input, distinguish the following
ases� Yes : 9Q 2 fdN=2e; : : : ; Ng : maxi=1;:::;n(dQ�ie �Q�i) � "� No : �Q 2 f1; : : : ; � �Ng : maxi=1;:::;n(dQ�ie �Q�i) � 2n � "



Note that the union of the Yes and No 
ases does not represent all possible inputs. But there is apolynomial time redu
tion, taking the input of an NP-
omplete problem, say a SAT 
lause C, andyielding a DDA� instan
e respe
ting the Yes-
ase if C is satis�able and the No-
ase otherwise. See, e.g.,[23,24℄ for more details on gap redu
tions.Despite of some similarities betweenDDA� and EDF-s
hedulability, we still observe 
ru
ial di�eren
es:1. DDA� 
ontains a 
eiling instead of a �oor operation.2. The number Q is restri
ted to be integer.3. The approximation error is measured with k � k1-norm instead of k � k1-norm.4. For DDA�, one has a bound N on the number Q.We 
an easily eliminate the �rst di�eren
e by observing that dQ�ie � Q�i = Q � (��i) � bQ(��i)
.Consequently repla
ing the numbers by their negatives, we obtain aDDA� problem with a �oor operation.By adding a su�
iently large integer z and using Q(�i + z) � bQ(�i + z)
 = Q�i � bQ�i
 for Q 2 Nwe may then make the �i's positive. We 
on
lude that given �1; : : : ; �n 2 Q+ , N 2 N and " 2 Q+ , it isNP-hard to distinguish� Yes : 9Q 2 fdN=2e; : : : ; Ng : maxi=1;:::;n(Q�i � bQ�i
) � "� No : �Q 2 f1; : : : ; � �Ng : maxi=1;:::;n(Q�i � bQ�i
) � 2n � "for � = bn
= log logn
. In a next step, we introdu
e a variant of dire
ted Diophantine approximationwhi
h in
orporates di�eren
es (2) & (3). We use the notation [�; �℄ to denote the set of real numbers[�; �℄ = fx 2 R:� � x � �g.Theorem 3 (Hardness of DDA��). There exists a 
onstant 
 > 0, su
h that the following DDA��problem with gap parameter � = bn
= log logn
 is NP-hard: Given numbers �1; : : : ; �n 2 Q+ , weightsw1; : : : ; wn 2 Q+ , a bound N 2 N and an error bound " 2 Q+ , distinguish� Yes : 9Q 2 [dN=2e; N ℄ :Pni=0 wi(Q�i � bQ�i
) � "� No : �Q 2 [1; � �N ℄ :Pni=0 wi(Q�i � bQ�i
) � � � "Proof. We redu
e DDA� to DDA��. Let (�1; : : : ; �n;N ; ") be the given DDA� instan
e (with roundingdown and �i > 0 for all i). Sin
e the �i's are rational numbers, we 
an write them as �i = aibi withpairwise 
o-prime integers ai; bi 2 N. Our DDA�� instan
e 
onsists of the same numbers �1; : : : ; �n,equipped with unit weights w1 = � � � = wn = 1. Furthermore we 
hoose the same bound N , but adi�erent error bound "0 = n � " and we add one more number �0 = 1 with a very high weight ofw0 = 2 �maxfai: i = 1; : : : ; ng � " �� �n. Intuitively the weight w0 is large enough, su
h that any reasonableDDA�� solution Q of this instan
e must be an integer. It su�
es to show the following impli
ations:� Yes : 9Q 2 fdN=2e; : : : ; Ng : maxi=1;:::;n(Q�i � bQ�i
) � ") 9Q 2 [dN=2e; N ℄ :Pni=0 wi(Q�i � bQ�i
) � "0� No : �Q 2 f1; : : : ; � �Ng : maxi=1;:::;n(Q�i � bQ�i
) � 2n � ") �Q 2 [1; � �N ℄ :Pni=0 wi(Q�i � bQ�i
) � � � "0Yes-
ase: Clearly Yes instan
es for DDA� are mapped to Yes instan
es of DDA�� by simply using thesame solution Q. This is the 
ase sin
e given a Q 2 fdN=2e; : : : ; Ng that mat
hes the 
onditions of theYes 
ase for DDA�, one hasnXi=0 wi(Q�i � bQ�i
) = w0 � (Q� bQ
)| {z }=0 + nXi=1 1 � (Q�i � bQ�i
)| {z }�" � n � " = "0:No-
ase: Now suppose that we have a Q 2 [1; � �N ℄ withPni=0 wi(Q�i�bQ�i
) � � �"0 = � �n �". De
reaseQ 
ontinuously until Q�j 2 Z for at least one j 2 f0; : : : ; ng. This 
an only de
rease the approximationerror sin
e bQ�i
 remains invariant. Furthermore Q will never be de
reased below 1 sin
e �0 = 1. If Q isthen an integer, we are done sin
emaxi=1;:::;n(Q�i � bQ�i
) � nXi=0 wi(Q�i � bQ�i
) � � � n � " � 2n"



