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Abstract In the synchronous periodic task model, a set T1,. .., 7, of tasks is given, each releasing
jobs of running time ¢; and relative deadline d; at each integer multiple of the period p;. It is a
classical result that Earliest Deadline First (EDF) is an optimal preemptive uni-processor scheduling
policy. For constrained deadlines, i.e. d; < p;, the EDF-schedule is feasible if and only if

VQZO:iQ%JH)-QSQ.

Though an enormous amount of literature deals with this topic, the complexity status of this test
has remained unknown. We prove that testing EDF-schedulability of such a task system is (weakly)
coNP-hard. This solves Problem 2 from the survey “Open Problems in Real-time Scheduling” by
Baruah & Pruhs. The hardness result is achieved by applying recent results on inapproximability
of Diophantine approximation.

1 Introduction

Nowadays more and more devices are controlled by embedded microprocessors, for example in power
plants, car electronics, flight control systems, robotics and telecommunication systems, see Buttazzo [1]
for an extensive introduction. Since many applications are safety critical, each task running on such a
processor must produce the output not only correctly but also on time. Several tasks may run on the
same processor and a Real-time scheduling policy decides which task should be active in which intervals,
to guarantee that all deadlines are kept.

In the simple, but important periodic task model a set 7, ..., 7, of tasks is given, where each 7; is
an infinite sequence of jobs, defined by an ezecution time ¢; € Q4, a (relative) deadline d; € Q4 and a
period p; € Q4. We assume that the tasks are synchronous, i.e. there is a time, say 0, at which all tasks
release a job simultaneously. In other words for each i € {1,...,n} and z € Z>o, a job of running time ¢;
and absolute deadline z - p; + d; is released at z - p;. Furthermore we assume constrained-deadlines, hence
d; < p; foreachi € {1,...,n}.

We consider preemptive uni-processor schedules, i.e. at any time a running job may be preempted
and resumed later. As the name suggests, in the Earliest Deadline First (EDF) policy, at any time that
job from the queue of released and not yet accomplished jobs is active, whose (absolute) deadline comes
next. The EDF-schedule is provably optimal in this setting, meaning that if there is a schedule in which
all jobs meet their deadlines, then the EDF-schedule is feasible as well (see Dertouzos [2]).

The main question of feasibility analysis however remains: Will each of the infinitely many jobs be
finished in time? First observe, that

{Q d’J +1
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yields the number of jobs of 7; that have both, their release time and deadline in the interval [0, Q].

Consequently the quantity
—d
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i

gives the amount of running time that, regardless of the used scheduling policy, has to be spent on 7; in
this interval. More general, the demand bound function

DBE(S, Q) = 3 (|42 +1) o

i=1 pi
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gives the running time of all jobs, which have their release time and deadline in the interval [0, Q)]. As
a consequence, for feasibility it is necessary, that DBF(S, Q) < @ for all @ > 0. Baruah et al. [3] showed
that this condition is in fact sufficient, hence an EDF-schedulability test is a test which checks validity of

the following formula
= Q—di
VQ >0:) |t ase
i=1 i

see Figure 1 for an illustration.
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Figure 1. Constrained deadline task system & = {7r,7} with 71 = (2,3,4), » = (3,5,6), using notation
73 = (¢i,ds, pi). One has DBF(S,Q) > @ for @ = 11, thus § is not EDF-schedulable.

Much effort has been spent on developing sufficient polynomial or exact pseudo-polynomial time tests
for EDF-schedulability of periodic tasks, see [4,5,3,6,7]. But none of the algorithms suggested in these
papers was able to decide EDF-schedulability on a unit speed processor correctly and in polynomial time
for all instances. The question whether EDF-schedulability can be decided in polynomial time is stated
as a major open problem in the survey of Baruah & Pruhs [8] on open problems in Real-time scheduling.
We settle the complexity status of testing EDF-schedulability by proving the following theorem.

Theorem 1. Given a set S = {71,..., 7} of synchronous, periodic, constrained-deadline tasks defined
by rational numbers 0 < ¢; < d; < p;, it is (weakly) coNP-hard to decide, whether S is EDF-schedulable,

i.e. testing the condition
Y@ >0: Z <\‘Q
i=1

is (weakly) coNP-hard. This holds even if d; = p; fori=1,...,n — 1.
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This, together with the result in [3] implies the following corollary.

Corollary 1. Given a set S = {7,...,7,} of sporadic tasks with worst-case execution time c;, relative
deadline d; and minimum inter-arrival time p; it is (weakly) coNP-hard to determine, whether the EDF-
schedule of S is feasible.

