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Abstract. Rewriting systems on words are very useful in the study of monoids. In good
cases, they give finite presentations of the monoids, allowing their manipulation by a com-
puter. Even better, when the presentation is confluent and terminating, they provide
one with a notion of canonical representative for the elements of the presented monoid.
Polygraphs are a higher-dimensional generalization of this notion of presentation, from
the setting of monoids to the much more general setting of n-categories. Here, we are
interested in proving confluence for polygraphs presenting 2-categories, which can be seen
as a generalization of term rewriting systems. For this purpose, we propose an adapta-
tion of the usual algorithm for computing critical pairs. Interestingly, this framework is
much richer than term rewriting systems and requires the elaboration of a new theoretical
framework for representing critical pairs, based on contexts in compact 2-categories.

Term rewriting systems have proven very useful to reason about terms modulo equa-
tions. In some cases, the equations can be oriented and completed in a way giving rise to
a converging (i.e. confluent and terminating) rewriting system, thus providing a notion of
canonical representative of equivalence classes of terms. Usually, terms are freely generated
by a signature (Σn)n∈N, which consists of a family of sets Σn of generators of arity n, and
one considers equational theories on such a signature, which are formalized by sets of pairs
of terms called equations. For example, the equational theory of monoids contains two
generators m and e, whose arities are respectively 2 and 0, and three equations

m(m(x, y), z) = m(x,m(y, z)) m(e, x) = x and m(x, e) = x

These equations, when oriented from left to right, form a rewriting system which is con-
verging. The termination of this system can be shown by giving an interpretation of the
terms in a well-founded poset, such that the rewriting rules are strictly decreasing. Since
the system is terminating, the confluence can be deduced from the local confluence, which
can itself be shown by verifying that the five critical pairs

m(m(m(x, y), z), t) m(m(e, x), y) m(m(x, e), y) m(m(x, y), e) m(e, e)

are joinable and these critical pairs can be computed using a unification algorithm. A more
detailed presentation of term rewriting systems along with the classic techniques to prove
their convergence can be found in [Baa99].
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As a particular case, when the generators of an equational theory are of arity one, the
category of terms modulo the congruence generated by the equations is a monoid, with
addition given by composition and neutral element being the identity. A presentation of
a monoid (M,×, 1) is such an equational theory, which is generating a monoid isomorphic
to M . For example the monoid N/2N is presented by the equational theory with only one
generator a, of arity one, and the equation a(a(x)) = x. Presentations of monoids are
particularly useful since they can provide finite description of monoids which may be infi-
nite, thus allowing their manipulation with a computer. More generally, with generators of
any arity, equational theories give rise to presentations of Lawvere theories [Law63], which
are cartesian categories whose objects are the natural integers and such that product is
given on objects by addition: a signature namely generates such a category, whose mor-
phisms f : m → n are n-uples of terms with m free variables, composition being given by
substitution.

Term rewriting systems have been generalized by polygraphs, in order to provide a formal
framework in which one can give presentations of any (strict) n-category. We are interested
here in adapting the classical technique to study confluence of 3-polygraphs, which give rise
to presentations of 2-categories, by computing their critical pairs. These polygraphs can be
seen as term rewriting systems improved on the following points:

– the variables of terms are simply typed (this can be thought as generalizing from a
Lawvere theory of terms to any cartesian category of terms),

– variables in terms cannot necessarily be duplicated, erased or swapped (the catego-
ries of terms are not necessarily cartesian but only monoidal),

– and the terms can have multiple outputs as well as multiple inputs.

Many examples of presentations of monoidal categories where studied by Lafont [Laf03],
Guiraud [Gui06b, Gui06a] and the author [Mim08, Mim09b]. A fundamental example is
the 3-polygraph S, presenting the monoidal category Bij (the category of finite ordinals and
bijections). This polygraph has one generator for objects 1, one generator for morphisms
γ : 2 → 2 (where 2 is a notation for 1⊗ 1) and two equations

(γ ⊗ 1) ◦ (1⊗ γ) ◦ (γ ⊗ 1) = (1⊗ γ) ◦ (γ ⊗ 1) ◦ (1⊗ γ) and γ ◦ γ = 1⊗ 1 (0.1)

where the morphism 1 is a short notation for id1. That this polygraph is a presentation
of the category Bij means that this category is isomorphic to the free monoidal category
containing an object 1 and a generator γ, quotiented by the smallest congruence generated
by the equations (0.1). This result can be seen as a generalization of the presentation of
the symmetric groups by transpositions. These equations can be better understood with
the graphical notation provided by string diagrams, which is a diagrammatic notation for
morphisms in monoidal categories, introduced formally in [Joy91]. The morphism γ should
be thought as a device with two inputs and two outputs of type 1, and the two equations (0.1)
can thus be represented graphically by

= and = (0.2)
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In this notation, wires represent identities (on the object 1), horizontal juxtaposition of dia-
grams corresponds to tensoring, and vertical linking of diagrams corresponds to composition
of morphisms. Moreover, these diagrams should be considered modulo planar continuous
deformations, so that the axioms of monoidal categories are verified. These diagrams are
conceptually important because they allow us to see morphisms in monoidal categories ei-
ther as algebraic objects or as geometric objects (some sort of planar graphs). If we orient
both equations from left to right, we get a rewriting system which can be shown to be
convergent. It has the three following critical pairs [Laf03]:

(0.3)

Moreover, for every morphism φ : 1⊗m → 1⊗ n, the morphism on the left of (0.4)

(0.4)

can be rewritten in two different ways, thus giving rise to an infinite number of critical pairs
for the rewriting system. This phenomenon was first observed by Lafont [Laf03] and later
on studied by Guiraud and Malbos [Gui09]. Interestingly, we can nevertheless consider that
there is a finite number of critical pairs if we allow ourselves to consider the “diagram” on
the center of (0.4) as a critical pair. Of course, this diagram does not make sense at first.
However, we can give a precise meaning to it if we embed our terms in a larger category,
which is compact: in such a category every object has a dual, which corresponds graphically
to having the ability to bend wires (see the figure on the right). This observation was the
starting point of this paper which is devoted to formalizing these intuitions in order to
propose an algorithm for computing critical pairs in polygraphs.

