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Abstract. We present an automated approach to prove termination of Java Bytecode
(JBC) programs by automatically transforming them to term rewrite systems (TRSs). In
this way, the numerous techniques and tools developed for TRS termination can now be
used for imperative object-oriented languages like Java, which can be compiled into JBC.

1. Introduction

Termination of TRSs and logic programs has been studied for decades. But as impera-
tive programs dominate in practice, recently many results on termination of imperative
programs were developed as well (e.g., [2, 3, 4, 5, 12]). Our goal is to re-use the wealth
of techniques and tools from TRS termination when tackling imperative object-oriented
programs. Similar TRS-based approaches have already proved successful for termination
analysis of Prolog and Haskell [10, 17]. A first approach to prove termination of imperative
programs by transforming them to TRSs was presented in [7]. However, [7] only analyzes a
toy programming language without heap, whereas our goal is to analyze JBC programs.

JBC [14] is an assembly-like object-oriented language designed as intermediate format
for the execution of Java [11] programs by a Java Virtual Machine (JVM). Moreover, JBC is a
common compilation target for many other languages besides Java. While there exist several
static analysis techniques for JBC, we are only aware of two other automated methods to
analyze termination of JBC, implemented in the tools COSTA [1] and Julia [19]. They
transform JBC into a constraint logic program by abstracting every object of a dynamic
data type to an integer denoting its path-length (i.e., the maximal length of the path of
pointers that can be obtained by following the fields of objects). For example, consider a
data structure IntList with the field value for the first list element and the field next

which points to the next list element. Now an object of type IntList representing the
list [0, 1, 2] would be abstracted to its length 3, but one would disregard the values of
the list elements. While this fixed mapping from data objects to integers leads to a very
efficient analysis, it also restricts the power of these methods. In contrast, in our approach
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we represent data objects not by integers, but by terms. To this end, we introduce a
function symbol for every class. So the IntList object above is represented by a term like
IntList(0, IntList(1, IntList(2, null))), which keeps the whole information of the data object.

So compared to [1, 19] and to direct termination analysis of imperative programs,
rewrite techniques1 have the advantage that they are very powerful for algorithms on user-
defined data structures, since they can automatically generate suitable well-founded orders
comparing arbitrary forms of terms. Moreover, by using TRSs with built-in integers [8],
rewrite techniques are also powerful for algorithms on pre-defined data types like integers.

Inspired by our approach for termination of Haskell [10], in this paper we present a
method to translate JBC programs to TRSs. More precisely, in Sect. 2 we show how to
automatically construct a termination graph representing all execution paths of the JBC
program. Similar graphs are also used in program optimization techniques, e.g. [18]. While
we perform considerably less abstraction than [1, 19], we also apply a suitable abstract
interpretation [6] in order to obtain finite representations for all possible forms of the heap
at a certain state. In contrast to control flow graphs, the nodes of the termination graph
contain not just the current program position, but also detailed information on the values
of the variables and on the content of the heap. Thus, the termination graph usually
has several nodes which represent the same program position, but where the values of the
variables and the heap are different. This is caused by different runs through the program
code. The termination graph takes care of all aliasing, sharing, and cyclicity effects in the
JBC program. This is needed in order to express these effects in a TRS afterwards. Then,
a TRS is generated from the termination graph such that termination of the TRS implies
termination of the original JBC program (Sect. 3). The resulting TRSs can be handled by
existing TRS termination techniques and tools.

As described in Sect. 4, we implemented the transformation in our tool AProVE [9]. In
the first International Termination Competition on automated termination analysis of JBC,
AProVE achieved competitive results compared to Julia and COSTA. So this paper shows
for the first time that rewriting techniques can indeed be successfully used for termination
of imperative object-oriented languages like Java.

2. From JBC to Termination Graphs

To obtain a finite representation of all execution paths, we evaluate the JBC program
symbolically, resulting in a termination graph. Afterwards, this graph is used to generate
a TRS suitable for termination analysis. Sect. 2.1 introduces the abstract states used in
termination graphs. Then Sect. 2.2 illustrates the construction of termination graphs for
simple programs and Sect. 2.3 extends it to programs with complex forms of sharing.

1Of course, one could also use a transformation similar to ours where JBC is transformed to (constraint)
logic programs, but where data objects are also represented by terms instead of integers. In principle, such
an approach would be as powerful as ours, provided that one uses sufficiently powerful underlying techniques
for automated termination analysis of logic programs. However, since some of the most powerful current
termination analyzers for logic programs are based on term rewriting [15, 17], it seems more natural to
transform JBC to term rewriting directly.
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2.1. Representing States of the JVM

We define abstract states which represent sets of concrete JVM states, using a formalization
which is especially suitable for a translation into TRSs (see e.g. [13] for related formaliza-
tions). Our approach is restricted to verified sequential JBC programs without recursion.
To simplify the presentation in the paper, we only consider program runs involving a single
method, and exclude floating point arithmetic, arrays, exceptions, and static class fields.
However, our approach can easily be extended to such constructs and to arbitrary many
non-recursive methods. For the latter, we represent the frames of the call stack individually
and simply “inline” the code of invoked methods. Indeed, our implementation also handles
programs with several methods including floats, arrays, exceptions, and static fields.

Definition 2.1. The set of abstract states is States = ProgPos×LocVar×OpStack×Heap.

The first component of a state corresponds to the program counter. We represent it by
the next program instruction to be executed (e.g., by a JBC instruction like “ifnull 8”).

The second component is an array of the local variables which have a defined value at the
current program position, represented by a partial function LocVar = N → References.
Here, References are addresses in the heap. So in our representation, we do not store
primitive values directly, but indirectly using references to the heap. This enables us to re-
tain equality information for two otherwise unknown primitive values. Moreover, we require
null ∈ References to represent the null reference. To ease readability, in examples we
usually denote local variables by names instead of numbers. Thus, “o : o1, l : o2” denotes
an array where the 0-th local variable o references the address o1 in the heap and the 1-st
local variable l references the address o2 in the heap. Of course, different local variables
can point to the same address (e.g., in “o :o1, l :o2, c :o1”, o and c refer to the same object).

The third component is the operand stack that JBC instructions operate on. It will be
filled with intermediate values such as operands of arithmetic operations when evaluating
the bytecode. We represent it by a partial function OpStack = N → References. The
empty operand stack is denoted by “ε” and “i1, i2” denotes a stack with top element i2.

ifnull 8 | o :o1, l :o2 | o1
o1 = Int(val = i1) i1 = (−∞,∞)
o2 = Int(?)