Related work

One approach to obtain algorithms to test EDF-feasibility lies in bounding the interval, in which the
demand bound function has to be evaluated. Let u = _ " | < be the utilization of a task system. Given

that S is not EDF-schedulable, the smallest @ > 0, certifyiné the infeasibility must have

1—u t:nll,ax,n{pz - d2}7
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see e.g. [9,10]. This admits a pseudo-polynomial time algorithm for the feasibility test, if the utilization
of S is bounded by 1 — ¢ for some constant € > 0.

Albers & Slomka [11] gave an FPTAS for approximating the speed of a processor, needed to make
the EDF-schedule of S feasible. Their algorithm is also interpreted as follows. It either asserts that the
tasks are feasible, or it asserts that the tasks are infeasible on a processor of speed 1 —e¢. A similar result
was also provided in the setting of fixed priority scheduling [12]. See [1] for more details on fixed priority
scheduling policies and [6,4,7,13] for further approaches to feasibility analyzes of EDF-schedules. Recently,
Bonifaci et al. [14] extended the result of Albers & Slomka to the case of multiprocessor scheduling with
migration. The algorithm asserts that a set of tasks is feasible on m speed-(2 — 1/m + €) machines or
infeasible on m speed-1 machines.

In a popular special case, the tasks have implicit-deadlines, i.e. d; = p; for all i. In that case the
condition DBF(S, Q) < @ has only to evaluated at @ = scm(py,...,p,) and the set is EDF-schedulable if
and only if the utilization is bounded by 1, see Liu & Layland [15]. In other words, the EDF-schedulability
in this special case is decidable in polynomial time. If the tasks may be asynchronous, i.e. each task has on
offset a;, such that jobs are released at z - p; + a;, then testing the feasibility is strongly coNP-hard [16].
This even holds if the utilization of the system is bounded from above by an arbitrarily small constant.

In the sporadic task model neither release times nor running times are predetermined. There, ¢;
denotes the worst-case execution time and p; denotes the minimum inter-arrival time. But the worst-case
is attained in a synchronous arrival sequence, that is when all tasks release jobs at time 0, all jobs fully use
the worst-case execution time ¢; and jobs arrive as early as permissible, see Baruah, Mok & Rosier [3]. In
other words, the sporadic task system is EDF-schedulable if and only if this is true for the corresponding
synchronous periodic task system.

2 Diophantine approximation

The EDF-schedulability test contains only one single unknown variable Q. This is unusual for NP /coNP-
hard problems and helps us to narrow down the search for NP /coNP-hard remote relatives. The relative
that we found helpful for problems in Real-time scheduling is Diophantine approzimation, a problem in
the field of algorithmic number theory (see e.g. [17]). Roughly speaking, there the objective is to replace
a number or a vector, by another number or vector which is very close to the original, but less complex
in terms of fractionality.

More precisely, a sequence qj, - . ., @, of rational numbers together with a bound N € N and an error
bound ¢ € Q4 is given. One has to decide whether

EQE{]-;"';N}: max ||_Qai—|_Qai|§E; (1)

i=1,...,n

where 2] is the integer closest to z € R. In a seminal work, Lagarias [18] has shown, that testing (1) is
NP-hard. This was later extended by Rossner & Seifert [19] and Chen & Meng [20] to inapproximability
results. In [21], the authors of this paper applied these results to show that response-time computation
of tasks in a Rate-monotonic schedule is NP-hard, where tasks with smaller period always preempt that
of larger period.

The EDF-schedulability test uses a rounding operation, where one replaces a rational by the closest
integer which is equal or smaller, i.e, one rounds down. In Diophantine approximation, one rounds up
or down to the nearest integer. The variant of Diophantine approximation, where one has to round up
is called directed Diophantine approzimation (DDA). Recently the authors of this paper provided the
following hardness result for directed Diophantine approximation.

Theorem 2 (Hardness of DDA, [22]). There exists a constant ¢ > 0, such that the following Directed
Diophantine Approzimation problem (DDA,) with gap parameter p = |nc/loglogn | js NP-hard: Given
numbers ay,...,a, € Q, a bound N € N and an error bound € € Qy as input, distinguish the following
cases

— YEs:3Q € {[N/2],..., N} i maxi=i,..n([Qai] — Qoi) <€
—No:3Qe{l,...,p- N} :max;—1, ,([Qui] — Qo) <27 ¢



Note that the union of the YES and NO cases does not represent all possible inputs. But there is a
polynomial time reduction, taking the input of an NP-complete problem, say a SAT clause C, and
yielding a DDA, instance respecting the YES-case if C is satisfiable and the No-case otherwise. See, e.g.,
[23,24] for more details on gap reductions.

