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Abstract Visual attention is the biological mechanism allowing to turn mere sens-
ing into conscious perception. In this process, object-based modulation of attention
provides a further layer between low-level space/feature-based region selection and
full object recognition. In this context, motion is a very powerful feature, naturally
attracting our gaze and yielding rapid and effective shape distinction.
Moving from a pixel-based account of attention to the definition of proto-objects as
perceptual units labelled with a single saliency value, we present a framework for
the selection of moving objects within cluttered scenes. Through segmentation of
motion energy features, the system extracts coherently moving proto-objects defin-
ing them as consistently moving blobs and produces an object saliency map, by
evaluating bottom-up distinctiveness of each object candidate with respect to its
surroundings, in a center-surround fashion.

1 Introduction

Cognitive architecture for autonomous robotics often rely on the capability to deal
with objects, act upon them, recognize scenes and partners and hence behave prop-
erly in a given situation. These higher level cognitive functions can take place only
if the flow of the huge and multimodal information stream coming from the sensory
system is firstly processed and filtered by an attention mechanism, which extracts
relevant patterns and conveniently codes and prioritizes what has to be further pro-
cessed.

Although most computational models of attention are location-based, there is
growing evidence for an object-based account of attention [21]. In his Theory of
Visual Attention [3], Bundesen defines matematically how our visual system could
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assess top-down relevance of each object in the stimulus. That is, proto-objects (or
perceptual files, which consist of selected regions) are the basic units of attention,
upon which a priority value is computed. Objects are then fed into a WTA network,
providing access to working memory for those winning the race. Such proto-objects
can be defined in a flexible way and upon different features.

Research on visual attention, and modelling thereof, has concentrated in the past
decades mostly on static stimuli, characterized through a wealth of features, ac-
counting for bottom-up attentional capture and accordance with task-related require-
ments. Yet, we live in a highly dynamic world, populated with moving things, which
call for a selective mechanism much more compellingly than static objects do. Early
detection and selection of the most salient kind of motion can sometimes make the
difference in the struggle for survival. Even simple insects do have some form of
motion perception [8], but usually quite limited color vision. In a very cluttered
scene, moving objects are supposed to attract our gaze very effectively, as shown
by [4], where motion contrast accounts for most of the fixations. On a neurophysi-
ological level, motion information is indeed processed even along a different, more
direct pathway, the dorsal pathway, as opposed to other features needed for object
recognition [12]. If attending to static objects is the prerequisite of perception for
action (like searching for a cup and grasp for it), attending to motion fosters percep-
tion for reaction and interaction, being tied to events evolving in time and triggering
our response (such as an approaching danger or person). Embedding motion in a
visual attention model would then move into the direction suggested by [23] of con-
sidering gaze orienting in real-world environments instead of end up with a model
of picture viewing.

Without disregarding the importance of the deployment of attention to static fea-
tures, our model builds upon a novel approach for extracting and prioritizing mov-
ing objects in a scene. In a previous work [2], we introduced a basic framework for
producing motion saliency maps from spatiotemporal filtering. That model was not
broadly tuned in the frequency domain and produced a pixel-based saliency map.
Motion is a quite distinctive property which naturally induces segmentation of the
scene within foreground and background (see [16] for an application to background
subtraction), hence provides a more straightforward extraction of object units than
color [22] or edge features [17], or spreading of activation around a salient location
[24].

As usual when designing an attention architecture, in the case of attending to
motion the problem is to identify and prioritize salient regions, namely, not just de-
tecting moving objects but defining which one requires to be first attended. Saliency
is not intrinsic in the location nor in the object but it is defined relatively to its sur-
round, in a contrast based way, and according to relevance to the task. In this paper,
we try to bring all these ideas together and extend our model to account for mul-
tiscale motion, proto-object extraction and object saliency evaluation. Saliency is
given by means of center-surround computations both on a location-based and an
object-based level. Relevance is given by tuning the model according to the given
task. Proto-objects (in the following termed objects) are defined as blobs of consis-
tent motion energy and coherent direction. Objects standing out from the surround-
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ing with respect to amount of energy or direction are hence given larger saliency.
In the next sections, we describe the components of our system and present some
results. Section 2 explains our implementation of the energy model [1] for motion
perception, Section 3 proposes the definition and characterization of moving proto-
objects and how to compute their saliency. Finally, Section 4 shows some experi-
mental simulations and results.