Figure 1: An abstract JVM state

To depict abstract states in examples, we write the
first three components in the first line and separate
them by “|”. The fourth Heap component is written
in the lines below, cf. Fig. 1. It describes the values
of References. We represent the Heap by a partial

function Heap : References → Integers ∪ Instances ∪ Unknown.
The values in Unknown = Classnames×{?} represent tree-shaped (and thus acyclic)

objects for which we have no information except their type. Classnames contains the
names of all classes and interfaces of the program. So for a class Int, “o2 = Int(?)” means
that the object at address o2 is null or an instance of type Int (or a subtype of Int).

We represent integers as possibly unbounded intervals, i.e. Integers = {{x ∈ Z | a ≤
x ≤ b} | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b}. So i1 = (−∞,∞) means that any integer
can be at the address i1. Since current TRS termination tools cannot handle 32-bit int-
numbers as in JBC, we treat int as the infinite set of all integers, i.e., we cannot handle
problems related to overflows. Note that in JBC, int is also used for Boolean values.

To represent Instances (i.e., objects) of some class, we describe the values of their
fields, i.e., Instances = Classnames×(FieldIdentifiers → References). To prevent
ambiguities, in general the FieldIdentifiers also contain the respective class names. So
if the class Int has the field val of type int, then “o1 = Int(val = i1)” means that at the
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00: aload_0 // load orig to opstack

01: ifnull 8 // jump to line 8 if top

// of opstack is null

04: aload_1 // load limit

05: ifnonnull 9 // jump if not null

08: return

09: aload_0 // load orig

10: astore_2 // store into copy

11: aload_0 // load orig

12: getfield val // load field val

15: aload_1 // load limit

16: getfield val // load field val

19: if_icmpge 35 // jump if

// orig.val >= limit.val

22: aload_2 // load copy

23: aload_2 // load copy

24: getfield val // load field val

27: iconst_1 // load constant 1

28: iadd // add copy.val and 1

29: putfield val // store into copy.val

32: goto 11

35: return

(a) Java Bytecode

public class Int {

// only wrap a pr imi t i ve in t

private int va l ;

// count up to the value

// in ” l im i t ”

public stat ic void count (

Int or ig , Int l im i t ) {

i f ( o r i g == null

| | l im i t == null ) {

return ;

}

// introduce sharing

Int copy = o r i g ;

while ( o r i g . va l < l im i t . va l ) {

copy . va l++;

}

}

}

(b) Java Source Code

Figure 2: Example using aliasing and an integer counting upwards

address o1, there is an instance of class Int and its field val references the address i1 in
the heap. Note that all sharing and aliasing must be explicitly represented in the abstract
state. So since the state in Fig. 1 contains no sharing information for o1 and o2, o1 and the
references reachable from o1 are disjoint from o2 and from the references reachable from o2.

2.2. Termination Graphs for Simple Programs

We now introduce the termination graph using a simple example. In Fig. 2(a) we present
the analyzed JBC program and Fig. 2(b) shows the corresponding Java source code.

We create the termination graph using the states of a run of our abstract virtual machine
as nodes, starting in a suitable general state. In our example, we want to know if all calls of
the method count with two distinct arbitrary Int objects (or null) as arguments terminate.
Here it is important to handle the aliasing of the variables copy and orig.

In Fig. 3, node A contains the start state. For the local variables orig and limit

(abbreviated o and l), we only know their type and we know that they do not share any
part of the heap. The first JBC instruction aload 0 loads the value of the 0-th local variable
(the argument orig) on the operand stack. The variable orig references some address o1
in the heap, but we do not need concrete information about o1 for this instruction. The
resulting new state B is connected to A by an evaluation edge.

To evaluate the ifnull instruction, we need to know if the reference on top of the
operand stack is null. This is not yet known for o1. We refine the information and create
successor nodes C and D for all possible cases (i.e., for o1 == null, and for Int and all
its non-abstract subclasses). In C, o1 is null, and in D it is an instance of Int (Int has
no proper subtypes). In D, the field values are new references in the heap. So instead of
“o1 = Int(?)”, we now have “o1 = Int(val = i1)”. Note that while “o1 = Int(?)” in node B
means that if o1 is not null, then it has type Int or a subtype of it, “o1 = Int(val = i1)”
in node D means that o1’s type is exactly Int and not a proper subtype. We have no
information about the value at i1. Therefore, i1 gets the most general value for Integers,
i.e., i1 = (−∞,∞). C and D are connected to B by refinement edges.
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aload 0 | o :o1, l :o2 | ε
o1 = Int(?) o2 = Int(?)

A

ifnull 8 | o :o1, l :o2 | o1
o1 = Int(?) o2 = Int(?)

B
ifnull 8 | o :null, l :o2 | null
o2 = Int(?)

C

return | o :null, l :o2 | ε
o2 = Int(?)

E

ifnull 8 | o :o1, l :o2 | o1
o1 = Int(val = i1) i1 = (−∞,∞)
o2 = Int(?)

D aload 1 | o :o1, l :o2 | ε
o1 = Int(val = i1) i1 = (−∞,∞)
o2 = Int(?)

F

if icmpge 35 | o :o1, l :o2, c :o1 | i1, i2
o1 = Int(val = i1) i1 = (−∞,∞)
o2 = Int(val = i2) i2 = (−∞,∞)

G
T:if icmpge 35 | o :o1, l :o2, c :o1 | i1, i2
o1 = Int(val = i1) i1 = (−∞,∞)
o2 = Int(val = i2) i2 = (−∞,∞)

H

return | o :o1, l :o2, c :o1 | ε
o1 = Int(val=i1) i1 = (−∞,∞)
o2 = Int(val=i2) i2 = (−∞,∞)

J

F:if icmpge 35 | o :o1, l :o2, c :o1 | i1, i2
o1 = Int(val = i1) i1 = (−∞,∞)
o2 = Int(val = i2) i2 = (−∞,∞)

I

iadd | o :o1, l :o2, c :o1 | o1, i1, iconst1
o1 = Int(val=i1) i1 = (−∞,∞)
o2 = Int(val=i2) i2 = (−∞,∞)
iconst1 = [1, 1]

K

putfield val | o :o1, l :o2, c :o1 | o1, i3
o1 = Int(val=i1) i1 = (−∞,∞)
o2 = Int(val=i2) i2 = (−∞,∞)
i3 = (−∞,∞)

L

if icmpge 35 | o :o1, l :o2, c :o1 | i3, i2
o1 = Int(val=i3) i3 = (−∞,∞)
o2 = Int(val=i2) i2 = (−∞,∞)

M

i1 ≥ i2

i1 < i2

i3 = i1 + iconst1

Figure 3: Termination graph for count

Now we can evaluate the instruction both for C and D, leading to E and F . Evaluation
stops in E, while for F , the same procedure is repeated for the argument limit, leading to
node G (among others) after several steps, indicated by a dotted arrow. Note the aliasing
between copy and orig, since both reference the same object at the address o1.

