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MODULAR COMPLEXITY ANALYSIS VIA RELATIVE COMPLEXITY
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ABSTRACT. In this paper we introduce a modular framework which allows to infer (feasi-
ble) upper bounds on the (derivational) complexity of term rewrite systems by combining
different criteria. All current investigations to analyze the derivational complexity are
based on a single termination proof, possibly preceded by transformations. We prove that
the modular framework is strictly more powerful than the conventional setting. Further-
more, the results have been implemented and experiments show significant gains in power.

1. Introduction

Term rewriting is a Turing complete model of computation. As an immediate conse-
quence all interesting properties are undecidable. Nevertheless many powerful techniques
have been developed for establishing termination. The majority of these techniques have
been automated successfully. This development has been stimulated by the international
competition of termination tools." Most automated analyzers gain their power from a modu-
lar treatment of the rewrite system (typically via the dependency pair framework [2,11,22]).

For terminating rewrite systems Hofbauer and Lautemann [14] consider the length of
derivations as a measurement for the complexity of rewrite systems. The resulting notion
of derivational complexity relates the length of a rewrite sequence to the size of its starting
term. Thereby it is, e.g., a suitable metric for the complexity of deciding the word problem
for a given confluent and terminating rewrite system (since the decision procedure rewrites
terms to normal form). If one regards a rewrite system as a program and wants to estimate
the maximal number of computation steps needed to evaluate an expression to a result,
then the special shape of the starting terms—a function applied to data which is in normal
form—can be taken into account. Hirokawa and Moser [12] identified this special form of
complexity and named it runtime complexity.

To show (feasible) upper complexity bounds currently few techniques are known. Typ-
ically termination criteria are restricted such that complexity bounds can be inferred. The
early work by Hofbauer and Lautemann [14] considers polynomial interpretations, suitably
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restricted, to admit quadratic derivational complexity. Match-bounds [9] and arctic matrix
interpretations [16] induce linear derivational complexity and triangular matrix interpre-
tations [19] admit polynomially long derivations (the dimension of the matrices yields the
degree of the polynomial). All these methods share the property that until now they have
been used directly only, meaning that a single termination technique has to orient all rules
in one go. However, using direct criteria exclusively is problematic due to their restricted
power.

In [12,13] Hirokawa and Moser lift many aspects of the dependency pair framework from
termination analysis into the complexity setting, resulting in the notion of weak dependency
pairs. So for the special case of runtime complexity for the first time a modular approach
has been introduced. There the modular aspect amounts to using different interpretation
based criteria for (parts of the) weak dependency graph and the usable rules. However, still
all rewrite rules considered must be oriented strictly in one go and only restrictive criteria
may be applied for the usable rules. A further drawback of weak dependency pairs is that
they may only be used for bounding runtime complexity while there seems to be no hope
to generalize the method to derivational complexity.

In this paper we present a different approach which admits a fully modular treatment.
The approach is general enough that it applies to derivational complexity (and hence also
to runtime complexity) and basic enough that it allows to combine completely different
complexity criteria such as match-bounds and triangular matrix interpretations. By the
modular combination of different criteria also gains in power are achieved. These gains
come in two flavors. On one hand our approach allows to obtain lower complexity bounds
for several rewrite systems where bounds have already been established before and on the
other hand we found bounds for systems that could not be dealt with so far automatically.

The remainder of the paper is organized as follows. In Section 2 preliminaries about
term rewriting and complexity analysis are fixed. Afterwards, Section 3 familiarizes the
reader with the concept of a suitable complexity measurement for relative rewriting. Sec-
tion 4 formulates a modular framework for complexity analysis based on relative complexity.
In Section 5 we show that the modular setting is strictly more powerful than the conven-
tional approach. Our results have been implemented in the complexity prover (GI'. The
technical details can be inferred from Section 6. Section 7 is devoted to demonstrate the
power of the modular treatment by means of an empirical evaluation. Section 8 concludes.

2. Preliminaries

We assume familiarity with (relative) term rewriting [3,10,21]. Let F be a signature
and V be a disjoint set of variables. By 7 (F, V) we denote the set of terms over F and V and
by T (F) the set of ground terms over F. We write Fun(t) for the set of function symbols
occurring in a term ¢. The size of a term ¢ is denoted |t| and ||¢|| computes the number of
occurrences of function symbols in ¢. Positions are used to address symbol occurrences in
terms. Given a term t and a position p € Pos(t), we write ¢(p) for the symbol at position p.
We use FPos(t) to denote the subset of positions p € Pos(t) such that t(p) € F.