We believe that this is a major area of higher-dimensional algebra where computer
scientists should step in: typical presentations of categories can give rise to a very large
number of critical pairs and having automated tools to compute them seems to be necessary
in order to push further the study of those systems. The present paper constitutes a first
step in this direction, by defining the structures necessary to manipulate algorithmically the
morphisms in categories generated by polygraphs and by proposing an algorithm to compute
the critical pairs in polygraphic rewriting systems. Conversely, algebra provides strong
indications about technical choices that should be made in order to generalize rewriting
theory in higher dimensions. We have done our possible to provide an overview of the
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theoretical tools used here, as well as intuitions about them. A preliminary detailed version
of this work is available in [Mim09a].

We begin by recalling the definition of polygraphs, describe the categories they generate,
and formulate the unification problem in this framework using the notion of context in a
2-category. Then, we show that 2-categories can be fully and faithfully embedded into the
free compact 2-category they generate, which allows us to describe a unification algorithm
for polygraphic rewriting systems.

1. Presentations of 2-categories

Because of space limitations, we have to omit the basic definitions in category theory
and refer the reader to MacLane’s reference book [Mac71]. We only recall that a 2-category

is a generalization in dimension 2 of the concept of category. It consists essentially of a class
of 0-cells A, a class of 1-cells f : A → B (with 0-cells A and B as source and target) and a
class of 2-cells α : f ⇒ g : A → B (with parallel 1-cells f : A → B and g : A → B as source
and target), together with a vertical composition, which to every pair of 2-cells α : f ⇒ g
and β : g ⇒ h associates a 2-cell β ◦ α : f ⇒ h, and a horizontal composition, which to
every pair of 2-cells α : f ⇒ g and β : h ⇒ i associates a 2-cell α ⊗ β : (f ⊗ h) ⇒ (g ⊗ i),
such that vertical and horizontal composition are associative, admit neutral elements (the
identities) and the exchange law is satisfied: for every four 2-cells

α : f ⇒ f ′ : A → B, α′ : f ′ ⇒ f ′′ : A → B, β : g ⇒ g′ : B → C, β′ : g′ ⇒ g′′ : B → C

the following equality holds

(α′ ◦ α)⊗ (β′ ◦ β) = (α′ ⊗ β′) ◦ (α⊗ β) (1.1)

as well as a nullary version of this law: idA⊗B = idA ⊗ idB for every objects A and B. In a
2-category, two n-cells are parallel when they have the same source and the same target. We
also recall that two 0-cells A and B of a 2-category C, induce a category C(A,B), called hom-

category, whose objects are the 1-cells f : A → B of C and whose morphisms α : f ⇒ g are
2-cells of C, composition being given by vertical composition. A (strict) monoidal category

is a 2-category with exactly one 0-cell.
Polygraphs are algebraic structures which were introduced in their 2-dimensional ver-

sion by Street [Str76] under the name computads, later on generalized to higher dimensions
by Power [Pow90], and independently rediscovered by Burroni [Bur93]. We are specifically
interested in 3-polygraphs, which give rise to presentations of 2-categories, and briefly recall
their definition here. This definition is a bit technical but conceptually clear: it consists
of sets of 0-, 1-, 2-generators for “terms”, each 2-generator having a list of 1-generators as
source and as target, each 1-generator having itself a 0-generator as source and as target,
together with a set of equations which are pairs of terms (generated by the 2-generators).

Suppose that we are given a set E0 of 0-generators, such a set will be called a 0-poly-

graph. We write E∗
0 = E0 and i0 : E0 → E∗

0 the identity function. A 1-polygraph on

these generators is a graph, that is a diagram E∗
0 E1

s0oo

t0

oo in Set, with E∗
0 as vertices, the

elements of E1 being called 1-generators. We can construct a free category on this graph:
its set E∗

1 of morphisms is the set of paths in the graph (identities are the empty paths),
the source s∗0(f) (resp. target t

∗
0(f)) of a morphism f ∈ E∗

1 being the source (resp. target)
of the path. If we write i1 : E1 → E∗

1 for the injection of the 1-generators into morphisms of
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this category, which to every 1-generator associates the corresponding path of length one,
we thus get a diagram E0

i0
��

E1
s0

~~||
|
|
|
|
|
|

t0~~||
|
|
|
|
|
|

i1
��

E∗
0 E∗

1

s∗
0oo

t∗
0

oo

(1.2)

in Set, which is commutative in the sense that s∗0 ◦ i1 = s0 and t∗0 ◦ i1 = t0. A 2-polygraph

on this 1-polygraph consists of a diagram

E0

i0
��

E1
s0

~~||
|
|
|
|
|
|

t0~~||
|
|
|
|
|
|

i1
��

E2
s1

~~}}
}
}
}
}
}
}

t1~~}}
}
}
}
}
}
}

E∗
0 E∗

1

s∗
0oo

t∗
0

oo

(1.3)

in Set, such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1. The elements of E2 are called
2-generators. Again we can generate a free 2-category on this data, whose underlying
category is the category generated in (1.2) and which has the 2-generators as morphisms. If
we write E∗

2 for its set of morphisms and i2 : E2 → E∗
2 for the injection of the 2-generators

into morphisms, we thus get a diagram

E0

i0
��

E1
s0

~~||
|
|
|
|
|
|

t0~~||
|
|
|
|
|
|

i1
��

E2
s1

~~||
|
|
|
|
|
|

t1~~||
|
|
|
|
|
|

i2
��

E∗
0 E∗

1

s∗
0oo

t∗
0

oo E∗
2

s∗
1oo

t∗
1

oo

(1.4)

We can now formulate the definition of 3-polygraphs as follows.