In G, we have already evaluated the two “getfield val” instructions and have pushed
the two integer values on the operand stack. Now if icmpge requires us to compare the
unknown integers at i1 and i2. If we had to compare i1 with a fixed number like 0, we could
refine the information about i1 and i2 and create two successor nodes with i1 = (−∞,−1]
and i1 = [0,∞). But “i1 ≥ i2” is not expressible in our abstract states. Here, we split
according to both possible values of the condition (depicted using the labels “T” and “F”,
respectively). This leads to the nodes H and I which are connected to G by split edges.

We can evaluate the condition in H to true and label the resulting evaluation edge to
J by this condition. We will use these labels when constructing a TRS from the termination
graph. J marks the program end and thus, it remains a leaf of the graph.

In I, we can evaluate the condition to false and label the next edge by the converse
of the condition. After evaluating the next four instructions we reach node K. On the top
positions of the operand stack, there are two integer variables (where the topmost variable
has the value 1). The instruction iadd adds these two variables resulting in a new integer
variable i3. The relation between i3, i1, and iconst1 is added as a label on the evaluation
edge to the new node L. This label will again be used in the TRS construction.
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From L on, we evaluate instructions until we again arrive at the instruction if icmpge

in node M . It turns out that M is an instance of the previous node G. Hence, we can
connect M with G by an instantiation edge. The reason is that every concrete state which
would be described by the abstract state M could also be described by the state G.

One has to expand termination graphs until all leaves correspond to program ends.
Hence, our graph is now completed. By using appropriate generalization steps (which
transform nodes into more general ones), one can always obtain a finite termination graph.
To this end, one essentially executes the program symbolically until one reaches some posi-
tion in the program for the second time. Then, a new state is created that is a generalization
of both original states and one introduces instantiation edges from the two original states
to the new generalized state. Of course, in our implementation we apply suitable heuristics
to ensure that one only performs finitely many such generalization steps and to guarantee
that the construction always terminates with a finite termination graph.

To define “instance” formally, we first define all positions π of references in a state s,
where s|π denotes the reference at position π. A position π is a sequence starting with lvn

or osn for some n ∈ N (indicating the n-th reference in the local variable array or in the
operand stack), followed by zero or more FieldIdentifiers.

Definition 2.2 (position, SPos). Let s = (pp, l, op, h) ∈ States. Then SPos(s) is the
smallest set such that one of the following holds for all π ∈ SPos(s):

• π = lvn for some n ∈ N where l(n) is defined. Then s|π is l(n).
• π = osn for some n ∈ N where op(n) is defined. Then s|π is op(n).
• π = π′ v for some v ∈ FieldIdentifiers and some π′ ∈ SPos(s) where h(s|π′) =
(c, f) ∈ Instances and where f(v) is defined. Then s|π is f(v).

As an example, consider the state s depicted in node G of Fig. 3. Here we have
three local variables and two elements on the operand stack. Thus, SPos(s) contains
lv0, lv1, lv2,os0,os1, where s|lv0

= s|lv2
= o1, s|lv1

= o2, s|os0 = i1, and s|os1 = i2.
If h is the heap of that state, then h(o1) = (Int, f1) ∈ Instances, where f1(val) = i1.
Hence, “lv0 val” is also a position in SPos(s) and s|lv0 val = i1. The remaining elements
of SPos(s) are “lv2 val” and “lv1 val”, where s|lv2 val = i1 and s|lv1 val = i2.

Intuitively, a state s′ is an instance of a state s if they correspond to the same program
position and whenever there is a reference s′|π, then either the values represented by s′|π in
the heap of s′ are a subset of the values represented by s|π in the heap of s or else, π is no
position in s. Moreover, shared parts of the heap in s′ must also be shared in s. Note that
since s and s′ correspond to the same position in a verified JBC program, s and s′ have the
same number of local variables and their operand stacks have the same size.

Definition 2.3 (Instance). We say that s′ = (pp′, l′, op′, h′) is an instance of state s =
(pp, l, op, h) (denoted s′ ⊑ s) iff pp = pp′, and for all π, π′ ∈ SPos(s′):

(a) if s′|π = s′|π′ and h′(s′|π) ∈ Instances∪Unknown, then π, π′ ∈ SPos(s) and s|π = s|π′

(b) if s′|π 6= s′|π′ and π, π′ ∈ SPos(s), then s|π 6= s|π′

(c) if h′(s′|π) ∈ Integers and π ∈ SPos(s), then h(s|π) ∈ Integers and h′(s′|π) ⊆ h(s|π)
(d) if s′|π = null and π ∈ SPos(s), then s|π = null or h(s|π) = (c, ?) ∈ Unknown

(e) if h′(s′|π) = (c′, ?) and π ∈ SPos(s), then h(s|π) = (c, ?) where c′ is c or a subtype of c
(f) if h′(s′|π) = (c′, f ′) ∈ Instances and π ∈ SPos(s), then h(s|π) = (c′, f) ∈ Instances

or h(s|π) = (c, ?), where c′ must be c or a subtype of c.
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The state s′ in node M of Fig. 3 is an instance of the state s in node G. Clearly, they
both refer to the same program position. It remains to examine the references reachable
in s′. We have SPos(s′) = SPos(s) = {lv0, lv1, lv2,os0,os1, lv0 val, lv1 val, lv2 val}. It
is easy to check that the conditions of Def. 2.3 are satisfied for all these positions π. We
illustrate this for π = lv0 val. Here, s′|π = i3 and if h′ is the heap of s′, then h′(i3) =
(−∞,∞). Similarly, s|π = i1 and if h is the heap of s, then h(i1) = (−∞,∞). Here, s′ and
s are in fact equivalent, since M is an instance of G and G is an instance of M .

if icmpge35 | o :o1, l :o2, c :o1 | i1, i2
o1 = Int(val=i1) i1 = [1, 1]
o2 = Int(val=i2) i2 = [10000, 10000]

Figure 4: A concrete state

As remarked before, abstract states describe sets
of concrete states like the one in Fig. 4, which is an
instance of G and M . Here, the values for i1 and i2
are proper integers instead of intervals.