2 Motion feature extraction and prioritization

We extend the implementation of the energy model for coherent motion sensing by
[1] introduced in [2]. The basic idea is that coherent motion can be selected inside
an intensity frame buffer by filtering in the oriented edges and bars, left by objects
moving in the spatiotemporal volume. Instead of just one couple of Gabor filters in
quadrature for extracting right/left-ward and up/down-ward motion from x− t and
y− t planes respectively, we designed a Gabor filter bank to extract motion informa-
tion at different spatio-temporal scales (frequency bands) and velocities (filter ori-
entations), trying to sample most of the spatiotemporal frequency domain included
in the window u,v ∈ [0,0.5], to comply with the sampling theorem. That is, we code
each voxel in a Gabor space, according to its oriented energy response, analogously
to the coding suggested for modeling our visual system [10]. Gabor filters have been
long known to resemble orientation sensitive receptive fields present in our visual
cortex and to represent band-pass functions conveniently localized both in the space
and in the frequency domain [6]. This is still valid in the spatiotemporal domain,
as measured by [7] in the receptive fields of simple cells in V1 and as obtained via
ICA (Independent Component Analysis) computation on video sequences by [13].
In both studies, resulting receptive fields resemble 3D Gabor filters (whose central
slices are 2D Gabor filters as well) at different orientations and frequencies.

Basically, given a frame buffer B, we filter any vertical (column-temporal dimen-
sions) or horizontal (row-temporal dimensions) plane I(s, t) in B with every filter
Gθ , f in the bank, in its odd (superscript o) and even (superscript e) component:

Eθ , f (s, t) = (Go
θ , f (s, t)? I(s, t))2 +(Ge

θ , f ? I(s, t))2 (1)

where s = {x,y}, f = {0.0938,0.1875,0.3750} (the max spanned frequency is 0.5
cyc/pixel, the frequency bandwidth is 1 octave), θ = {π/6,π/3,2/3π,5/6π}. That
is, we designed a filter bank with 4 orientations (θ = 0,π/2 were left out, as corre-
sponding to static or flickering edges) and 3 frequency bands.

From combination of opponent filter pairs (i.e filters with same slope but op-
posite orientation, θ and (π − θ)) we can extract a measure of direction-selective
energy at a specific velocity. For instance, in our case right-sensitive filters have
θr = {π/6,π/3}, while left-sensitive filters have θl = {(π − π/6),(π − π/3)}. A
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measure of the total rightward (leftward) energy at a specific frequency can hence
be obtained by summing rightward (leftward) energy accross velocities:

R f = ∑
i

∣∣∣Eθri , f
−Eθli , f

Eθri , f
+Eθli , f

∣∣∣
≥0

L f = ∑
i

∣∣∣Eθri , f
−Eθli , f

Eθri , f
+Eθli , f

∣∣∣
≤0

(2)

where the |·| operator selects points greater/less than zero, corresponding to right-
ward/leftward motion. The same can be done for upwards (downwards) energy com-
putation, by taking s = y,θu = θr and θd = θr.
In this way we obtain 4 feature volumes R,L,U,D at different frequencies.

Subsequently, we operate a first attentional processing by applying normalization
and center-surround operators to the frames of each feature buffer. Due to receptive
field center-surround interactions, indeed, ganglion cells are usually described as
firing more strongly whenever a central location is more contrasted with respect to
its surroundings. Again, this holds in the motion domain as well, as shown by [19]:
locations displaying different motion in terms of energy module or direction pop out
from the surroundings and are enhanced in the saliency map. Center-surround inhi-
bition is usually obtained via accross-scale differences [15] or center-neighborhood
differences at the same scale [11]. We chose the second way, as faster due to the
use of integral images. At the same time, feature maps need to be normalized to the
same range and weighted according to the number of occurring local maxima, so
that a feature map with many activation peaks is given less weight than one with
few peaks. This can be realized in a biological plausible manner by iteratively fil-
tering the feature frames with a DoG (Difference of Gaussians) filter and taking
each time just the non negative values [14]. We then compose horizontal and verti-
cal features to obtain a measure of horizontal and vertical energy and sum accross
frequencies:

Eh = ∑
f
(N (CS(R f ))+N (CS(L f ))) Ev = ∑

f
(N (CS(U f ))+N (CS(D f ))) (3)

Here N (·) and CS(·) denote the normalization and center-surround operator, re-
spectively, which are applied to each x− y frame of the feature buffers.