Definition 1.1. A 3-polygraph consists of a diagram

E0

i0
��

E1
s0

~~||
|
|
|
|
|
|

t0~~||
|
|
|
|
|
|

i1
��

E2
s1

~~||
|
|
|
|
|
|

t1~~||
|
|
|
|
|
|

i2
��

E3
s2

~~}}
}
}
}
}
}
}

t2~~}}
}
}
}
}
}
}

E∗
0 E∗

1

s∗
0oo

t∗
0

oo E∗
2

s∗
1oo

t∗
1

oo

(1.5)

(where E∗
i , s

∗
i and t∗i are freely generated as previously explained), such that

s∗i ◦ si+1 = s∗i ◦ ti+1 and t∗i ◦ si+1 = t∗i ◦ ti+1

for i = 0 and i = 1, together with a structure of 2-category on the 2-graph

E∗
0 E∗

1

s∗
0oo

t∗
0

oo E∗
2

s∗
1oo

t∗
1

oo

Again, a 3-polygraph freely generates a 3-category C whose underlying 2-category is the
underlying 2-category of the polygraph and whose 3-cells are generated by the 3-generators
of the polygraph. A quotient 2-category C̃ can be constructed from this 2-category: it
is defined as the underlying 2-category of C quotiented by the congruence identifying two
2-cells whenever there exists a 3-cell between them in C. A 3-polygraph P presents a
2-category D when D is isomorphic to the 2-category C̃ induced by the polygraph P . In this
sense, the underlying 2-polygraph of a 3-polygraph is a signature generating terms which are



232 S. MIMRAM

to be considered modulo the equations described by the 3-generators; these equations r ∈ E3

being oriented, they will be called rewriting rules, the source s2(r) (resp. the target t2(r))
being the left member (resp. right member) of the rule. A polygraph is finite when all the
sets Ei are; in the following, we only consider such polygraphs.

A morphism of polygraphs F between two 3-polygraphs P and Q consists of a 4-uple

(F0, F1, F2, F3) of functions Fi : E
P
i → EQ

i , such that the obvious diagrams commute (for

example, for every i, sQi ◦ Fi+1 = F ∗
i ◦ sPi , where F ∗

i : EP
i

∗
→ EQ

i

∗

is the monoid morphism
induced by Fi). We write n-Pol for the category of n-polygraphs (this construction can
be carried on to any dimension n ∈ N but we will only consider cases with n 6 3). These
categories have many nice properties, amongst which being cocomplete. The free n-cate-
gory generated by an n-polygraph P is denoted Cn(P ). Given an integer k 6 n, we write
Uk : n-Pol → k-Pol for the forgetful functor which simply forgets about the sets of gener-
ators of dimension higher than k. This functor admits a left adjoint Fn : k-Pol → n-Pol

which adds empty sets of generators of dimension higher than k. We sometimes leave
implicit the inclusion of k-Pol into n-Pol induced by Fn.

Example 1.2. The theory of symmetries mentioned in the introduction is the polygraph S
whose generators are

E0 = {∗} E1 = {1 : ∗ → ∗} E2 = {γ : 1⊗ 1 ⇒ 1⊗ 1}
E3 = {y : (γ ⊗ 1) ◦ (1⊗ γ) ◦ (γ ⊗ 1) ⇛ (1⊗ γ) ◦ (γ ⊗ 1) ◦ (1⊗ γ), s : γ ◦ γ ⇛ 1⊗ 1}

Example 1.3. The theory of monoids is the polygraph M defined by

E0 = {∗} E1 = {1 : ∗ → ∗} E2 = {µ : 1⊗ 1 ⇒ 1, η : ∗ ⇒ 1}
E3 = {a : µ ◦ (µ⊗ 1) ⇛ µ ◦ (1⊗ µ), l : µ ◦ (η ⊗ 1) ⇛ 1, r : (1⊗ η) → 1}

This polygraph presents the augmented simplicial category (the category of finite ordinals
and non-decreasing functions).

2. Formal representation of free 2-categories

The definition of 3-polygraphs involves the construction of free categories and free
2-categories, which are abstractly defined in category theory by universal constructions.
Here, we need a more concrete representation of these mathematical objects. As already
mentioned, the free category (1.2) on a graph is easy to describe: its objects are the vertices
of the graph and morphisms are paths of the graph with composition given by concatenation.
However, describing the free 2-category on a 2-polygraph in an effective way (which can
be implemented) is much less straightforward. Of course, following the definition given in
Section 1, one could describe the 2-cells of this 2-category as formal vertical and horizontal
compositions of 2-generators up to a congruence imposing associativity and absorption of
units for both compositions and the exchange law (1.1). However, given an object A in a
2-category C and two 2-cells α, β : idA ⇒ idA : A → A of this category, the equality α⊗β =
β ⊗ α can be deduced from the following sequence of equalities:

α⊗β = (idA◦α)⊗(β◦idA) = (idA⊗β)◦(α⊗idA) = (β⊗idA)◦(idA⊗α) = (β◦idA)⊗(idA◦α) = β⊗α