A rewrite rule is a pair of terms ([,r), written [ — 7 such that [ is not a variable and
all variables in r are contained in [. A term rewrite system (TRS for short) is a set of
rewrite rules. For complexity analysis we assume TRSs to be finite. A TRS R is said to
be duplicating if there exists a rewrite rule [ — r € R and a variable x that occurs more
often in r than in [. A TRS is called linear if for all rewrite rules I — r € R any variable z
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occurs at most once in [ and r, respectively. A rewrite relation is a binary relation on terms
that is closed under contexts and substitutions. For a TRS R we define —x to be the
smallest rewrite relation that contains R. As usual —* denotes the reflexive and transitive
closure of — and —" the n-th iterate of —. A relative TRS R/S is a pair of TRSs R and S
with the induced rewrite relation —¢ /s = =35 - —r - —%5. In the sequel we will sometimes
identify a TRS R with the relative TRS R/&.

The derivation length of a term ¢ with respect to a relation — and a set of terms L is de-
fined as follows: dI(t,—, L) = max{m | Jut =™ u, t € L}. We abbreviate dI(t,—, T (F,V))
by dl(t,—). The derivational complexity computes the maximal derivation length of all
terms up to a given size, i.e., dc(n, —) = max{dl(t,—) | [t| < n}. Sometimes we say that R
(R/S) has linear, quadratic, etc. derivational complexity if dc(n, —»%) (dc(n, —g/s)) can
be bounded by a linear, quadratic, etc. polynomial in n.

2.1. Triangular Matrix Interpretations

An F-algebra A consists of a non-empty carrier A and a set of interpretations f4 for
every f € F. By [a](-)4 we denote the usual evaluation function of A according to an
assignment «. An F-algebra A together with two relations >= and = on A is called a
monotone algebra if every f, is monotone with respect to > and >, > is a well-founded
order, and > - = C > and »= - > C > holds. Any monotone algebra (A, >, =) induces a well-
founded order on terms, i.e., s >4 t if for any assignment « the condition [a](s)a > [@](t) 4
holds. The order > 4 is defined similarly. A relative TRS R/S is compatible with a monotone
algebra (A, = 4,7=4) if R C =4 and S C = 4. Matriz interpretations (M, =, =) (often
just denoted M) are a special form of monotone algebras. Here the carrier is N for some
fixed dimension d € N\ {0}. The order =, is the point-wise extension of > to vectors
and 4 =p U if Uy >y U and 4 =p U. If every f € F of arity n is interpreted as
Mm@, .. 2) = Fiay + - - —I—an_;L+fWhere F; € N%¥d and f eNlforalll <i<n
then monotonicity of > is achieved by demanding F;(; 1) > 1 for any 1 <7 < n. A matrix
interpretation where for every f € F all F; (1 < ¢ < arity(f)) are upper triangular is called
triangular matriz interpretation (abbreviated by TMI). A square matrix A of dimension d
is of upper triangular shape if A;; < 1 and Ay = 0if i > jforall 1 < 4,5 < d. For
historic reasons a TMI based on matrices of dimension one is also called strongly linear
interpretation (SLI for short). In [19] it is shown that the derivational complexity of a
TRS R is bounded by a polynomial of degree d if there exists a TMI M of dimension d
such that R is compatible with M.

2.2. Match-Bounds

Let F be a signature, R a TRS over F, and L C T(F) a set of ground terms. The
set {t € T(F) | s =% t for some s € L} of reducts of L is denoted by —%(L). Given a
set N C N of natural numbers, the signature F x N is denoted by Fp. Here function
symbols (f,n) with f € F and n € N have the same arity as f and are written as f,,. The
mappings lift.: F — Fy, base: Fy — F, and height: Fy — N are defined as lift.(f) = f,
base(f.) = f, and height(f.) = ¢ for all f € F and ¢ € N. They are extended to terms,
sets of terms, and TRSs in the obvious way. The TRS match(R) over the signature Fy
consists of all rewrite rules I’ — lift.(r) for which there exists a rule [ — r € R such that
base(!’) = 1 and ¢ = 1 + min{height(!'(p)) | p € FPos(l)}. Here ¢ € N. The restriction of
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match(R) to the signature Fyg, . is denoted by match.(R). Let L be a set of terms. The
TRS R is called match-bounded for L if there exists a ¢ € N such that the maximum height
of function symbols occurring in terms in %;atch(n)(lifto(L)) is at most c. If we want to
make the bound ¢ precise, we say that R is match-bounded for L by c. If we do not specify
the set of terms L then it is assumed that L = T (F). If a linear TRS R is match-bounded
for a language L then R is terminating on L. Furthermore dI(¢,—%, L) is bounded by a
linear polynomial for any term ¢ € L [9].