To illustrate the effectiveness of our procedure we use a purely bottom up syn-
thetic stimulus, depicted in Fig.1a. The sequence (256 x 256 x 5) displays nine
squares at random positions moving downwards at 1 pixel/ f rame velocity and
just one square moving rightwards at the same velocity, representing the oddball
(marked by a red circle). In the horizontal feature map (Fig. 1b) correctly just the
oddball is shown, while in the vertical feature map (Fig. 1c) just the vertical moving
dots are shown. Due to normalization these latter have less energy (see colorbar),
albeit moving at the same velocity as the horizontally moving one.

Eh and Ev can be regarded as the projection on the x and y axes of the salient
motion energy present in the frame buffer. Hence from these components we can
achieve, for every voxel, magnitude and phase of the salient energy:
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(a) (b)

(c) (d)

Fig. 1: Application of the salient energy extraction framework to a synthetic display
(a) containing a pop-out object, represented by the red-circled square, moving hori-
zontally, while the other squares move vertically. (b), the horizontal motion feature
map and (c) the vertical motion feature map are shown, both at f=0.3750. (d), the
temporal average of the module of salient energy, achieved by merging horizontal
and vertical energy at different frequencies.

|E(x,y, t)|=
√

Eh(x,y, t)2 +Ev(x,y, t)2 (4)

∠E(x,y, t) = arctan(Ev(x,y, t)/Eh(x,y, t)) (5)

A saliency map derived from magnitude map be seen in Fig.1d, obtained by
averaging the |E| frame buffer along time. Top-down modulation at this level can
be implemented by selecting the filter parameters (number of orientations, number
of frequency bands, orientation and frequency bandwidths) according to the current
task. In this way, one can decide to attend just to a particular direction of movement,
to a particular scale of objects or to a particular velocity range.
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3 Proto-object formation and saliency evaluation

In the previous section, we have shown how to obtain a saliency map enhancing rel-
evant motion zones. Such a map is yet pixel-based and, as said in the introduction,
an object-based map would best help subsequent processing for object recognition
and action selection. We need to evaluate the saliency of an object with respect to
its entirety and with respect to the surrounding background, not just by considering
each single pixel it is composed of. Indeed, even if motion processing attains to the
dorsal, or ”where”-, pathway, nevertheless attentional processes can modulate seg-
regation and grouping of the visual input into ”object tokens” across both pathways
[20].

To this end, we extracted proto-object patches defined as blobs of consistent mo-
tion in terms of module and direction. As the Gestalt law of common fate states,
points moving with similar velocity and direction are perceptually grouped together
in a single object. A simple segmentation on the module map would not be sufficient,
since adjacent objects moving in different directions would be merged. Hence, we
threshold the temporally averaged magnitude map |E(x,y)| to discard points with
too low energy and apply the mean shift algorithm to the phase of the remaining
points in the average phase map ∠E(x,y). The mean shift algorithm is a kernel-
based mode-seeking technique, broadly used for data clustering and segmentation
[5]. Being non-parametric, it has the advantage that it does not need the number
of clusters to be specified previously. We cluster in this way objects with a certain
amount of energy according to their direction. Application of this procedure to the
synthetic stimuli presented above gave the results presented in Fig.2a. The verti-
cally moving squares are assigned to a class while the horizontally moving square
belongs to a different class.