for n large enough. Now suppose that Q is not integer. Then we may write Q�j = Qajbj =: z 2 Z, thusQ = zbjaj 2 Z 1aj . We write Q = yaj where y is integer but not a multiple of aj (sin
e Q =2 Z). Hen
eQ� bQ
 = yaj � bQ
ajaj = (y � bQ
aj)| {z }�1 � 1aj � 1ajwhere we use that y � bQ
aj is a non-negative integer but y � bQ
aj 6= 0. We obtainnXi=0 wi(Q�i � bQ�i
) � w0 � (Q� bQ
) � w0 � 1aj > � � n � "by the 
hoi
e of w0. This 
ontradi
tion yields that Q 2 N and the 
laim follows.3 Hardness of EDF-s
hedulabilityIn this se
tion we will see that the NP-hard problem DDA�� is 
lose enough to the EDF-s
hedulability
ondition to admit a dire
t redu
tion. To a
hieve this, Yes (No, resp.) instan
es for DDA�� are mappedto No (Yes, resp.) instan
es of EDF-s
hedulability. Intuitively this is done as follows: Suppose we aregiven a DDA�� instan
e (�1; : : : ; �n;w1; : : : ; wn;N ; "). The �rst idea is to 
reate impli
it-deadline tasks�1; : : : ; �n with pi = di = 1�i . Then we have�Q� dipi �+ 1 = bQ�i
hen
e a Q that maximizes DBF(S; Q)=Q, minimizes the approximation error. On the other hand we needto forbid Q with Q� N . a 
ommon multiple of all pi's. For this purpose we add a spe
ial task �0 whi
hhas a deadline of N=2 and a su�
iently large period (we may imagine p0 = 1). Then the quantityDBF(�0; Q)=Q 
ontributes signi�
antly to DBF(S; Q)=Q only if Q is of order N .Theorem 4. Given an instan
e of DDA�� 
onsisting of rational numbers �1; : : : ; �n 2 Q+ , weightsw1; : : : ; wn 2 Q+ , a bound N 2 N�2 and an error bound " > 0, we 
an �nd in polynomial time a
onstrained-deadline task system S 
onsisting of n+ 1 tasks su
h that� Yes: 9Q 2 [dN=2e; N ℄ :Pni=1 wi(Q�i � bQ�i
) � ") S not EDF-s
hedulable� No: �Q 2 [dN=2e; 3N ℄ :Pni=1 wi(Q�i � bQ�i
) � 3") S EDF-s
hedulableFurthermore n tasks in S have impli
it-deadlines.Proof. A set of tasks is EDF-s
hedulable on a pro
essor of speed � > 0 if and only if the tasks withrunning times s
aled by 1� are feasible on a unit speed pro
essor. Thus we may assume to have an ora
lefor the test 8Q � 0 : nXi=1 ��Q� dipi �+ 1� � 
i � � �QLet N 2 N; �1 ; : : : ; �n; w1; : : : ; wn 2 Q+ ; " > 0 be the DDA�� instan
e. We 
hoose a 
onstrained-deadlinetask system S 
onsisting of n+ 1 tasks�i = (
i; di; pi) = �wi; 1�i ; 1�i� 8i = 1; : : : ; n�0 = (
0; d0; p0) = (3"; dN=2e; 12N)and pro
essor speed � = "N + nXi=1 wi�i = "N + u(f�1; : : : ; �ng)whi
h just slightly ex
eeds the utilization.



Yes-
ase: Suppose that we have a Q 2 [dN=2e; N ℄ with Pni=1 wi(Q�i � bQ�i
) � ". ThenDBF(f�0; : : : ; �ng; Q) = DBF(�0; Q) + nXi=1 ��Q� dipi �+ 1� 
i= 3"+ nXi=1 bQ�i
wi(�)� 3"+  nXi=1 Q�iwi!� "!= 2"+Q nXi=1 �iwi(��)> Q � "N + nXi=1 �iwi!| {z }=�= �QHere we use Pni=1 wi(Q�i � bQ�i
) � " in (�) and Q � N < 2N in (��). Thus the task system S is notEDF-s
hedulable (on a pro
essor of speed �).No-
ase: Next we assume that S is not EDF-s
hedulable. Then there is aQ > 0 su
h that DBF(f�0; : : : ; �ng; Q) >�Q. We need to show that Q 2 [dN=2e; 3N ℄ and Pni=1 wi(Q�i � bQ�i
) � 3".Observe that using the de�nition of � and bQ�i
 � Q�i, one hasDBF(�0; Q) = DBF(S; Q)� DBF(f�1; : : : ; �ng; Q)> �Q� nXi=1 bQ�i
wi� �Q�Q nXi=1 �iwi= �Q�Q "N + nXi=1 �iwi!| {z }=� +Q "N= Q "NSin
e �0 has its �rst deadline at d0 = dN=2e and DBF(�0; Q) > 0 we must have Q � dN=2e. Suppose for
ontradi
tion that already the se
ond deadline of �0 o

urred before Q, i.e. Q � p0 = 12N . ThenDBF(�0; Q) � 
0 � �Qp0� � 2 � 3" � Q12N < Q "N ;leading to a 
ontradi
tion. Hen
e, till time Q exa
tly one deadline of �0 has passed, thus DBF(�0; Q) = 3".But we already inferred the bound DBF(�0; Q) > Q "N , thus even Q < 3N . FinallynXi=1 wi(Q�i � bQ�i
) = Q nXi=1 �iwi| {z }<� �(DBF(S; Q)� DBF(�0; Q)) � Q� � DBF(S; Q)| {z }<0 +3" � 3"and the 
laim follows.Theorem 1 follows by 
ombining Theorem 3 and 4, with � = 4.
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