Definition 2.4 (Concrete state). A state s = (pp, l, op, h) is concrete if for all π ∈ SPos(s):

• h(s|π) /∈ Unknown and
• if h(s|π) ∈ Integers, then h(s|π) is just a singleton interval [i, i] for some i ∈ Z

A concrete state has no proper instances (i.e., if s is concrete and s′ ⊑ s, then s ⊑ s′).
Concrete states that are not a program end can always be evaluated and have exactly one
(concrete) successor state. For Fig. 4, since i1’s value is not greater or equal than i2’s, the
successor state corresponds to the instruction “aload 2”, with the same local variables and
empty operand stack. Such a sequence of concrete states, obtained by JBC evaluation, is
called a computation sequence. Our construction of termination graphs ensures that

if s is an abstract state in the termination graph and there is a con-
crete state t ⊑ s where t evaluates to the concrete state t′, then the
termination graph contains a path from s to a state s′ with t′ ⊑ s′.

(2.1)

To see why (2.1) holds, note that in the termination graph, s is first refined to a state s with
t ⊑ s. So there is a path from s to s, and in the state s, all concrete information needed for an
actual evaluation according to the JBC specification [14] is available. Note that “evaluation
edges” in the termination graph are defined by exactly following the specification of JBC
in [14]. Thus, there is an evaluation edge from s to s′, where t′ ⊑ s′.

The computation sequence from Fig. 4 to its concrete successor corresponds to the path
from node M or G to I’s successor. Paths in the graph that correspond to computation
sequences are called computation paths. Our goal is to show that all these paths are finite.

Definition 2.5 (Graph termination). A finite or infinite path s11, . . . , s
n1

1 , s12, . . . , s
n2

2 , . . .
through the termination graph is called a computation path iff there is a computation
sequence t1, t2, . . . of concrete states where ti ⊑ s1i for all i. A termination graph is called
terminating iff it has no infinite computation path. Note that due to (2.1), if the termination
graph is terminating, then the original JBC program is also terminating for all concrete
states t where t ⊑ s for some abstract state s in the termination graph.

2.3. Termination Graphs for Complex Programs

Now we discuss sharing problems in complex programs with recursive data types. In Fig. 5,
flatten takes a list of binary trees whose nodes are labeled by integers. It performs a depth-
first run through all trees and returns the list of all numbers in these trees. It terminates
because each loop iteration decreases the total number of all nodes in the trees of list,
even though list’s length may increase. Note that list and cur share part of the heap.
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public class Flatten {

public stat ic I n tL i s t f l a t t e n ( TreeLi s t l i s t ) {

TreeLi s t cur = l i s t ;

I n tL i s t r e s u l t = null ;

while ( cur != null ) {

Tree t r e e = cur . va lue ;

i f ( t r e e != null ) {

I n tL i s t o l d I n tL i s t = r e s u l t ;

r e s u l t = new I n tL i s t ( ) ;

r e s u l t . va lue = t r e e . va lue ;

r e s u l t . next = o l d I n tL i s t ;

TreeLi s t oldCur = cur ;

cur = new TreeLi s t ( ) ;

cur . va lue = t r e e . l e f t ;

cur . next = oldCur ;

oldCur . va lue = t r e e . r i g h t ;

} else cur = cur . next ;

}

return r e s u l t ;

}

}

public class Tree {

int value ;

Tree l e f t ;

Tree r i gh t ;

}

public class TreeLi s t {

Tree value ;

TreeLi s t next ;

}

public class I n tL i s t {

int value ;

I n tL i s t next ;

}

Figure 5: Example converting a list of binary trees to a list of integers

Consider the three states A, B, and C in Fig. 6. A is the state of our abstract JVM
when it first reaches the loop condition “cur != null” (where list, cur, and result are
abbreviated by l, c, and r). After one execution of the loop body, one obtains the state B
if tree is null and C otherwise. Note that local variables declared in the loop body are no
longer defined at the loop condition, and hence, they do not occur in A, B, or C.

aload 1 | l :o1, c :o1, r :null | ε
o1 = TreeList(?)

A

aload 1 | l :o1, c :o3, r :null | ε
o1 = TreeList(value=null, next=o3)
o3 = TreeList(?)

B

aload 1 | l :o1, c :o7, r :o6 | ε
o1 = TreeList(value=o5, next=o3)
o3 = TreeList(?) o5 = Tree(?)
o6 = IntList(value=i1, next=null)
o7 = TreeList(value=o4, next=o1)
i1 = (−∞,∞) o4 = Tree(?)

C

Figure 6: Three states of the termination graph of flatten

If one continued the evaluation like this, one would obtain an infinite tree, since one
never reaches any state which is an instance of a previous state. (In particular, B and C
are no instances of A.) Hence, to obtain finite graphs, one sometimes has to generalize
states. Thus, we want to create a new general state S such that A, B, and C are instances
of S. Note that in S, l and c cannot point to different references with Unknown values,
since then S would only represent states where l and c are tree-shaped and not sharing.
However, l and c point to the same object in A, one can reach c :o3 from l :o1 in B (i.e., l
joins c, since a field value of o1 is o3), and one can reach l :o1 from c :o7 in C. To express
such sharing information in general states, we extend states by annotations.

o o′

o1 =? o2

o o′

o1

o o′

o1 o2

Figure 7: “=?” annotation

In Fig. 7, the leftmost picture depicts a heap
where an instance referenced by o has a field value
o1 and o′ has a field value o2. The annotation
“o1 =? o2” means that o1 and o2 could be equal.
Here the value of at least one of o1 and o2 must be
Unknown. So both the second and the third shape
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in Fig. 7 are instances of the first. In the second shape, o1 and o2 are equal and all occur-
rences of o2 can be replaced by o1 (or vice versa). In the third shape, o1 and o2 are not the
same and thus, the annotation has been removed.

o1 %$ o2

o1 o2

o1 o2

o1 o2

o3 o4

Figure 8: “%$” annotation

So the =? annotation covers both the equality
of l and c in stateA and their non-equality in states
B and C. To represent states where l and c may
join, we use the annotation “%$”. We say that a
reference o′ is a direct successor of a reference o (denoted o → o′) iff the object at address
o has a field whose value is o′. As an example, consider state B in Fig. 6, where o1 → o3
holds. Then the annotation “o1 %$ o2” means that if o1 is Unknown, then there could be
an object o with o1 →+ o and o2 →∗ o, i.e., o is a proper successor of o1 and a (possibly
non-proper) successor of o2. Note that %$ is symmetric,2 so o1 %$ o2 also means that if o2
is Unknown, then there could be an object o′ with o1 →

∗ o′ and o2 →
+ o′. The shapes 2-4

in Fig. 8 visualize three possible instances of the state with annotation “o1 %$ o2”. Note
that a state in which o1 and o2 do not share is also an instance.

