
FITE: Future Integrated Testing Environment

Patrice Godefroid1, Leonardo Mariani2, Andrea Polini3,
Nikolai Tillmann1, Willem Visser4, Michael W. Whalen5

1 Microsoft Research
Redmond, WA, USA

{pg,nikolait}@microsoft.com
2 Dipartimento di Informatica, Sistemistica e Comunicazione

Università degli Studi di Milano Bicocca
Viale Sarca, 336 – Milano – ITALY
mariani@disco.unimib.it

3 Computer Science Division
School of Science and Technologies
Università degli Studi di Camerino

Via Madonna delle Carceri, 9 – Camerino (MC) – ITALY
andrea.polini@unicam.it

4 Department of Mathematical Sciences
Computer Science Division
University of Stellenbosch

7602 Matieland – SOUTH AFRICA
willem@gmail.com

5 University of Minnesota
Software Engineering Center

Minneapolis, MN – USA
whalen@cs.umn.edu

Dagstuhl Seminar 10111
Practical Software Testing: Tool Automation and Human Factors

1 Motivation and Background

It is a well known fact that the later software errors are discovered during the devel-
opment process, the more costly they are to repair. Recently, automatic tools based on
static and dynamic analysis have become widely used in industry to detect errors, such
as null pointer dereferences, array indexing errors, assertion violations, etc. However,
these techniques are typically applied late in the development cycle, and thus, the errors
detected by such approaches are expensive to repair. Additionally, these techniques can
suffer from scalability issues and produce imprecise results since it is applied for the
first time at a late stage when the code base is too large. There are also human factor
issues that come into play when analysis are run at a late stage, namely that the tools
cannot show all possible errors since the volume of possible false errors will overwhelm
the user and thus they ignore the results; the inverse also happens, where tool developers
suppress too many real errors in an effort to reduce false warnings.

Dagstuhl Seminar Proceedings 10111 
Practical Software Testing : Tool Automation and Human Factors 
http://drops.dagstuhl.de/opus/volltexte/2010/2619

1



To address these issues we suggest that code should be continuously analyzed from
an early stage of development, preferably as the code is written. This will allow devel-
opers to get instant feedback to repair errors as they are introduced, rather than later
when it is more expensive. This analysis should also be incremental in nature to allow
better scaling. Static analysis tools can produce more errors at an early development
stage since the negative impact of false warnings will be mitigated due to the small in-
crement of code being analyzed. Dynamic analysis, in particular testing, can also benefit
since it can use the static analysis results (for the code increment) to produce tests to
cover potential errors as well as give high code coverage.

2 FITE Vision

If code is to be analyzed as it is written it implies that the analysis should form part of
the development environment. We thus propose the Future Integrated Test Environment
(FITE): an IDE with a test-centric focus. FITE will continuously test and analyze the
increments and will produce recommendations to the user to repair and test the code.
To address scaling up from units, FITE will combine incremental analysis with com-
positional reasoning. Since the tool is based on interaction with a user, human factors
will play a large role in the design of FITE. Many different analysis can be integrated
into a tool like FITE. In order to not overwhelm the user with too many recommenda-
tions from the tool to improve the code and tests, we foresee a pluggable view-based
approach, where the user selects the kinds of analysis it wants to perform on the code
(such as security, performance, reliability or numerical precision analysis) and the tool
produces only recommendations addressing this selection. For example, when selecting
performance the tool will only show code paths with high worst-case execution times
and for security might only focus on buffer overruns and information leaking.

3 From Dream to Reality

3.1 Compositional Analysis

We believe the key to make our vision a reality is to effectively engineer compositional
reasoning and analysis of large programs, in order to bridge the gap from unit analysis
to system analysis, and ultimately the gap between developers and testers.

Two key sub-problems need to be addressed:

1. how to decompose large programs into smaller sub-components by identifying in-
terfaces where those sub-components can be decoupled.

2. next, how to generate contracts at those interfaces, in order to capture input pre-
conditions and output post-conditions in the form of constraints that may happen
or must hold.

We envision a semi-automated process to solve these two problems of interface
extraction and contracts generation. Those contracts are code annotations that capture
semantic information about possible behaviors of the program.