Once we have labelled regions we can extract the object convex hulls by means of
morphological operations and can compute their saliency. Again, we define object
saliency as proportional to motion contrast in terms of module and orientation, in a
center-surround fashion. Given an object o, defined by its bounding box, and given
its surround N(o) of size proportional to the area of o, similarly to [17], we have:

Smag(o) = 〈|E(x,y)|〉(x,y)∈(o)−〈|E(x,y)|〉(x,y)∈N((o)) (6)

where the 〈·〉 operator computes the mean of the points in the subscript set.
For orientation saliency, since some non rigid objects can display more than one

direction but still a dominating general direction, we compute the histograms of the
orientations of the object o, weighted according to the energy module, as:

h(i) = ∑
∠E(x,y)∈i

|E(x,y)| (7)
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(a) (b)

Fig. 2: Object segmentation and prioritization. (a), the result of the mean shift seg-
mentation on directions relative to salient energy is displayed. Each cluster is de-
noted by a different color. (b), convex hull patches corresponding to segmented ob-
jects are superimposed to the original frame: color is determined by saliency, with
the least salient object having RGB=(0, 1, 0) and the most salient being displayed
in pure red with RGB=(1, 0, 0).

where i represents the i-th bin. In so doing, the more likely orientations are the
ones relative to high energy points. Orientation saliency is hence given by the sim-
ilarity between the orientation distributions of the object and of its surround. Simi-
larity is evaluated through the Bhattacharyya distance:

Sor(o) = 1−∑
i
(
√

ho(i)∗hN(o)(i)) (8)

Hence, the more the orientation distribution of the object differs from that of the
surrounding, the greater the orientation saliency.

Finally, the overall saliency of the object is calculated as linear combination of
the two components:

S(o) = αSmag(o)+βSor(o) (9)

Both Smag and Sor are normalized to the interval [0,1]. α and β are taken equal
to 0.5 in the case of pure bottum-up selection, but can be top-down biased for task-
driven selection.

In Fig.2b, the segmented patches with color intensity proportional to the overall
saliency are superimposed on the original frame. The oddball is correctly shown as
the object with the highest saliency, the most reddish.



8 Anna Belardinelli

4 Experiments and discussion

Having tested the effectiveness of our framework on synthetic stimuli, where the
pop-out target can be easily and univocally identified by every subject, we made
some experiments with real world sequences. In particular, we took some sequences
from the Getty Image footage 1, those taken with fixed camera and displaying mul-
tiple moving objects. In a crowded scene, indeed, such as a station or a crossroad
(see Fig. 3 and 4), there is a wealth of moving objects competing for attention cap-
ture and therefore a prioritization and selection mechanism is extremely useful. In
the experiments depicted in Fig. 3 and 4, it can be noticed how differently moving
objects even very close to each other can be discriminated according to their dis-
tinctiveness from other motion patterns in the surroundings. Since the final saliency
is evaluated on the whole object region, it is not said that the object containing the
most salient pixel is the most salient object too.

The presented framework can be tuned and refined in a number of ways to make
it more or less selective and task-oriented. A major limitation, at the moment, is the
constraint of stationary camera. This limits its current biological plausibility, since
humans are able to discriminate scene motion from ego-motion when moving the
head or the body, due to the Vestibular-Ocular Reflex (VOR) present in our visual
system. Similarly, this limit can be overcome by applying stabilization techniques
to the buffer frame, or modelling the motion distribution of the background and
applying background subtraction as in [16].

The main novelty of our system is the definition of moving proto-objects which is
related to the their amount of motion and direction distinctiveness. We have shown
how this approach can successfully select and prioritize relevant motion within a
crowded scene. This is based on low-level processing and relies on the extraction
of coherent motion in different directions. Further higher-level processing will have
to be combined with specific task descriptions and a more elaborated description
of motion patterns in terms of frequency and spatiotemporal signatures. Interesting
issues still to be investigated are the temporal scale and resolution that are needed
to recognize these patterns (we arbitrarily took a 5 frames temporal span for com-
putational needs) and how far such a system can get without object continuity and
indexing [18].
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Fig. 3: Object-based saliency selection applied to a real world sequence. (a), an
original frame. (b) the temporal average of the energy module. (c), the segmented
phase map and (d) objects with their saliency are shown.
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Fig. 4: Object-based saliency selection applied to a second real world sequence. (a),
an original frame. (b) the temporal average of the energy module. (c), the segmented
phase map and (d) objects with their saliency are shown.
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