Despite of some similarities between DDA, and EDF-schedulability, we still observe crucial differences:

DDA, contains a ceiling instead of a floor operation.

The number @ is restricted to be integer.

The approximation error is measured with || - ||s-norm instead of || - ||;-norm.
For DDA, one has a bound N on the number ().

Ll

We can easily eliminate the first difference by observing that [Qu;] — Qo; = Q - (—a;) — |Q(—wy)].
Consequently replacing the numbers by their negatives, we obtain a DDA, problem with a floor operation.
By adding a sufficiently large integer z and using Q(a; + 2z) — |Q(a; + 2)| = Qa; — |Qa;] for @ € N
we may then make the a;’s positive. We conclude that given ay,...,a, € Q, N € Nand € € Q,, it is
NP-hard to distinguish

— YES:3Q € {[N/2],...,N} :max;—1__ n(Qo; — [Qa;]) <&
~No:dQe{l,....,p-N}: max;=1,. n(Qa; — |Qa;]) <2"-¢

for p = an/ loglogn | Tn a next step, we introduce a variant of directed Diophantine approximation
which incorporates differences (2) & (3). We use the notation [a, 5] to denote the set of real numbers
[a,0] ={z € Reae <z < B}.

Theorem 3 (Hardness of DDA;). There exists a constant ¢ > 0, such that the following DDA:;

problem with gap parameter p = |n¢/1°81°67| js NP-hard: Given numbers ay,...,a, € Q. , weights
Wy, ..., W, € Qp, a bound N € N and an error bound € € Q. , distinguish

— Yes:3Q € [[N/2],N]: Y1y wi(Qa; — [Qa;)) < e
~ No:3Q e [Lp-N: Y gwi(Qai — [Qui]) < p-e

Proof. We reduce DDA, to DDA Let (ai,...,an; N;¢) be the given DDA, instance (with rounding
down and «; > 0 for all 7). Since the «;’s are rational numbers, we can write them as a; = ZT with
pairwise co-prime integers a;,b; € N. Our DDA; instance consists of the same numbers aq,...,a,,
equipped with unit weights w; = --- = w,, = 1. Furthermore we choose the same bound N, but a
different error bound ¢’ = n - ¢ and we add one more number ag = 1 with a very high weight of
wp = 2-max{a;:i =1,...,n}-e-p-n. Intuitively the weight wy is large enough, such that any reasonable

DDA:‘, solution () of this instance must be an integer. It suffices to show the following implications:

— YEs:3Q € {[N/2],...,N} imax;=; .. n(Qa; — [Qa;]) < e
= 3Q € [[N/2],N]: il wi(Qa; — [Quy]) < &'

~No:dQe{l,....p-N}: max;=1,. n(Qa; — |Qa;]) <2"-¢
= 3Qel,p N X ywi(Qa; — [Qai]) < p- €'

YEs-case: Clearly YES instances for DDA, are mapped to YES instances of DDA; by simply using the
same solution (). This is the case since given a @ € {[N/2],..., N} that matches the conditions of the
YES case for DDA, one has

> wi Qi — |Qai]) =wo - (@ = [Q))+ D 1+ (Qai — |Qai]) <n-e=¢'.
i=0 i=1 v
=0 <e
No-case: Now suppose that we have a @ € [1, p-N] with 3% w;(Qa; — [Qa;]) < p-&' = p-n-e. Decrease
@ continuously until Qa; € Z for at least one j € {0,...,n}. This can only decrease the approximation
error since |Qq;| remains invariant. Furthermore () will never be decreased below 1 since ag = 1. If @ is
then an integer, we are done since

n

max (Qai — [Qai)) € 3 wilQai — [Qai) < prn-e < 2%

i=1,...,n Pt



for n large enough. Now suppose that () is not integer. Then we may write Qo; = QZ—;' =:z € Z, thus

Q= % € Zaij. We write Q = % where y is integer but not a multiple of a; (since () ¢ Z). Hence

11
=y - LQJaj)-a—j 2=

Q-1Q =2

aj

1@l
aj
>1

where we use that y — |Q]a; is a non-negative integer but y — |Q]a; # 0. We obtain

a;

- 1
> wiQai — [Qei]) > wo - (Q = [Q) >wo-— >p-m-e
i=0
by the choice of wy. This contradiction yields that ) € N and the claim follows.