In order to prove that a TRS R is match-bounded for some language L, the idea
is to construct a tree automaton that is compatible with match(R) and lifto(L). A tree
automaton A = (F,Q, Q¢, A) is said to be compatible with some TRS R and some language
Lif L C L£(A) and for each rewrite rule [ — r € R and state substitution o: Var(l) — Q
such that lo —’ ¢ it holds that ro —7 q.

3. Relative Complexity

In this section we introduce complexity analysis for relative rewriting, i.e., given R/S
only the R-steps contribute to the complexity. To estimate the derivational complexity of
a relative TRS R/S, a pair of orderings (>, >) will be used such that R C > and § C ».
The necessary properties of these orderings are given in the next definition.

Definition 3.1. A complezity pair (>=,>) consists of two finitely branching rewrite rela-
tions > and > that are compatible, i.e., = - = C = and = - = C . We call a relative TRS
R/S compatible with a complexity pair (>,>) if R C > and S C .

The next lemma states that given a complexity pair (>, =) and a compatible relative
TRS R/S, the > ordering is crucial for estimating the derivational complexity of R/S.
Intuitively the result states that every R/S-step gives rise to at least one >~-step.

Lemma 3.2. Let (>, =) be a complezity pair and R/S be a compatible relative TRS. Then
for any term t terminating on R/S we have dI(t, =) > dI(t, =g /s)-

Proof. By assumption R/S is compatible with (>, >). Since > and > are rewrite relations
—Rr € > and —s C = holds. From the compatibility of > and = we obtain —x,s C >.
Hence for any sequence

t =2Rr/s th 2Rrys t2 PRS-
also

t > t1 = to >
holds. The result follows immediately from this. L]

Obviously = must be at least well-founded if finite complexities should be estimated.
Because we are especially interested in feasible upper bounds the following corollary is
specialized to polynomials.

Corollary 3.3. Let R/S be a relative TRS compatible with a complexity pair (=,>). If
the derivational complexity of > is linear, quadratic, etc. then the derivational complezity
of R/S is linear, quadratic, etc.

Proof. By Lemma 3.2. n
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This corollary allows to investigate the derivational complexity of (compatible) complex-
ity pairs instead of the derivational complexity of the underlying relative TRS. Complexity
pairs can, e.g., be obtained by TMIs.

Theorem 3.4. Let (M, >, =m) be a TMI of dimension d. Then (=, =A) 1S a com-
plexity pair. Furthermore dI(t, =) is bounded by a polynomial of degree d for any term t.

Proof. Straightforward from [19, Theorem 6]. "

The following example familiarizes the reader with relative derivational complexity
analysis.

Example 3.5. Consider the relative TRS R/S where R = {f(z) — z} and S = {a — a}.
Then the SLI M satisfying fa(z) = x + 1 and apy = 0 induces the complexity pair
(> M, =m). Furthermore R/S is compatible with (>=aq, = a¢). Theorem 3.4 gives a linear
bound on > . Hence R/S admits (at most) linear derivational complexity by Corollary 3.3.
It is easy to see that this bound is tight.

4. Modular Complexity Analysis

Although Theorem 3.4 in combination with Corollary 3.3 is already powerful, a severe
drawback is that given a relative TRS R/S all rules in R must be strictly oriented by > .
The next (abstract) example demonstrates the basic idea of an approach that allows to
weaken this burden.

Example 4.1. Consider the relative TRS R/S where R = {r,7’}. Instead of estimating
di(t, =r/s) directly, we want to bound it by dI(t, =) /3 us)) +dlE =4y us))- To
proceed we separate the r from the r’-steps. ILe., any reduction sequence in R/S can be
written as

b =2eys b —Zoys e 2eys BB PHys
which immediately gives rise to a sequence

E=iy@rrus) i 2y/(rus) B2 2e/dryus) B 2 i/qryus)
Obviously dl(t, —>{T}/({T‘l} US)) + dl(t, _>{7”’}/({7“} U S)) > dl(t, _>'R/S)

Next we formalize the main observation needed for modular complexity analysis of a
relative TRS R/S. As already indicated in the example above the key idea is that every
rule from R can be investigated relative to the other rules in R and §. The next theorem
states the main result in this direction. In the sequel we assume that R; C R for any 1.
Furthermore, sometimes R; refers to {r;} if R = {r1,...,r,} and 1 <14 < n. The context

clarifies if R; is an arbitrary subset of R or its i-th rule. In addition we denote by S; the
TRS (SUR)\ R;. If S is not explicitly mentioned then S = &.