We can now create a state S (see Fig. 9) such that A,B,C ⊑ S. The annotations state
that l and c may be equal (as in A), that l may join c (as in B), or c may join l (as in C).

So to obtain a finite termination graph, after reaching A, we generalize it to a new node
S connected by an instantiation edge. As seen in D, we introduce new forms of refinement
edges to refine a state with the annotation “o1 =

? o7” into the two instances where o1 = o7
and where o1 6= o7. For o1 = o7, we reach B′ and C ′ which are like B and C but now r

points to a list ending with o6 instead of null. The nodes B′ and C ′ are connected back to
S with instantiation edges. For o1 6= o7, due to c != null, we first refine the information
about o7, and obtain o7 = TreeList(value = o8, next = o9). Note that “%$” annotations
have to be updated during refinements. If we have the annotation “o1 %$ o7” and if one
refines o7 by introducing references like o8, o9 for its non-primitive fields, then we have to
add corresponding annotations such as “o1 =

? o9” for all field references like o9 whose types
correspond to the type of o1. Moreover, we add “%$” annotations for all non-primitive field
references (i.e., “o1 %$ o8” and “o1 %$ o9”). If after this refinement neither o1 nor o7 were
Unknown, we would delete the annotation o1 %$ o7 since it has no effect anymore.

Now we use a refinement that corresponds to the case analysis whether tree is null.
For tree == null, after one loop iteration we reach node E which is again an instance of
S. Here, the local variable tree is no longer visible.

For tree != null, the graph shows nodes F and G. In F we need to evaluate a
putfield instruction (corresponding to “oldCur.value = tree.right”), i.e., we have to
put the object at address o11 to the field value of the object at address o7. The effect of
this operation can be seen in the box in state G, where the value of the object at o7 was
changed from o8 to o11. In G (which again corresponds to the loop condition), we removed
the reference o8 since it is no longer accessible from the local variables or the operand stack.

In contrast to other evaluation steps, such putfield instructions can give rise to addi-
tional annotations, since objects that already shared parts of the heap with o7 now may also
share parts of the heap with o11. We say that a reference o reaches a reference o′ iff there
is a successor r of o (i.e., o →∗ r) such that r = o′ or r =? o′ or r %$ o′. So in our example,
o11 reaches just o11 and o1. Now if we write o11 to a field of o7, then for all references o
with o %$ o7, we have to add the annotation o %$ o′ for all o′ where o11 reaches o′. Hence,

2Since both “=?” and “%$” are symmetric, we do not distinguish between “o1 =? o2” and “o2 =? o1”
and we also do not distinguish between “o1 %$ o2” and “o2 %$ o1”.
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A

aload 1 | l :o1, c :o7, r :o6 | ε
o1 = TreeList(?) o6 = IntList(?)
o7 = TreeList(?)
o1 =? o7 o1 %$ o7

S

D

B′

C′

putfield value | l :o1, c :o13, r :o12, t :o8, oIL :o6, oC :o7 | o7, o11
o1 = TreeList(?) o9 = TreeList(?) o6 = IntList(?)
o7 = TreeList(value=o8, next=o9) o10 = Tree(?)
o8 = Tree(value=i1, left=o10, right=o11) o11 = Tree(?)
o12 = IntList(value=i1, next=o6) i1 = (−∞,∞)

o13 = TreeList(value=o10, next=o7) o1 =
? o9

o1 %$ o7 o1 %$ o8 o1 %$ o9 o1 %$ o10 o1 %$ o11

F

aload 1 | l :o1, c :o13, r :o12 | ε
o1 = TreeList(?) o6 = IntList(?) o9 = TreeList(?)

o7 = TreeList( value=o11 , next=o9) o10 = Tree(?)

o12 = IntList(value=i1, next=o6) o11 = Tree(?)
o13 = TreeList(value=o10, next=o7) i1 = (−∞,∞)

o1 =? o9 o1 %$ o7 o1 %$ o9 o1 %$ o10 o1 %$ o11

G

aload 1 | l :o1, c :o9, r :o6 | ε
o1 = TreeList(?) o6 = IntList(?)
o9 = TreeList(?)
o1 =? o9 o1 %$ o9

E

o1 = o7
o1 6= o7

Figure 9: Termination graph for flatten

in our example, we would have to add o1 %$ o11 (which is already present in the state) and
o1 %$ o1. However, the annotation o1 %$ o1 has no effect, since by “o1 = TreeList(?)”,
we know that o1 only represents tree-shaped objects. Therefore, we can immediately drop
o1 %$ o1 from the state. Concrete non-tree-shaped objects can of course be represented
easily (e.g., “o = TreeList(value = o′, next = o)”). But to represent an arbitrary possibly
non-tree-shaped object o, we use a special annotation (depicted “o!”).3

Definition 2.6 (Instance & annotations). We extend Def. 2.3 to s, s′ = (pp′, l′, op′, h′) ∈
States possibly containing annotations. Now s′ ⊑ s holds iff for all π, π′ ∈ SPos(s′), the
following conditions are satisfied in addition to Def. 2.3 (b)-(f). Here, let τ resp. τ ′ be the
maximal prefix of π resp. π′ such that both τ, τ ′ ∈ SPos(s).

(a) if s′|π = s′|π′ where h′(s′|π) ∈ Instances∪Unknown, and if π, π′ ∈ SPos(s),4

then s|π = s|π′ or s|π =? s|π′

(b) if s′|π =? s′|π′ and π, π′ ∈ SPos(s), then s|π =? s|π′

(c) if
(
s′|π = s′|π′ where h′(s′|π) ∈ Instances∪Unknown , or s′|π =? s′|π′

)

and π or π′ 6∈ SPos(s) with π 6= π′, then s|τ %$ s|τ ′
(d) if s′|π %$ s′|π′ , then s|τ %$ s|τ ′
(e) if s′|π! holds, then s|τ !
(f) if there exist (possibly empty) sequences ρ 6= ρ′ of FieldIdentifiers without common

prefix, where s′|πρ=s′|πρ′ , h′(s′|πρ) ∈ Instances∪Unknown,
and (πρ or πρ′ 6∈ SPos(s) or s|πρ=

? s|πρ′ ), then s|τ !

3. From Termination Graphs to TRSs

Now we transform termination graphs into integer term rewrite systems (ITRSs). These
are TRSs where the Booleans B, the integers Z, and their built-in operations ArithOp =

3Such annotations can also result from putfield operations which write a reference o2 to a field f of o1.
If o1 already reached o2 before through some field g 6= f, then we add “o1!”, since o1 is no longer a tree.
Even worse, if o2 reached o1 before, then putfield creates a cyclic object and we add “o1!” and “o2!”.