3 Hardness of EDF-schedulability

In this section we will see that the NP-hard problem DDA; is close enough to the EDF-schedulability
condition to admit a direct reduction. To achieve this, YES (N0, resp.) instances for DDA; are mapped
to No (YEs, resp.) instances of EDF-schedulability. Intuitively this is done as follows: Suppose we are
given a DDA; instance (aq,...,an;wy, ..., wy,; N;e). The first idea is to create implicit-deadline tasks
Ti,. -, Tn With p; = d; = 2. Then we have

{Q —d;
DPi

J +1=Qu]

hence a ) that maximizes DBF(S, ())/Q, minimizes the approximation error. On the other hand we need
to forbid () with ) > N. a common multiple of all p;’s. For this purpose we add a special task 79 which
has a deadline of N/2 and a sufficiently large period (we may imagine py = oo0). Then the quantity
DBF(79, @)/ @ contributes significantly to DBF(S, Q)/Q only if @ is of order N.

Theorem 4. Given an instance of DDA:‘, consisting of rational numbers aq,...,0, € Qi, weights
Wi,...,wn, € Qp, a bound N € N>y and an error bound ¢ > 0, we can find in polynomial time a
constrained-deadline task system S consisting of n + 1 tasks such that

— YEs: 3Q € [[N/2],N]: 3" | wi(Qoy — | Qo)) < e = S not EDF-schedulable
~ No:3Q € [[N/2],3N]: Y1, wi(Qa; — |Qa;]) < 3¢ = S EDF-schedulable

Furthermore n tasks in S have implicit-deadlines.

Proof. A set of tasks is EDF-schedulable on a processor of speed § > 0 if and only if the tasks with
running times scaled by % are feasible on a unit speed processor. Thus we may assume to have an oracle

for the test .
VQZO:ZQQ_,diJ +1> & <fQ
i=1

bi
Let N e Nai,...,an,wi,...,w, € Qp,e >0 be the DDA; instance. We choose a constrained-deadline
task system S consisting of n + 1 tasks
1 1 .
7 = (¢, diy pi) = <wi,_,_> Vi=1,...,n
o; O

To = (co,do,po) = (3¢, [N/2],12N)
and processor speed

n
e 13
f=yt 2 wiai=g+ulnn.m))

which just slightly exceeds the utilization.



YEs-case: Suppose that we have a @ € [[N/2],N] with Y1, w;(Qa; — |Qa;]) < e. Then

pADA

DBF({r0,...,Tn},Q) = DBF(10,Q "‘Z Q

= 3Je+ Z Qo] wi
i—1

(g 3e + < (i Qaiwi> — 5)
i=1

n
= 28+QZO&¢U)¢

=1
(x%) € -
> Q- (N + l:ZI aiwi>

=5

= pQ

Here we use Y 1 w;(Qa; — [Qa;]) <ein (x) and Q@ < N < 2N in (xx). Thus the task system S is not
EDF-schedulable (on a processor of speed ).

No-case: Next we assume that S is not EDF-schedulable. Then there is a ) > 0 such that DBF({79,...,7.},Q) >

BQ. We need to show that Q € [[N/2],3N] and )", w;i(Qea; — |Qa;]) < 3e.
Observe that using the definition of 8 and |Q«;| < Q«;, one has

DBF (79, ()) = DBF(S, Q) —DBF({m1,...,Tn}, Q)

> Q- [Qas] w;

i=1

ZﬁQ—QZaiwi

i=1
9 - 9
=6Q -Q (N + gaw> +Q5
=5
9

Since 1 has its first deadline at dy = [N/2] and DBF(7p,Q) > 0 we must have @ > [N/2]. Suppose for
contradiction that already the second deadline of 7y occurred before @, i.e. Q > py = 12N. Then

DBF(79,Q) < ¢o - L;QJ <2-3¢- % <Q

leading to a contradiction. Hence, till time @) exactly one deadline of 7y has passed, thus DBF(79, Q) = 3e.
But we already inferred the bound DBF(7, Q) > @+, thus even ) < 3N. Finally

> wi(Qai — [Qui)) = Q Za w; —(DBF(S, Q) — DBF (1, Q) < Qf — DBF(S, Q) +3¢ < 3¢
- S—

H/—/ <0
<8

and the claim follows.

Theorem 1 follows by combining Theorem 3 and 4, with p = 4.
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