Theorem 4.2. Let (R1 URz2)/S be a relative TRS for which the term t terminates. Then
di(t, =R, /s,) +dIt, =Rr,/s,) = dIt, =R, URs)/S)-

Proof. We abbreviate R1 U Rg by R. Assume that dI(t, —r/s) = m. Then there exists a
rewrite sequence

t—=r/sth =Rr/s 2 PR/S * * 2R/S tm—1 2R/S tm (1)
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of length m. Next we investigate this sequence for every relative TRS R;/S; (1 < i < 2)
where m; overestimates how often rules from R; have been applied in the original sequence.
Fix 4. If the sequence (1) does not contain an R; step then ¢ =5, tm and m; = 0. In the
other case there exists a maximal (with respect to m;) sequence

t TIRi/Si tiy R[S ti TR/Si T TIRS: timi—l TRi/S: tm (2)
where i1 < ig < -+ < iym,—1 < m. Together with the fact that every rewrite rule in R
is either contained in R; or Ro we have my + mo > m. If m; = 0 we obviously have
di(t, =g, /s,) = m; and if ¢ —>%/Si ty with m; > 0 we know that d(t, =x,/s,) = m; by
the choice of sequence (2). (Note that in both cases it can happen that dI(t, —x,/s,) > m;
because sequence (1) need not be maximal with respect to —g,/s,.) Putting things together
yields

C||(t, —>R1/81) + C||(7f, —>R2/32) Z>m1+mg =>m= dl(t, —>R/S)
which concludes the proof. n

As already indicated, the reverse direction of the above theorem does not hold. This is
illustrated by the following example.

Example 4.3. Consider the relative TRS R/S with R = {a — b,a — c} and S = @. We
have a —x /s b or a —g/s c. Hence dl(a, »x,s) = 1. However, the sum of the derivation
lengths dl(a, =z, /s,) and dl(a, =g, /s,) is 2.

Although for Theorem 4.2 equality cannot be established the next result states that for
complexity analysis this does not matter.

Theorem 4.4. Let (R1 U R2)/S be a relative TRS for which the term t terminates. Then
max{O(dI(t, _>’R1/S1))7 O(dl(tv _>'R2/$2))} = O(dl(t’ (R4 UR2)/3))'

Proof. We abbreviate the union R; U R2 by R. The >-direction follows immediately from
Theorem 4.2 and some basic properties of the O-notation like maxi<;<2{O(dI(t, =, /s,))} =
O(X1<icotdl(t, =R, /s,)}). For the <-direction we select a j € {1,2} such that R;/S;
determines the complexity of R/S, ie., O(dI(t,—r,/s;)) = maxi<i<2{OdI(t, =r,/s,))}-
By construction of R;/S; any derivation of the form

E=Rrys; b 2Ry/s; 0 TR,/ Im
induces a derivation
+ + +
t o%s ks o ks tm
of at least the same length. Putting things together finishes the proof. n

Theorems 4.2 and 4.4 allow to split a relative TRS R /S into smaller components R /S
and Ro/Se—such that Ry U Re = R—and evaluate the complexities of these components
(e.g., by different complexity pairs) independently. Note that this approach is not restricted
to relative rewriting. To estimate the complexity of a (non-relative) TRS R just consider
the relative TRS R/@.

In Theorem 3.4 we have already seen one method to obtain complexity pairs. In the
next subsection we study how the match-bounds technique can be suited for relative com-
plexity analysis. Afterwards, in Section 4.2, we show that under certain circumstances the
derivational complexity of a relative TRS R /S can be estimated by considering R;/S; and
R2/S. Note that Theorem 4.2 requires Ro/Se with S; = R1 U S instead of Ry/S.
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4.1. Complexity Pairs via Match-Bounds

It is easy to use the match-bound technique for estimating the derivational complexity
of a relative TRS R/S; just check for match-boundedness of R US. This process either
succeeds by proving that the combined TRS is match-bounded, or, when R U S cannot be
proved to be match-bounded, it fails. Since the construction of a compatible tree automaton
does not terminate for TRSs that are not match-bounded, the latter situation typically does
not happen. This behavior causes two serious problems. On the one hand we cannot benefit
from Theorem 4.4 because whenever we split a relative TRS R/S into smaller components
R1/S; and R2/Ss then Ry US; is match-bounded if and only if R U Sy is match-bounded
since both TRSs coincide. On the other hand the match-bound technique cannot cooperate
with other techniques since either linear derivational complexity of all or none of the rules
in R is shown. In [23] these problems have been addressed by checking if there is a ¢ € N
such that the maximum height of function symbols occurring in terms in derivations caused
by the TRS match.y1(R) U match.(S) U lift.(S) is at most c¢. Below we follow a different
approach which seems to be more suitable for our setting. That is, given some relative
TRS R/S we adapt the match-bound technique in such a way that it can orient the rewrite
rules in R strictly and the ones in & weakly. To this end we introduce a new enrichment
match-RT(R/S). The key idea behind the new enrichment is to keep heights until a labeled
version of a rule in R is applied.