It requires inserting and removing identities, and using the exchange law in both directions.
So, it seems to be very hard to find a generic way to handle formal composites of generators
modulo the congruence described above. We will therefore define an alternative construction
of these morphisms which doesn’t require such a quotienting.
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Consider the morphism γ ◦ γ : (1⊗ 1) ⇒ (1⊗ 1) : ∗ → ∗ in the theory S of symmetries
(Example 1.2), depicted on the left of (2.1):

(2.1)

Graphically, in this morphism, the two 2-cells are γ, wires are typed by the 1-cell 1
and regions of the plane are typed by the 0-cell ∗. Now, if we give a different name
to each instance of a generator used in this morphism, for example by numbering them
as in the right of (2.1), the morphism itself can be described as the 2-polygraph P de-
fined by E0 = {∗0, . . . , ∗4}, E1 = {10 : ∗1 → ∗0, 11 : ∗0 → ∗2, . . . , 15 : ∗4 → ∗2} and
E2 = {γ0 : 10 ⊗ 11 ⇒ 12 ⊗ 13, γ1 : 12 ⊗ 13 ⇒ 14 ⊗ 15}, together with a function ℓ
which to every i-generator of this polygraph associates a label, which is an i-generator
of S, so that ℓ : P → S is a morphism of polygraphs (ℓ is defined by ℓ(∗i) = ∗, ℓ(1i) = 1
and ℓ(γi) = γ). Formulated in categorical terms, (P, ℓ) is an object in the slice cate-
gory 2-Pol ↓U2(S). Of course, the naming of the instances of the generators occurring in
nets is arbitrary, so we have to consider these labeled polygraphs up to bijections, which
correspond to injective renaming of instances. Notice that not every such labeled polygraph
is the representation of a morphism: we need an inductive construction of those (it seems
to be difficult to give a direct characterization of the suitable polygraphs).

Based on these ideas, we describe the category generated by a polygraph S as a category
whose cells are polygraphs labeled by S. We suppose fixed a signature 2-polygraph S and
write Si for Ui(S). This is a generalization of the constructions of labeled transition systems,
and is reminiscent of pasting schemes [Pow90] and of proof-nets, which is why we call them
polygraphic nets (or nets for short).

The category of 0-nets 0-NetS0
on the 0-polygraph S0 is the full subcategory of

0-Pol↓S0 whose objects are 0-polygraphs with exactly one 0-cell, labeled by S0. Con-
cretely, its objects are pairs (n,A), often written An, where n is the name of the instance

(an integer for example) and A an element of ES0

0 , called its label, and there is a morphism
between two objects whenever they have the same label (all those morphisms are invertible).
The category of 1-nets 1-NetS1

is the smallest category whose objects are the 0-nets Ai,
whose morphisms (sf , f, tf ) : Ai → Bj are triples consisting of a 1-polygraph f labeled

by S1 (i.e. an object in 1-Pol ↓S1) and two morphisms of labeled polygraphs sf : Ai → f
and tf : Bj → f , called source and target, which are either a 1-polygraph f such that

Ef
0 = {Ai, Bj} and Ef

1 contains only one 1-cell n ∈ N with Ai as source and Bj as target

(and the obvious injections for sf and tf ), or Ai = Bj , f = Ai and sf = tf = idAi
(this

is the identity on Ai), or a composite f ⊗ g : Ai → Bj of two morphisms f : Ai → Ck

and g : Ck → Bj . Here, the composite of two such morphisms is defined as the pushout

of the diagram f Ck
tfoo sg // g , that is the disjoint union of the polygraphs f and g

quotiented by a relation identifying the 0-cell in Ck in the two components of the union.

Example 2.1. If S is the polygraph of symmetries, the composite of the two morphisms
f : ∗0 → ∗1 and g : ∗1 → ∗2 defined by

Ef
0 = {∗0, ∗1} Ef

1 = {10 : ∗0 → ∗1} Eg
0 = {∗0, ∗1, ∗2} Eg

1 = {11 : ∗1 → ∗0, 10 : ∗0 → ∗2}
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is the morphism h = f ⊗ g such that

Eh
0 = {∗0, . . . , ∗3} and Eh

1 = {10 : ∗0 → ∗1, 11 : ∗1 → ∗3, 12 : ∗3 → ∗2}

Graphically,

∗0
10 // ∗1 ⊗ ∗1

11 // ∗0
10 // ∗2 = ∗0

10 // ∗1
11 // ∗3

12 // ∗2

Since composition is defined by a pushout construction, it involves a renaming of some in-
stances (it is the case in the example above) and this renaming is arbitrary. So, composition
is not strictly associative but only associative up to isomorphism of polygraphs. Therefore,
what we have built is not precisely a category but only a bicategory: this is a well-known
fact, this construction being a particular instance of the general construction of cospan bicat-
egories. We can iterate this construction one step further and define the tricategory (that is
a 2-category whose compositions are associative up to isomorphism) of 2-nets 2-NetS as the
smallest tricategory whose 0-cells are 0-nets Ai, whose 1-cells f : Ai → Bj contain 1-nets,
and whose 2-cells α : f ⇒ g are triples (sα, α, tα), consisting of a 2-polygraph α labeled
by S and two morphisms of labeled polygraphs sα : f → α and tα : g → α, containing all
the 2-polygraphs with one 2-generator n ∈ N whose source f = sα1 (n) and target g = tα1 (n)
are 1-nets which are “disjoint” in the sense they only have their own source and target
as common generators, with the obvious injections for sα and tα. Moreover, we requires
this tricategory to contain identities and to be closed under both vertical and horizontal
compositions, which are defined by pushout constructions in a way similar to 1-nets. If we
quotient this tricategory and identify cells which are isomorphic labeled polygraphs, we get
a proper 2-category, that we still write 2-NetS .