4In contrast to Def. 2.3(a), here one may allow that π or π′ /∈ SPos(s). This case is handled in (c).
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{+,−, ∗, /,%,≪,≫,≫, ̂ ,&, | } and RelOp = {>,≥, <,≤,==, 6=} are pre-defined by an
infinite set of variable-free rules PD. For example, PD contains 1+2 → 3 and 5 < 4 → false.
As shown in [8], TRS termination techniques can easily be adapted to ITRSs as well.

Definition 3.1 (ITRS [8]). An ITRS is a finite conditional TRS with rules “ℓ → r | b”.
Here ℓ, r, b are terms, where ℓ /∈ B ∪ Z and ℓ contains no symbol from ArithOp ∪ RelOp.
However, b and r may contain extra variables not occurring in ℓ. We often omit the condition
b if b is true. The rewrite relation →֒R of an ITRS R is the smallest relation where t1 →֒R t2
iff there is a rule ℓ → r | b from R∪PD such that t1|p = ℓσ, bσ →֒∗

R
true, and t2 = t1[rσ]p.

Here, ℓσ must not have instances of left-hand sides of rules as proper subterms, and σ must
be normal (i.e., σ(y) is in normal form also for variables y occurring only in b or r). Thus,
the rewrite relation →֒R corresponds to an innermost evaluation strategy.

So if R contains the rule “f(x) → g(x, y) | x > 2”, then f(1+ 2) →֒R f(3) →֒R g(3, 27).
Hence, extra variables in conditions or right-hand sides of rules stand for arbitrary values.

We first show how to transform a reference o in a state s into a term tr(s, o). References
pointing to concrete integers like iconst1 = [1, 1] in state K of Fig. 3 are transformed into
the corresponding integer constant 1. The reference null is transformed into the constant
null. References pointing to instances will be transformed by a refined transformation ti(s, o)
in a more subtle way in order to take their types and the values of their fields into account.
Finally, any other reference o is transformed into a variable (which we also call o). So
i1 = (−∞,∞) in state K of Fig. 3 is transformed to the variable i1.

Definition 3.2 (Transforming references). Let s = (pp, l, op, h) ∈ States, o ∈ References.

tr(s, o) =





i if h(o) = [i, i], where i ∈ Z

null if o = null

ti(s, o) if h(o) ∈ Instances

o otherwise

The main advantage of our approach becomes obvious when transforming instances
(i.e., data objects) into terms. The reason is that data objects essentially are terms and we
simply keep their structure when transforming them. So for any object, we use the name
of its class as a function symbol. The arguments of the function symbol correspond to the
fields of the class. As an example, consider o13 in state F of Fig. 9. This data object is
transformed to the term TreeList(o10,TreeList(Tree(i1, o10, o11), o9)).

However, we also have to take the class hierarchy into account. Therefore, for any class
c with n fields, let the corresponding function symbol now have arity n+1. The arguments
2, . . . , n + 1 correspond to the values of the fields declared in class c. The first argument
represents the part of the object that corresponds to subclasses of c. As an example, consider
a class A with a field a of type int and a class B which extends A and has a field b of type
int. If x is a data object of type A where x.a is 1, then we now represent it by the term
A(eoc, 1). Here, the first argument of A is a constant eoc (for “end of class”) which indicates
that the type of x is really A and not a subtype of A. If y is a data object of type B where y.a
is 2 and y.b is 3, then we represent it by the term A(B(eoc, 3), 2). So the class hierarchy is
represented by nesting the function symbols corresponding to the respective classes.

More precisely, since every class extends java.lang.Object (which has no fields), each
such term now has the form java.lang.Object(. . .). Hence, if we abbreviate the function
symbol java.lang.Object by jlO, then for the TreeList object above, now the corresponding
term is jlO(TreeList(eoc, o10, jlO(TreeList(eoc, jlO(Tree(eoc, i1, o10, o11), o9))))).
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Of course, we can only transform tree-shaped objects to terms. If π ∈ SPos(s) and
if there is a non-empty sequence ρ of FieldIdentifiers such that s|π = s|πρ, then s|π is
called cyclic in s. If s|π is cyclic or marked by “!”, then s|π is called special. Every special
reference o is transformed into a variable o in order to represent an “arbitrary unknown”
object. To define the transformation ti(s, o) formally, we use an auxiliary transformation
ti(s, o, c) which only considers the part of the class hierarchy starting with c.

Definition 3.3 (Transforming instances). We start the construction at the root of the class
hierarchy (i.e., with java.lang.Object) and define ti(s, o) = ti(s, o, java.lang.Object).

Let s = (pp, l, op, h) ∈ States and let h(o) = (co, f) ∈ Instances. Let (c1 =
java.lang.Object, c2, . . . , cn = co) be ordered according to the class hierarchy, i.e., ci is
the direct superclass of ci+1. We define the term ti(s, o, ci) as follows:

ti(s, o, ci) =





o if o is special

co(eoc, tr(s, v1), . . . , tr(s, vm)) if ci = co, fv(co, f) = v1, . . . , vm

ci(ti(s, o, ci+1), tr(s, v1), . . . , tr(s, vm)) if ci 6= co, fv(ci, f) = v1, . . . , vm

For c ∈ Classnames, let f1, . . . , fm be the fields declared in c in some fixed order. Then
for f : FieldIdentifiers → References, fv(c, f) gives the values f(f1), . . . , f(fm).

So for class A and B above, if h(o) = (B, f) where f(a) = [2, 2] and f(b) = [3, 3], then
fv(A, f) = [2, 2], fv(B, f) = [3, 3] and thus, ti(s, o, java.lang.Object) = jlO(A(B(eoc, 3), 2)).

To transform a whole state, we create the tuple of the terms that correspond to the
references in the local variables and the operand stack. For example, state J in Fig. 3 is
transformed to the tuple of the terms jlO(Int(eoc, i1)), jlO(Int(eoc, i2)), and jlO(Int(eoc, i1)).

Definition 3.4 (Transforming states). Let s = (pp, l, op, h) ∈ States, let lv0, . . . , lvn and
os0, . . . , osm be the references in l and op, respectively (i.e., h(lvi) = lvi and h(osi) = osi).
We define the following mapping: ts(s) = (tr(s, lv0), . . . , tr(s, lvn), tr(s, os0), . . . , tr(s, osm)).