To simplify the presentation we consider linear TRSs only. The extension to non-
duplicating TRSs is straightforward and follows [17].

Definition 4.5. Let S be a TRS over a signature . The TRS match-RT(S) over the
signature Fy consists of all rules I’ — lift.(r) such that base(l') — r € S. Here ¢ =
height(I’(€)) if ||base(l")|| = ||r|| and lift.(base(l')) = I’, and ¢ = min {1 + height(l'(p)) | p €
FPos(l')}) otherwise. Given a relative TRS R/S, the relative TRS match-RT(R/S) is
defined as match(R)/match-RT(S).

To satisfy the requirement that the new enrichment match-RT(R/S) counts only R-
steps we try to keep the labels of the function symbols in a contracted redex if a size-
preserving or size-decreasing rewrite rule in § is applied. We need this requirement on the
size that the new enrichment is compatible with multi-set orderings >, and >y, which
induce a linear complexity.

Example 4.6. Consider the TRS R = {rev(z) — rev/(z,nil),rev'(nil,y) — y} and the
TRS S = {rev/(cons(z,y),z) — rev'(y, cons(x, z))}. Then match(R) contains the rules

revo(z) — revi(z,nily) revy(nilo,y) — ¥

revi(z) — revh(z, nily) revy(nily,y) =y

and match-RT(S) contains
revg(conso(z,y), z) — revj(y, consy(z, 2))

revg(consy (z,y), z) — rev)(y, cons (z, 2))

Both infinite TRSs together constitute match-RT(R/S).
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In order to prove that a relative TRS R /S admits at most linear derivational complexity
using the enrichment match-RT(R/S) we need the property defined below.

Definition 4.7. Let R/S be a relative TRS. We call R/S match-RT-bounded for a set of
terms L if there exists a number ¢ € N such that the height of function symbols occurring
in terms in %;atch—RT(R/S)(liftO(L)) is at most c.

Let MFun(t) = {height(f) | f € Fun(t)} denote the multiset of the heights of the
function symbols that occur in the term ¢. The precedence > on N is defined as ¢ > j if
and only if j >y i. Let Mul(N) denote all multisets over N. We write s > t for terms
s, t € T(F,V) if MFun(s) is greater than MFun(t) in the multiset extension of > on N.
Similarly, s =y t if s >=nqu t or MFun(s) = MFun(t).

A key property of the relative TRS match-RT(R/S) is that the rewrite rules which
originate from rules in R can be oriented by >, and all other rules can be oriented
by >mul- Hence the derivation length induced by the relative TRS R/S on some language
L is bounded by a linear polynomial whenever R/S is match-RT-bounded for L.

Lemma 4.8. Let R and S be two non-duplicating TRSs. We have —match(r) € =mul and
—match-RT(S) & Zmul-

Proof. From the proof of [9, Lemma 17] we know that for a non-duplicating TRS R and
two terms s,t € T(F,V), s =mul t Wwhenever s —aich(r) t- If § —matcn-rT(s) t then either
MFun(s) 2 MFun(t) or 8 —match(s) t by Definition 4.5. In the former case we have
S =mul t and in the latter one s >, t and hence s > t by the definition of >,. This
concludes the proof of the lemma. n

Theorem 4.9. Let R/S be a relative TRS such that R and S are linear and let L be a set
of terms. If R/S is match-RT-bounded for L then R/S is terminating on L. Furthermore
di(t, = /s, L) is bounded by a linear polynomial for any term t € L.