Proposition 2.2. The 2-category 2-NetS described above is equivalent to the free category

generated by the 2-polygraph S.

This construction has the advantage to be simple to implement and manipulate: we
have for example given the data needed to describe the morphism (2.1).

3. Critical pairs in polygraphs

In order to formalize the notion of critical pair for a polygraph, we need to formalize first
the notion of context of a morphism in the 2-category C2(S) generated by a 2-polygraph S,
which may be thought as a 2-cell with multiple typed “holes”. These contexts have multiples
“inputs” (one for each hole) and will therefore organize into a multicategory, which is a
notion generalizing categories in the sense that morphisms f : (A1, . . . , An) → A have one
output of type A, and a list of inputs of type Ai instead of only one input. Composition
is also generalized in the sense that we compose such a morphism f with n morphisms fi
with Ai as target, what we write f ◦ (f1, . . . , fn). Multicategories should moreover have
identities IdA : (A) → A and satisfy coherence axioms [Lei04].

Suppose that we are given a signature 2-polygraph S. Suppose moreover
that we are given a list of n pairs of parallel 1-cells (fi, gi) in the category genera-
ted by the 1-polygraph U1(S). We write S[X1 : f1 ⇒ g1, . . . , Xn : fn ⇒ gn], for
the polygraph obtained from S by adding X1, . . . , Xn as 2-generators, with fi as
the source and gi as the target of Xi (we suppose that the Xi were not already

present in the 2-generators of S). The Xi should be thought as typed variables for 2-cells
and we can easily define a notion of substitution of a variable Xi : fi ⇒ gi by a 2-cell
α : fi ⇒ gi in a 2-cell of the 2-category generated by S[X1 : f1 ⇒ g1, . . . , Xn : fn ⇒ gn].
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Given a signature S, we build a multicategory K(S) whose objects are pairs (f, g) of
parallel 1-cells in the 2-category generated by S and whose morphisms, called contexts,
K : ((f1, g1), . . . , (fn, gn)) → (f, g) are the 2-cells α : f ⇒ g in the 2-category generated by
the polygraph S[X1 : f1 ⇒ g1, . . . , Xn : fn ⇒ gn], which are linear in the sense that each of
the variablesXi appears exactly once in the morphism α. Composition in this multicategory
is induced by the substitution operation. This multicategory can be canonically equipped
with a structure of symmetric multicategory, which essentially means that, for every per-
mutation σ on n elements, the sets of morphisms of type ((f1, g1), . . . , (fn, gn)) → (f, g) is
isomorphic to the set of morphisms of type ((fσ(1), gσ(1)), . . . , (fσ(n), gσ(n))) → (f, g) in a co-
herent way. Any 2-cell α : f ⇒ g in the 2-category generated by S, can be seen as a nullary
context of type () → (f, g) that we still write α. A concrete and implementable definition
of the multicategory K(S) of contexts of S can be given by adapting the construction of
polygraphic nets given in the previous section.

This construction enables us to reformulate usual notions of rewriting theory in our
framework as follows. We suppose fixed a rewriting system given by a 3-polygraph R. We
write S = U2(R) for the underlying signature of R and C for the 2-category it generates.

Definition 3.1. A unifier of two 2-cells

α1 : f1 ⇒ g1 and α2 : f2 ⇒ g2

in C is a pair of cofinal unary contexts

K1 : ((f1, g1)) → (f, g) and K2 : ((f2, g2)) → (f, g)

such that K1 ◦ (α1) = K2 ◦ (α2). A unifier is a most general unifier when it is

– non-trivial : there exists no binary context K : ((f1, g1), (f2, g2)) → (f, g) such that
K1 = K ◦ (Id(f1,g1), α2) and K2 = K ◦ (α1, Id(f2,g2)). Informally, the morphisms α1

and α2 should not appear in disjoint positions in the morphism K1◦(α1) = K2◦(α2).
– minimal : for every unifier K ′

1,K
′
2 of α1 and α2, such that K1 = K ′′

1 ◦ K ′
1 and

K2 = K ′′
2 ◦K ′

2, for some contexts K ′′
1 and K ′′

2 , the contexts K ′′
1 and K ′′

2 should be
invertible.

Remark 3.2. If we write α = K1 ◦ (α1) = K2 ◦ (α2) and represent the 2-cells α1, α2 and α
by 2-nets, the fact that α is a unifier of the morphisms means that there exist two injective
morphisms of labeled polygraphs i1 : α1 → α and i2 : α2 → α, and the non-triviality
condition means that there exists at least one 2-generator which is both in the image of i1
and i2.

For example, the last two morphisms of (0.3) are both unifiers of the left members of the
rules (0.2). By extension, a unifier of two 3-generators r1 : α1 ⇛ β1 and r2 : α2 ⇛ β2 of R
is a unifier of their sources α1 and α2. A critical pair (K1, r1,K2, r2) consists of a pair of
3-generators r1, r2 and a most general unifier K1,K2 of those.

Remark 3.3. In Definition 3.1, the 2-cell α1, can be seen as a context α1 : () → (f1, g1)
in K(C), and similarly for α2. In fact, the notion of unifier can be generalized to any pair
of morphisms in the multicategory K(C).