There is a connection between the instance relation on states and the matching relation
on the corresponding terms. If s′ is an instance of state s, then the terms in the transforma-
tion of s match the terms in the transformation of s′. Hence, if one generates rules matching
the term representation of s, then these rules also match the term representation of s′.

Lemma 3.5. Let s′ ⊑ s. Then there exists a substitution σ such that ts(s)σ = ts(s′).5

Now we show how to build an ITRS from a termination graph such that termination
of the ITRS implies termination of the graph, i.e., that there is no infinite computation
path s11, . . . , s

n1

1 , s12, . . . , s
n2

2 , . . .. In other words, there should be no infinite computation
sequence t1, t2, . . . of concrete states where ti ⊑ s1i for all i.

For any abstract state s of the graph, we introduce a new function symbol fs. The arity
of fs is the number of components in the tuple ts(s). Our goal is to generate an ITRS R
such that fs1

i

(ts(ti)) →֒+
R
fs1

i+1
(ts(ti+1)) for all i. In other words, every computation path in

the graph must be transformable into a rewrite sequence. Then each infinite computation
path corresponds to an infinite rewrite sequence with R.

To this end, we transform each edge in the termination graph into a rewrite rule. Let
s, s′ be two states connected by an edge e. If e is a split edge or an evaluation edge, then
the corresponding rule should rewrite any instance of s to the corresponding instance of s′.

5For all proofs, we refer to [16].
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Hence, we generate the rule fs(ts(s)) → fs′(ts(s
′)). For example, the edge from D to F in

Fig. 3 results in the rule fD(jlO(Int(eoc, i1)), o2, jlO(Int(eoc, i1))) → fF (jlO(Int(eoc, i1)), o2).
If the evaluation involves checking some integer condition, we create a corresponding con-
ditional rule. For example, the edge from H to J in Fig. 3 yields the rule

fH( jlO(Int(eoc, i1)), jlO(Int(eoc, i2)), jlO(Int(eoc, i1)), i1, i2) →
fJ( jlO(Int(eoc, i1)), jlO(Int(eoc, i2)), jlO(Int(eoc, i1)) | i1 ≥ i2

The only evaluation edges which do not result in the rule fs(ts(s)) → fs′(ts(s
′)) are

evaluations of putfield instructions. If putfield writes to the field of an object at reference
o, then this could modify all objects at references o′ with o %$ o′.6 Therefore, in the right-
hand side of the rule corresponding to putfield, we do not transform the reference o′ to
the variable o′, but to a fresh variable o′. As an example consider state F in Fig. 9, where
we write to a field of o7, and we have the annotation o1 %$ o7. In the resulting rule, we
therefore have the variable o1 on the left-hand side, but a fresh variable o1 on the right-hand
side. The terms corresponding to o7 on the left- and right-hand side of the resulting rule
describe the update of its field precisely (i.e., jlO(Tree(eoc, i1, o10, o11)) is replaced by o11).

Now let e be an instance edge from s to s′. Here we keep the information that we already
have for the specialized state s (i.e., we keep ts(s)) and continue rewriting with the rules we
already created for s′. So instead of fs(ts(s)) → fs′(ts(s

′)) we generate fs(ts(s)) → fs′(ts(s)).
Finally, let e be a refinement edge from s to s′. So some abstract information in s is

refined to more concrete information in s′ (e.g., by refining (c, ?) to null). These edges
represent a case analysis and hence, some instances of s are also instances of s′, but others
are no instances of s′. Note that by Lemma 3.5, if a state t is an instance of s′, then the term
representation of s′ matches t’s term representation. Hence, we can use pattern matching
to perform the necessary case analysis. So instead of the rule fs(ts(s)) → fs′(ts(s

′)), we
create a rule whose left-hand side only matches instances of s′, i.e., fs(ts(s

′)) → fs′(ts(s
′)).

Consider for example the edge from B to C in Fig. 3. Any concrete state whose evaluation
corresponds to this edge must have null at positions lv0 and os0. Thus, we create the rule
fB(null, o2, null) → fC(null, o2, null) which is only applicable to such states.

Recall that possibly cyclic data objects are translated to variables in Def. 3.3. Although
variables are only instantiated by finite (non-cyclic) terms in term rewriting, our approach
remains sound because states with possibly cyclic objects result in rules with extra variables
on right-hand sides. For example, consider a simple list traversal algorithm. Here, we would
have a state s where the local variable points to a reference o1 with o1 = Intlist(value =
i1, next = o2) and in the successor state s′, the local variable would point to o2. Then,
after refinement to o2 = IntList(value = i2, next = o3), there would be an instantiation
edge back to s. For acyclic lists, this results in the rules fs(jlO(IntList(eoc, i1, o2))) → fs′(o2),
fs′(jlO(IntList(eoc, i2, o3))) → fs′′(jlO(IntList(eoc, i2, o3))) and fs′′(jlO(IntList(eoc, i2, o3))) →
fs(jlO(IntList(eoc, i2, o3))) whose termination is easy to show. But if we had the annotations
o1! and o2! in s, o2! in s′, and o2! and o3! in s′′, then we would obtain the rules fs(o1) →
fs′(o2), fs′(o2) → fs′′(o2) and fs′′(o2) → fs(o2). So in the first rule, o2 would be an extra
variable representing an arbitrary list, and the resulting rules would not be terminating.

Definition 3.6 (Rewrite rules from termination graphs). Let there be an edge e from the
state s = (pp, l, op, h) to the state s′ in a termination graph. Then we generate rule(e):

• if e is an instance edge, then rule(e) = fs(ts(s)) → fs′(ts(s))

6Note that this is only possible if o′ is Unknown.
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• if e is a refinement edge, then rule(e) = fs(ts(s
′)) → fs′(ts(s

′))
• if e is an evaluation or split edge, we perform the following case analysis:
– if e is labeled by a statement of the form o1 = o2 ⊕ o3 where ⊕ ∈ ArithOp, then
rule(e) = fs(ts(s)) → fs′(ts(s

′))σ, where σ substitutes o1 by tr(s, o2)⊕ tr(s, o3)
– if e is labeled by a condition o1 ⊕ o2 where ⊕ ∈ RelOp, then rule(e) = fs(ts(s)) →
fs′(ts(s

′)) | tr(s, o1)⊕ tr(s, o2)
– if pp is the instruction putfield writing to a field of reference o, then rule(e) =
fs(ts(s)) → fs′(tso(s

′)), where tso(s
′) is defined like ts(s′), but each reference o′ with

o %$ o′ is transformed into a new fresh variable.
– for all other instructions, rule(e) = fs(ts(s)) → fs′(ts(s

′))

Our main theorem states that every computation path of the termination graph can be
simulated by a rewrite sequence using the corresponding ITRS. Of course, the converse does
not hold, i.e., our approach cannot be used to prove non-termination of JBC programs.