Proof. At first we show that R/S is terminating on L. Assume to the contrary that there
is an infinite rewrite sequence of the form

1 =Rr/s le 7R/ 13 2Rys *
with ¢t € L. Because R and S are left-linear, this derivation can be lifted to an infinite
match-RT(R/S) rewrite sequence
1] = match-RT(R/S) 12 —*match-RT(R/S) 13 —*match-RT(R/S) * -

starting from ¢} = lifto(¢;). Since the original sequence contains infinitely many R-steps
the lifted sequence contains infinitely many match(R)-steps. Moreover, because R/S is
match-RT-bounded for L, there is a ¢ > 0 such that the height of every function symbol
occurring in a term in the lifted sequence is at most ¢. Lemma 4.8 as well as compatibility
of =mul and >y yields ] =my tj,, for all ¢ > 1. However, this is excluded because > is
well-founded on {0, ..., c} and hence >py is well-founded on T(Fyo, ... o, V) [3]. To prove
the second part of the theorem consider an arbitrary (finite) rewrite sequence

t—=r/stt =R/S * 2R/S tm
with ¢ € L. Similar as before this sequence can be lifted to a match-RT(R/S) sequence

t' = match-RT(R/S) t1 —match-RT(R/S) *** —*match-RT(R/S) tm
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of the same length starting from ¢’ = lifto(¢) such that ¢ »ny ¢, for all i > 0. Here
ty = t'. Because R/S is match-RT-bounded for L, we know that there is a ¢ > 0 such
that the height of every function symbol occurring in a term in the lifted sequence is at
most c. Let k£ be the maximal number of function symbols occurring in some right-hand
side in RUS. Due to a remark in [4] we know that the length of the =g chain from ¢’ to
t!, is bounded by ||t’|| - (k4 1)¢. Since ||¢’|| = ||t|| and both, the lifted as well as the original
sequence are as long as the =, chain starting at ¢/, we conclude that the length of the
R/S rewrite sequence starting at the term ¢ is bounded by ||¢]| - (k + 1)€. "

Corollary 4.10. Let R/S be a relative TRS such that R and S are linear and let L be a
set of terms. If R/S is match-RT-bounded for L then (—g/s,—s) is a complexity pair.
Furthermore dI(t, =g /s, L) is bounded by a linear polynomial for any term t € L.

Proof. Follows immediately from Theorem 4.9. L]

To prove that a relative TRS R /S is match-RT-bounded for a set of terms L we con-
struct a tree automaton A that is compatible with the rewrite rules of match-RT(R/S) and
lifto(L). Since the set %;atch_RT(R/s)(lifto(L)) need not be regular, even for left-linear R
and S and regular L (see [9]) we cannot hope to give an exact automaton construction. The
general idea [8,9] is to look for violations of the compatibility requirement: lo —% ¢ and
ro #+ q for some rewrite rule [ — r, state substitution o, and state g. Then we add new
states and transitions to the current automaton to ensure ro —7 ¢. After rc —7 ¢ has
been established, we repeat this process until a compatible automaton is obtained. Note

that this may never happen if new states are repeatedly added.

Example 4.11. We show that the relative TRS R /S of Example 4.6 is match-RT-bounded
by constructing a compatible tree automaton. As starting point we consider the automaton

nilp — 1 revo(l) — 1 consp(1,1) — 1 revy(1,1) — 1

which accepts the set of all ground terms over the signature {nil, rev,cons,rev'}. Since
revo(r) —match(r) revy(w,nily) and revg(1) — 1, we add the transitions nil; — 2 and
revi(1,2) — 1. At next consider the rule revi(nilo,y) —match(r) ¥ With revi(nilp,2) —* 1.
In order to solve this compatibility violation we add the transition 2 — 1. After that we
consider the compatibility violation rev)(consy(1,1),2) —* 1 but rev)(1,cons;(1,2)) 4* 1
caused by the rule revy(conso(z,%),2) —match-RT(S) revy(y,consi(z, z)). In order to ensure
revi(1,cons;(1,2)) —* 1 we reuse the transition revj(1,2) — 1 and add the new transition
consi (1,2) — 2. Finally revy(consi (2, ), 2) —>match-RT(S) revy (y, consi(z, 2)) and the deriva-
tion rev((consi(1,2),1) —* 1 give rise to the transition cons;(1,1) — 2. After this step,
the obtained tree automaton is compatible with match-RT(R/S). Hence R/S is match-RT-
bounded by 1. Due to Corollary 4.10 we can conclude linear derivational complexity of R/S.
We remark that the ordinary match-bound technique fails on R/S because R U S induces
quadratic derivational complexity (consider the term rev”(z)c™ for o = {x — cons(y,x)}).

4.2. Beyond Complexity Pairs

An obvious question is whether it suffices to estimate the complexity of R;/S; and
R2/S (in contrast to R2/S2) to conclude some complexity bound for (R; UR2)/S. The
following example by Hofbauer [15] shows that in general the complexity of (R1 U Rz2)/S
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might be much larger than the sum of the components; even for systems where both parts
have linear derivational complexity.