A 2-cell α : f ⇒ g rewrites to a 2-cell β : f ⇒ g, by a 3-generator r : α′ ⇛ β′ : f ′ ⇒ g′,
when there exists a context K : ((f ′, g′)) → (f, g) such that α = K ◦ α′ and β = K ◦ β′.
In this case, we write α ⇛K,r β. The rewriting system R is terminating when there
is no infinite sequence α1 ⇛K1,r1 α2 ⇛K2,r2 . . .. A peak is a triple (α1, r1, α, r2, α2),
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where α, α1 and α2 are 2-cells and r1 and r2 are 3-generators, such that α ⇛K1,r1 and
α ⇛K2,r2 α2. In particular, with the notations of Definition 3.1, every critical pair induces
a peak (K1 ◦ (β1), r1,K1 ◦ (α1), r2,K2 ◦ (β2)). A peak is joinable when there exist a 2-cell β
and 3-cells ρ1 : α2 ⇛ β and ρ2 : α2 ⇛ β. A rewriting system is locally confluent if every
peak is joinable. Newman’s Lemma is valid for 3-polygraphs [Gui09]:

Proposition 3.4. A terminating rewriting system is confluent if it is locally confluent.

Moreover, local confluence can be tested using critical pairs:

Proposition 3.5. A rewriting system is locally confluent if all its critical pairs are joinable.

So, in order to test whether a terminating polygraphic rewriting system is confluent, it
would be tempting to compute all its critical pairs and test whether they are joinable, as in
term rewriting systems. However, as explained in the introduction, even a finite polygraphic
rewriting system might admit an infinite number of critical pairs. In the next section, we
introduce a theoretical setting which allows us to compute a finite number of generating
families of critical pairs.

4. An embedding in compact 2-categories

The notion of adjunction in the 2-category Cat of categories, functors and natural
transformations can be generalized to any 2-category as follows. Suppose that we are given
a 2-category C. A 1-cell f : A → B is left adjoint to a 1-cell g : B → A (or g is right adjoint
to f) when there exist two 2-cells η : idA ⇒ f ⊗ g and ε : g ⊗ f ⇒ idB, called respectively
the unit and the counit of the adjunction and depicted respectively on the left of (4.1),
such that (f ⊗ ε) ◦ (η⊗ f) = idf and (ε⊗ g) ◦ (g⊗ η) = idg. These equations are called the
zig-zag laws because of their graphical representation, given on the right of (4.1):

= = (4.1)

A 2-category is compact (sometimes also called autonomous or rigid) when every 1-cell
admits both a left and a right adjoint. Given a 2-category C, we write C for the free
compact 2-category on C. An explicit description of this 2-category can be given [Kel80]:

– its 0-cells are the 0-cells of C,
– its 1-cells are pairs fn : A → B consisting of an integer n ∈ Z, called winding

number, and a 1-cell f : A → B (resp. f : B → A) of C if n is even (resp. odd),
– a 2-cell is either α0 : f0 ⇒ g0, where α : f ⇒ g is a 2-cell of C, or ηnf : idB ⇒ fn⊗fn+1

or εnf : fn+1 ⊗ fn ⇒ idA, where fn : A → B is a 1-cell, or a formal vertical or
horizontal composite of those,

– 1- and 2-cells are quotiented by a suitable congruence imposing the axioms of 2-ca-
tegories, compatibility of vertical and horizontal compositions in C with those of C
(for example (β ◦ α)0 = β0 ◦ α0 and (idf )

0 = idf0) and the zig-zag laws (4.1).

Given a 1-cell f in this category, we often write fm for the 1-cell defined inductively by
(f ⊗ g)m = fm ⊗ gm and (fn)m = fn+m (notice that f−1 does not denote the inverse of f
in this context). This algebraic construction is important in order to formally define the
2-category C but this construction might be better grasped graphically, with the help of
string diagrams: the compact structure adds to C the possibility to bend wires, without
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creating loops. For example, consider a 2-cell α : f ⊗ g ⇒ h ⊗ i in a 2-category C. This
2-cell can be seen as a 2-cell α0 : f0 ⊗ g0 ⇒ h0 ⊗ i0 of C, as pictured in the center of (4.2).

(4.2)

From this morphism, we can deduce a 2-cell ρf0,g0,h0⊗i0(α) : f
0 ⇒ h0 ⊗ i0 ⊗ g1, pictured on

the right of (4.2), defined by ρf0,g0,h0⊗i0(α) = (α⊗ idg1)◦(idf0⊗η0g): the wire corresponding

to g0 can be bent on the right and the winding number is increased by one (the output is
of type g1) to “remember” that we have bent the wire once on the right. Similarly, one
can define from α the morphism ρ′

f0⊗g0,i0,h0(α) : f
0 ⊗ g0 ⊗ i−1 ⇒ h0, which corresponds to

bending the wire of type i0 on the left, so its winding number is decreased by 1 (similar
transformations can be defined for bending the wires of type f0 and h0 in α). Interes-
tingly, by the definition of adjunctions, these two transformations provide mutual inverses:
ρ−1
f,g,h = ρ′f,g,h. We call rotations these bijections between the hom-categories of C.

Remark 4.1. The notions of source and target of a 2-cell in a compact 2-category is really
artificial since, given a pair of parallel 1-cells f, g : A → B, the rotations induce a bijection
between the hom-categories C(f, g) and C(idB, f

−1 ⊗ g).

It can be shown that the winding numbers on the 1-cells provide enough information
about the bending of wires, so that

Proposition 4.2. Given a 2-category C, the embedding functor E : C → C defined as the

identity on 0-cells, as f 7→ f0 on 1-cells and as α 7→ α0 on 2-cells is full and faithful.

This means that given two 0-cells A and B of C, the hom-categories C(A,B) and C(A,B)
are isomorphic in a coherent way. The 2-category C thus provides a “larger world” in which
we can embed the 2-category C without losing information.