2



Initially, in order to bootstrap the process, a fully-automatic static analysis of the
program could first infer candidates interfaces on how to decompose the system (e.g.,
using heuristics based on measuring the “complexity” of those interfaces) and suggest
those to the user. Those interfaces could then be associated with pre-computed con-
tracts of two types: may contracts inferred by static analysis (such as “input integer
variable x may have any value” or “output return value y may be any integer”) and must
contracts inferred by dynamic analysis of executions obtained with existing or auto-
matically generated test cases (such as “input pointer p must be non-NULL” or “output
pointer q always points to an allocated struct of type blah”).

Despite this fully-automatic default mode, we really envision a interactive (semi-
automatic) usage of the FITE tool where the user can be continually involved by re-
ceiving and providing feedback. Think of it as pair programming where FITE is your
coding and test buddy who interacts with you as you write code, test it, and explore its
possible behaviors. By means of these may and must contracts which can be inserted
anywhere in the code (not just at component interfaces), the user and the tool commu-
nicate with each other, enriching the raw code with annotations capturing the intent and
correctness of the code. The tool also actively suggests annotations by prompting the
user (e.g., “do you assume this input pointer is always non-null?” or “did you mean
to return a pointer that points to sometime allocated memory (program path A) and
sometimes NULL (program path B)?”).

Compositional reasoning allows the automatic inference of properties of the whole
system by combining properties of sub-units: may contracts (summaries) can be com-
bined to prove that some bad things cannot happen (proofs) while must contracts can
be used for automatic test generation of system tests and bug finding. The framework
can be extended to functional properties and non-functional properties.

3.2 Non-functional Analysis

Non-functional properties, such as performance, can cause some of the most expensive
and difficult to debug problems within applications. However, which non-functional
properties are important often depends upon the type of application being written. For
example, an authentication server is critically concerned with security, while an embed-
ded system may have no security constraints but may require worst-case execution time
bounds and guarantees of numeric precision.

The FITE architecture will support plug-ins that can perform a wide variety of
specialized, non-functional analysis. The IDE itself will have the concept of an anal-
ysis load-set, which allows a developer or project manager to determine which non-
functional analysis are available (and most important) for the class of application being
created.

We consider a handful of non-functional analysis below. These are meant to be
representative rather than exhaustive:

Worst-Case/Average Case Timing Analysis A standard area of concern for develop-
ers are possible performance bottlenecks within an application. Symbolic evalua-
tion tools such as JPF, Pex allow examination of code paths to determine which
paths are longest or are known to make “expensive” API calls.

3



A plug-in that could flag potential performance bottlenecks could involve prede-
fined configuration data that catalogues the relative cost of system functions and
integration of this data with either (1) a symbolic simulator to describe feasible
paths through the code or (2) an abstract interpretation engine (e.g., AbsInt). The
symbolic simulator may have an advantage in that it may be able to sum-across-
paths to talk about variance between symbolic paths and approximate average case
performance, while abstract interpretation may be better at providing conservative
guarantees about worst-case execution time.

Security Security problems are endemic to modern software. Old problems such as
buffer overflows, continue to plague a variety of applications. More generally, at-
tacks involving authentication, back-doors, SQL injection attacks, input validation,
and many other causes cost billions of dollars in direct costs (to find, fix and patch)
and in indirect costs (e.g., identity theft).
Existing software tools, such as SAGE, can automate many buffer overflow checks.
SAGE is designed to run on large binary programs. We believe that we can cre-
ate more precise analysis by reducing the scale of programs to be analyzed, and
to broaden the category of attacks that can be checked. For example, statements
creating dynamic SQL queries should be flagged and analyzed to prevent SQL in-
jection attacks. Automated suggestions for writing SQL-injection resistant code,
such as using stored procedures with typed parameters. Using JPF, Pex it should be
possible to provide test cases that demonstrate SQL-injection attacks.

Numeric Precision Floating point numbers do not exactly represent real numbers, and
the imprecision between complex computations over the reals and over floats can
become significant. For example, the failure of the Patriot missile system (resulting
in the deaths of 28 American soldiers) was due to cumulative imprecision in a float-
ing point timing routine. Determining the loss of precision is therefore a common
analysis that must be performed, usually manually, over embedded systems code.
Using symbolic execution, it is possible to describe imprecision at a per-path level.
A näive approach would take the symbolic path and concretize it and then use
interval analysis to examine the imprecision. It is not enough to enumerate the
paths, however: one must examine the range of concrete values that are possible
instantiations of the path in order to bound the precision errors that are possible.
FITE should include a plug in that can generate both a constraint describing worst-
case precision errors and a test (or series of tests) that demonstrate imprecise paths.