Example 4.12. Consider the TRS R consisting of the single rule ¢(L(z)) — R(z) and the
TRS Rs consisting of the rules

R(a(z)) — b(b(R(z))) R(z) = L(z) b(L(z)) = L(a(x))

Here & = @. The derivational complexity of the relative TRS R/S; is linear, due to the
SLI that just counts the c¢’s. The derivational complexity of Ro/S is linear as well since the
system is match-bounded by 2. However, the relative TRS R/S with R = R; U R2 admits
exponentially long R-derivations in the size of the starting term:

<*(L(a(@)) = "H(Ra(x))) = <"H(b(b(R(x)))) = <"H(b(b(L(x))))
— c"H(b(L(a()))) = " H(L(a(a(2)))) —* L(a*"(2))

Under certain circumstances the problem from the preceding example does not occur.
Although developed for a different setting (to estimate weak dependency pair steps relative
to usable rule steps) the weight gap principle of Hirokawa and Moser [12] gives a sound
criterion when estimating complexity bounds as shown above. Among non-duplication of R
the theorem requires a special linear bound on Ro. Then the derivational complexity of
R1/R2 determines the derivational complexity of R1 UR2. However, in contrast to runtime
complexity, for derivational complexity non-duplication is no (real) restriction since any
duplicating TRSs immediately admits exponentially long derivations. Because we focus on
feasible upper bounds all systems considered are non-duplicating.

Theorem 4.13 (Hirokawa and Moser [12]). Let R1 and Ra be TRSs, R1 be non-duplicating,
and let M be an SLI such that Ro C »=arq. Then for all R1 and M there exist constants K
and L such that

K- d|(t, *)Rl/Rg) + L - |t| > d|(t, *)'Rlu’Rz)
whenever t is terminating on R1 U Ra. n

The next corollary generalizes this result to the relative rewriting setting.

Corollary 4.14. Let (R1 URz2)/S be a relative TRS, Ry be non-duplicating, and let M be
an SLI such that Ro C = and S C = pq. Then for all Ry and M there exist constants K
and L such that

K - dl(t’ —>'R1/(R2 US)) + L- |t| > dl(t7 _>('R1 URQ)/S)
whenever t is terminating on (R1 UR2)/S.
Proof. Follows from Theorem 4.13. n

An immediate consequence of the above corollary is that for any relative TRS R/S we
can shift rewrite rules in R that are strictly oriented by an SLI M into the § component,
provided that R is non-duplicating and all rules in S behave nicely with respect to = 4.
Note that the above corollary does not require that all rules from R are (strictly) oriented.
This causes some kind of non-determinism which is demonstrated in the next example.

Example 4.15. Consider the TRSs R = {a(b(z)) — a(c(z)),d(c(z)) — d(b(x))} and
S = @. Obviously there are two SLIs that allow to preprocess R/S. Counting b’s results
in the relative TRS R2/S2 whereas counting c’s yields R1/S;1. Note that both results are
different and cannot be further processed by Corollary 4.14.
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5. Assessment

In the first part of this section we prove that the modular setting based on Theorem 4.4
is strictly more powerful in theory than the direct approach. (For gains in power in practice,
cf. Section 7.) To make the reasoning easier we assume full (in contrast to relative) rewriting
and that Theorem 4.4 has been applied iteratively, until every component R; consists of a
single rule. The next lemma states that if only TMIs of dimension one are employed, then
in theory there is no difference in power between the two settings.

Lemma 5.1. Let R be a TRS. There exists a TMI M of dimension one compatible with R
if and only if there exists a family of TMIs M; of dimension one such that M, is compatible
with R;/S; for any i.

Proof. The implication from left to right obviously holds since M is a suitable candidate
for every M;. For the reverse direction we construct a TMI M compatible with R based
on the family of TMIs M;. It is straightforward to check that defining fa((z1,...,2m) =
Yoifm (1, .. xy) for any f € F yields a TMI of dimension one compatible with R. =

Due to Theorem 4.4 the complexity is not affected when using the modular setting.
Hence when using TMIs of dimension one in theory both approaches can prove the same
bounds. But experiments in Section 7 show that in practice proofs are easier to find in the
modular setting since, e.g., the coefficients of the interpretations can be chosen smaller. For
larger dimensions just the only-if direction of Lemma 5.1 holds. To see this we consider the
TRS Strategy_removed_AGO01/#4.21.2 For this system a modular complexity proof based on
TMIs of dimension two (see web site in Footnote 5 on page 398) yields a quadratic upper
bound on the derivational complexity. However, due to the next lemma no such proof is
possible in the direct setting. (We remark that there exist TMIs of dimension three that
are compatible with this TRS).