The interest of this embedding is that there are “extra morphisms” in C that can be used
to represent “partial compositions” in C. For example, consider two 2-cells α : f ⇒ f1⊗g⊗f2
and β : h1 ⊗ g⊗ h2 ⇒ h in C. These can be seen as the morphisms of C depicted on the left
of (4.3) by the previous embedding.

(4.3)

From these two morphisms, the morphism α⊗g β : f0 ⇒ f0
1 ⊗ h−1

1 ⊗ h0 ⊗ h12 ⊗ f0
2 , depicted

in the center right of (4.3), can be constructed. This morphism represents the partial

composition of the 2-cells α and β on the 1-cell g: up to rotations, this 2-cell is fundamentally
a way to give a precise meaning to the diagram depicted on the right of (4.3).

The notion of 2-polygraph can easily be adapted to generate compact 2-categories in-
stead of 2-categories. Instead of generating a free category from the underlying 1-polygraph,
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we generate a free category with winding numbers: with the notations of Section 1, its ob-
jects are the elements of E0 and its morphisms fn1

1 · fn2

2 · · · fnk

k : A → B are the paths
e(fn1

1 ) ·e(fn2

2 ) · · · e(fnk

k ) : A → B in the graph described by the 1-polygraph, the edge e(fn)
being f is n ∈ Z is even or f taken backwards if f is odd. Similarly, instead of generating
a 2-category from the polygraph, we generate a free compact 2-category on the previously
generated category with winding numbers with the 2-generators given by the 2-polygraph.
Such “polygraphs” are called compact polygraphs and we write 2-CPol for the category of
compact 2-polygraphs. The embedding given in Proposition 4.2 can be extended into an
embedding of 2-Pol into 2-CPol: every 2-polygraph can be seen as a compact 2-polygraph.
Given a compact 2-polygraph S, the definition given in Section 3 can be adapted in order
to define the multicategory of compact contexts K(S) of S. Finally, the construction of
nets given in Section 2 can also be adapted in order to give a concrete and implementable
description of the multicategory K(S) – this essentially amounts to suitably adding winding
numbers to 1-cells in the polygraphs involved.

Interestingly, the setting of compact contexts provides a generalization of
partial composition by allowing a “partial composition of a morphism with
itself”. Namely, from a context α : (. . . , (fi, gi), . . .) → (f, g1 ⊗ h⊗ g0) with
f : A → A and h : B → B one can build the context depicted on the

left ε0g ◦ (g1 ⊗ X ⊗ g0) ◦ α : (. . . , (fi, gi), . . . , (h, idB)) → (f, idA), where X : h → idB is

a fresh variable. This operation amounts to merging the outputs of type g1 and g0 of α.

5. The unification algorithm

Now that the theoretical setting has been established, we can describe our unification
algorithm. Suppose that we are given a polygraphic rewriting system R ∈ 3-Pol whose
underlying signature is S = U2(R). By the previous remarks, S can be seen as a compact
2-polygraph S. Now, suppose that r1 and r2 are two rewriting rules (i.e. 3-generators) in R
whose left member are respectively 2-cells α : f ⇒ g and β : h ⇒ i. The 2-cell α : f ⇒ g
in the 2-category generated by S can be seen as a 2-cell α0 : f0 ⇒ g0 in the compact
2-category C generated by S, and therefore as a nullary context α : () → (f0, g0) in the
multicategory of contexts K(C). Similarly, β can be seen as a context β : () → (h0, i0). In
the multicategory K(C), we can compute a most general unifier of α and β (see Remark 3.3)
from which we will be able to generate critical pairs of the rules r1 and r2. Because of space
limitations, we don’t provide here a fully detailed and formal presentation of the algorithm:
the purpose of this paper was to introduce the formal framework necessary to define the
algorithm, whose in-depth description will be given in subsequent works.

We first introduce some terminology and notations on nets. Given a 2-net α, an instance
of a 2-generator y is the father (resp. son) of an instance of a 1-generator x if x occurs in
the target (resp. source) of y. For example, in (2.1), γ0 is a son of 10 and 11 and a father
of 12 and 13. It is easy to show that a given instance of a 1-generator admits at most one
father and one son. An instance of 1-generator is dangling when it has no father or no son.
An instance of a generator is in the border of a net if it is in its source or its target.

The algorithm proceeds as follows. We suppose that we have represented the 2-cells α
and β as polygraphic 2-nets. Our goal is to construct a 2-net ω together with two injective
morphisms of labeled polygraphs i1 : α → ω and i2 : β → ω satisfying the properties
required for unifiers as reformulated in Remark 3.3. The algorithm is quite similar to
the rule-based formulation of the unification algorithm for terms [Baa99]. It begins by
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setting ω = α and i1 = idα, and then iterates a procedure that will progressively propagate
the unification and make ω grow, by adding cells to it, until it is big enough so that there
exists an injection i2 : β → ω. The procedure which is iterated is non-deterministic and the
critical pairs will be obtained as the collection of the results of the non-failed branches of
computation. During the iteration two sets are maintained, T and U , which both contains
pairs (x, x′) consisting of an n-cell x of β and an n-cell x′ of ω for some integer n ∈ {0, 1, 2}.
The set U (for Unified) contains the injection i2 which is being constructed: if (x, x′) ∈ U
and the branch succeeds then the resulting map i2 : β → ω will be such that i2(x) = x′.
The set T (as in Todo) contains the pairs (x, x′) such that x is a cell of β which is to be
unified with the cell x′ of ω.