Theorem 3.7 (Proving termination of JBC by ITRSs). If the ITRS corresponding to a
termination graph is terminating, then the termination graph is terminating as well. Hence,
then the original JBC program is also terminating for all concrete states t where t ⊑ s for
some abstract state s in the termination graph.

The resulting ITRSs are usually large, since they contain one rule for each edge of the
termination graph. But since our ITRSs have a special form where the roots of all left-
and right-hand sides are defined, where defined symbols do not occur below the roots, and
where we only consider rewriting with normal substitutions, one can simplify the ITRSs
substantially by merging their rules: Let R1 (resp. R2) be those rules in R where the root
of the right- (resp. left-)hand side is f . Then one can replace the rules R1 ∪ R2 by the
rules “ℓσ → r′σ | bσ && b′σ” for all ℓ → r | b ∈ R1 and all ℓ′ → r′ | b′ ∈ R2, where
σ = mgu(r, ℓ′). Of course, we also have to add rules for the Boolean conjunction “&&”.
Clearly, this process does not modify the termination behavior of R. Moreover, it suffices
to create rules only for those edges that occur in cycles of the termination graph.

With this simplification, we automatically obtain the following 1-rule ITRS for the
count program. It increases the value i1 of fG’s first and third argument (corresponding to
the value-field of orig and copy) as long as i1 < i2 (where i2 is the value-field of limit).

fG( jlO(Int(eoc, i1)), jlO(Int(eoc, i2)), jlO(Int(eoc, i1)), i1, i2) →
fG( jlO(Int(eoc, i1 + 1)), jlO(Int(eoc, i2)), jlO(Int(eoc, i1 + 1)), i1 + 1, i2) | i1 < i2

For the flatten program we automatically obtain the following ITRS. To ease read-
ability, we replaced every subterm “jlO(t)” by just t, and we replaced “TreeList(eoc, v, n)”
by “TL(v, n)”, “Tree(eoc, v, l, r)” by “T(v, l, r)”, and “IntList(eoc, v, n)” by “IL(v, n)”.

fS(TL(null, o9),TL(null, o9), o6) → fS(TL(null, o9), o9, o6) (3.1)

fS(TL(T(i1, o10, o11), o9),TL(T(i1, o10, o11), o9), o6) → fS(TL(o11, o9),TL(o10,TL(o11, o9)), IL(i1, o6)) (3.2)

fS(o1,TL(null, o9), o6) → fS(o1, o9, o6) (3.3)

fS(o1,TL(T(i1, o10, o11), o9), o6) → fS(o1,TL(o10,TL(o11, o9)), IL(i1, o6)) (3.4)

Rules (3.1) and (3.3) correspond to the cycles from S over B′ and over E. Their difference
is whether l and c point to the same object in S (i.e., whether the first two arguments of
fS in the left-hand side are identical). But both handle the case where the first tree in the
list c (i.e., in fS ’s second argument) is null. Then this null-tree is simply removed from the
list and the result r (i.e., the third argument of fs) does not change. The rules (3.2) and
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(3.4) correspond to the cycles from S over C ′ and over G. Here, the list c has the form
TL(T(i1, o10, o11), o9). Hence, the value i1 of the first tree in the list is stored in the result
list (which is modified from o6 to IL(i1, o6)) and the list c is modified to TL(o10,TL(o11, o9)).
So the length of the list increases, but the number of nodes in the list decreases.

These examples illustrate that the ITRSs resulting from our automatic transformation
of JBC are often very readable and constitute a natural representation of the original
algorithm as a rewrite system. Not surprisingly, existing TRS techniques can easily prove
termination of the resulting rules. For example, termination of the above ITRS for flatten
is easily proved using a straightforward polynomial interpretation and dependency pairs.
In contrast, abstraction-based tools like Julia and COSTA fail on examples like flatten.
In fact, Julia and COSTA also fail on the count example from Sect. 2.2.

4. Experiments and Conclusion

We introduced an approach to prove termination of JBC programs automatically by first
transforming them to termination graphs. Then an integer TRS is generated from the
termination graph and existing TRS tools can be used to show its termination.

We implemented our approach in the termination prover AProVE [9] and evaluated it
on the 106 non-recursive JBC examples from the termination problem data base (TPDB)
used in the International Termination Competition.7 In our experiments, we removed one
controversial example (“overflow”) from the TPDB whose termination depends on the
treatment of integer overflows and we added the two examples count and flatten from this
paper. Of these 106 examples, 10 are known to be non-terminating. See http://aprove.

informatik.rwth-aachen.de/eval/JBC for the origins of the individual examples. As in
the competition, we ran AProVE and the tools Julia [19] and COSTA [1] with a time limit
of 60 seconds on each example. “Success” gives the number of examples where termination
was proved, “Failure” means that the proof failed in less than 60 seconds, “Timeout” gives
the number of examples where the tool took longer than 60 seconds, and “Runtime” is the
average time (in s) needed per example. Note that for those examples from this collection
where AProVE resulted in a timeout, the tool would also fail when using a longer timeout.

all 106 non-recursive examples
Success Failure Timeout Runtime

AProVE 89 5 12 14.3
Julia 74 32 0 2.6
COSTA 60 46 0 3.4

Our experiments show that for the problems in the current example collection, our
rewriting-based approach in AProVE currently yields the most precise results. The main
reason is that we do not use a fixed abstraction from data objects to integers, but represent
objects as terms. On the other hand, this also explains the larger runtimes of AProVE
compared to Julia and COSTA. Still, our approach is efficient enough to solve most examples
in reasonable time. Our method benefits substantially from the representation of objects
as terms, since afterwards arbitrary TRS termination techniques can be used to prove
termination of the algorithms. Of course, while the examples in the TPDB are challenging,
they are still quite small. Future work will be concerned with the application and adaption
of our approach in order to use it also for large examples and Java libraries.

7See http://www.termination-portal.org/wiki/Termination_Competition.
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In the current paper, we restricted ourselves to JBC programs without recursion,
whereas the approaches of Julia and COSTA also work on recursive programs. Of course,
an extension of our method to recursive programs is another main point for future work.
Our experiments also confirm the results at the International Termination Competition in
December 2009, where the first competition on termination of JBC programs took place.
Here, the three tools above were run on a random selection of the examples from the TPDB
with similar results. To experiment with our implementation via a web interface and for de-
tails about the above experiments, we refer to http://aprove.informatik.rwth-aachen.

de/eval/JBC.
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