Concurrency It is difficult to reason compositionally about concurrency using most
programming languages. However, concurrency bugs are among the most expen-
sive to detect and fix. Recent work, such as the Symbolic Deadlock Analysis work
by Deshmukh, Emerson, and Sankaranaryanan, can describe contacts between li-
braries and clients that guarantee deadlock free execution. This work is scalable
enough to analyze large systems (1M SLOC Java / hour). Once the contracts are
known, it is possible to cheaply analyze violations of the contract and present the
result as a test case.
However, the other main concurrency problem of data races currently has no simple
analysis solution. A task that could execute in the background and do pairwise
analysis of “likely” concurrent method calls that could involve data races using a

4



tool like CHESS could be extremely valuable. The research challenges here involve
the scale of the analysis and determination of “likely” interacting methods.

3.3 Regarding the user interface

Static analysis can determine potential program errors. Today, a typical IDE shows error
messages of the type checker and other static analysis tools, relating them to particular
lines in the code. We propose to augment this information with information gathered
from and related to test cases. This includes already existing test cases as well as new
test cases generated in addition. The additional information is meant to guide the devel-
oper towards errors directly related to the code the developer is currently working on.
It is important that the additional information does not distract the developer from the
main objective of writing code. Only relevant information must be shown. If a test case
exposes an error, the code editor will associate the corresponding line in the code with
the failing test case, also showing the stack trace of the failure. In addition to existing
test cases, FITE generates new test cases, e.g. with (dynamic) symbolic execution. New
test cases can be generated from scratch, or by “fuzzing” existing tests. When generat-
ing new tests, we will leverage the semi-automated analysis of interface boundaries and
contracts. The analysis of existing test cases, and the generation of new test cases may
happen continuously in the background, possibly on spare cores of modern multi-core
machines, or the analysis may be delegated to the cloud. The developer can choose to
include generated test cases into a regression test suite with a single button click, as for
example realized in Pex:

Since environment abstraction, i.e. automated generation of mock objects, may
cause generation of test cases with spurious errors, i.e. errors which cannot occur in
the integrated system, we propose a ranking of generated tests, and their failures. The
result can be visualized by a “heat map” in the editor, which illustrates the points in
the code at which generated tests cause failures, showing those failures which are most
likely to reproduce in the integrated system in the most threatening color. When test
cases cause a failure, an automated failure root cause analysis determines the failure
condition, and suggests to the developer the addition of a precondition into his code, ef-
fectively raising the failure to the abstraction level of the code the developer is currently
working on. This has already been realized in Pex:

5



When the developer write new test cases, the editor will give suggestions what meth-
ods to call in a new test case. To this end, existing test cases and their code coverage
are analyzed in the background to determine which methods of the product code or
underrepresented in the existing test cases.

4 Process issues

So far the discussion has been mainly focused on unit analysis, from the developer’s
point of view. However, the approach and the environment we envision should assist
developers and testers during the whole application development process. It would be
particularly effective to anticipate possible integration issues at the time of developing
each single module composing the entire system.

The FITE environment will base its analysis strategies and corresponding results
taking into account also the other modules to which the module under development is
interrelated. To do this the FITE environment will need to be implemented as a dis-
tributed and collaborative environment running on the cloud. In this phase particularly
important are possible interactions with legacy modules to be integrated within the sys-
tem. For such modules FITE will need to include an analysis step to investigate and
highlight possible integration issues. The analysis is performed on-the-fly while the de-
veloper is coding the module, analyzing the consequences of the decisions on legacy
module usage.

The analysis can successively be pushed even further permitting to derive integra-
tion test cases covering possible interaction sequences within the system when com-
ponent are ready to be released. The integration steps will be supported by FITE also
through the semi-automatic derivation of stubs for the different test cases.

4.1 From unit to integration / system testing

While a unit test targets a single isolated features, a system test spans multiple features.
Via semi-automatically inferred interface boundaries/contracts, FITE is able to assist
the developer locally with unit tests, where those parts of the system not currently under

6



test are mocked. In addition to traditional interface contracts, we propose to augment
interface descriptions with a facility that allows to turn such mock instances into real
instances. For example, when the database was mocked while testing a web application,
then it should be possible to turn such a mock database state into an actual database
state. This will in effect allow to turn unit tests into integration tests.

7