Initially, ω = α, U = ∅ and T = {(x, x′)}, where x and x′ are instances of 2-generators
in β and in ω respectively, both chosen non-deterministically. Then the algorithm iterates
over the following rules, updating the values of ω, U and T by executing the first rule which
applies (updating a value is denoted with the symbol :=).

– Duplicate. If T = {(x, x′)} ⊎ T ′ with (x, x′) ∈ U then T :=T ′.
– Clash. If (x, x′) ∈ T and (x, x′′) ∈ U and x′ 6= x′′ then fail.
– Typecheck. If (x, x′) ∈ T with ℓ(x) 6= ℓ(x′) then fail.
– Propagate-0. If T = {(x, x′)} ⊎ T ′, where x and x′ are 0-cells then

T :=T ′ and U :={(x, x′)} ∪ U .
– Propagate-1. If T = {(x, x′)} ⊎ T ′, where x and x′ are 1-cells, then

T :=T ′ and
if x has a father y then

if x′ has a father y′ then
T :={(y, y′)} ∪ T and U :={(x, x′)} ∪ U

else either
add a fresh generator y′ of type ℓ(y) in ω,
T :={(y, y′)} ∪ T and U :={(x, x′)} ∪ U

or
merge x′ with some other 1-cell x′′ in the border of ω in ω,
T :={(x, x′)} ∪ T

if x has a son y then
similar to the previous case.

– Propagate-2. If T = {(x, x′)} ⊎ T ′, where x and x′ are 2-cells, then
T :=T ′, U :={(x, x′)} ∪U , we add in T that the 0- and 1-cells in the source of x
should be matched with the corresponding cells in the source of x′, and the 0-
and 1-cells of the target of x should be matched with those in the target of x′.

The “either. . . or” construction above denotes a non-deterministic choice and the “merge”
refers to the merging operation introduced in Section 4 (this operation might fail if the
labels or the winding numbers of x′ and x′′ are not suitable).

The way this algorithm works is maybe best understood with an example. Consider
the signature S with one 0-cell ∗, one 1-cell 1 : ∗ → ∗ and three 2-cells δ : 1 → 4, µ : 4 → 1
and σ : 1 → 1 (where 4 denotes 1⊗ 1⊗ 1⊗ 1). We write ς = σ ⊗ σ ⊗ σ ⊗ σ. Now, consider
a rewriting system on this signature containing two rules r1 and r2 whose left members are
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respectively α = ς ◦ δ and β = µ ◦ ς, that we represent respectively as the compact nets

(5.1)

(for simplicity, we omitted the instances of 0-cells). We describe here a few possible
non-deterministic branches of the execution of the algorithm. For example, if we begin
with T = {(σ4, δ0)}, the algorithm will immediately fail by Typecheck because the la-
bel σ of σ4 differs from the label δ of δ0. Consider another execution beginning with
T = {(σ4, σ0)}, this time the label matches so Propagate-2 will propagate the unification
by setting T = {(19, 11), (113, 15)} and U = {(σ4, σ0)}. Since 19 is dangling, Propagate-1 will
move the pair (19, 11) from T to U . Then the pair (113, 15) will be handled by Propagate-1.
Since 15 is dangling but 113 is not, a new generator µ1 will be added to ω (now pictured
on the left of (5.2)) and after a few propagations (113, 15) will be moved from T to U ,
(µ0, µ1) will be added to U and T will contain (111, 119). By Propagate-1, this unification
pair can lead to multiple non-deterministic executions: a new generator σ5 can be added
(in the middle of (5.2)), or the 1-generator 119 can be merged with another 1-generator (17
for example as pictured in the right of (5.2)). Notice that in this last case, the morphism
contains a “hole” of type 16 ⇒ 118, which is handled by a context variable.

(5.2)

By executing fully the algorithm, the three morphisms of (5.3) will be obtained as unifiers
(as well as many others).

(5.3)

It can be shown that the algorithm terminates and generates all the critical pairs
in compact contexts, and these are in finite number. It is important to notice that the
algorithm generates the critical pairs of a rewriting system R in the “bigger world” of
compact contexts, from which we can generate the critical pairs in the 2-category generated
by R (which are not necessarily in finite number as explained in the introduction). If
joinability of the critical pairs in compact contexts implies that the rewriting system is
confluent, the converse is unfortunately not true: a similar situation is well known in the
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study of λ-calculus with explicit substitution, where a rewriting system might be confluent
without being confluent on terms with metavariables.

We have realized a toy implementation of the algorithm in less than 2000 lines of OCaml,
with which we have been able to successfully recover the critical pairs of rewriting systems
in [Laf03]. Even though we did not particularly focus on efficiency, the execution times are
good, typically less than a second, because the morphisms involved in polygraphic rewriting
systems are usually small (but they can generate a large number of critical pairs)

Future works. This paper lays the theoretical foundations for unification in polygraphic
2-dimensional rewriting systems and leaves many research tracks open for future works. We
plan to study the precise links between our algorithm and the usual unification for terms
(every term rewriting system can be seen as a polygraphic rewriting system [Bur93]) as well
as algorithms for (planar) graph rewriting. Concerning concrete applications, since these
rewriting systems essentially transform circuits made of operators (the 2-generators) linked
by a bunch of wires (the 1-generators), it would be interesting to see if these methods can
be used to optimize electronic circuits. Finally, we plan investigating the generalization of
these methods in dimension higher than 2, which seems to be very challenging.

Acknowledgements. The author is much indebted to John Baez, Albert Burroni, Jonas
Frey, Emmanuel Haucourt, Martin Hyland, Yves Lafont, Paul-André Melliès and François
Métayer.
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