Lemma 5.2. The TRS Strategy_removed_AGO01/#4.21 does not admit a TMI of dimension
two compatible with it.

Proof. To address all possible interpretations we extracted the set of constraints that repre-
sent a TMI of dimension two compatible with the TRS. MiniSmt? can detect unsatisfiability
of these constraints. Details can be found at the web site in Footnote 5 on page 398. [

The next result shows that any direct proof transfers into the modular setting without
increasing the bounds on the derivational complexity.

Lemma 5.3. Let > be a finitely branching rewrite relation and let R be a TRS compatible
with . Then for any i there exits a complexity pair (>=;,>;) which is compatible with the
relative TRS R;/S;. Furthermore for any term t we have O(dI(t,>)) = max;{O(dI(¢,>;))}.

Proof. Fix i. Let (>;,>=;) be (>=,=). It is easy to see that (>-,=) is a complexity pair
because > and = are compatible rewrite relations. It remains to show that O(dI(¢,>)) =
max;{O(dI(t,>;))}. To this end we observe that > (dI(t,(>i, =;)) = n - dI(t,>) for all
terms t. Here n denotes the number of complexity pairs. Basic properties of the O-notation
yield the desired result. [

2 Labels in sans-serif font refer to TRSs from the TPDB 7.0.2, see http://termination-portal.org.
3 http://cl-informatik.uibk.ac.at/software/minismt



396 HARALD ZANKL AND MARTIN KORP

As a corollary we obtain that in general the modular complexity setting is more powerful
than the direct one. Even when applying just TMIs of the same dimension modularly.

Corollary 5.4. The modular complezity setting is strictly more powerful than the direct one.

Proof. Due to Lemmata 5.2 and 5.3. and the discussion before Lemma 5.2. n

As already mentioned earlier, the modular setting does not only allow to combine
TMIs (of different dimensions) in one proof but even different complexity criteria. This is
illustrated in the next example.

Example 5.5. Consider the TRS R (Transformed_CSR_04/Ex16_Luc06_GM) with the rules:
c—a mark(a) — a g(z,y) — f(x,y)
c—b mark(b) — ¢ g(x,z) — g(a,b) mark(f(z,y)) — g(mark(z),y)

By using Corollary 4.14 twice, we can transform R into the relative TRS R'/S’ where R’ =
R1UR2, &' =R\R', R1 = {g(z,z) — g(a,b)}, and Re = {mark(f(x,y)) — g(mark(x),y)}.
After that we can apply match-RT-bounds (extended to non-duplicating TRSs) to show that
the derivational complexity induced by the relative TRS R1/S; is at most linear. Finally,
by applying Theorem 4.4 with TMIs of dimension two to the relative TRS Ry/Ss we obtain
a quadratic upper bound on the derivational complexity of R. Further details of the proof
can be accessed from the web site accompanying this paper (see Footnote 5 on page 398).
The quadratic bound is tight as R admits derivations

mark”(z)o™ —™ mark™ ! (z)7"y =™ mark™ ! (z)o™y =2 gaman

of length 2mn where 0 = {z — f(x,y)}, 7 = {z — g(z,y)}, and 7 = {z — mark(z)}. Last
but not least we remark that none of the involved techniques can establish an upper bound
on its own. In case of match-bounds this follows from the fact that R admits quadratic
derivational complexity. The same reason also holds for Corollary 4.14 because SLIs induce

linear complexity bounds. Finally, TMIs fail because they cannot orient the rewrite rule
g(z,z) — g(a,b).

Next we consider the TRS Zantema_04/z086. The question about the derivational
complexity of it has been stated as problem #105 on the RTA LooP.*

Example 5.6. Consider the TRS R (Zantema_04/z086) consisting of the rules:
a(a(z)) — c(b(z)) b(b(z)) — c(a(z)) c(c(z)) = b(a(z))

Adian showed in [1] that R admits at most quadratic derivational complexity. Since the
proof is based on a low-level reasoning on the structure of R, it is specific to this TRS and
challenging for automation. With our approach we cannot prove the quadratic bound on the
derivational complexity of R. However, Corollary 4.14 permits to establish some progress.
Using an SLI counting a’s and b’s it suffices to determine the derivational complexity of
R3/Ss. This means that it suffices to bound how often the rule c(c(x)) — b(a(z)) is applied
relative to the other rules. The benefit is that now, e.g., a TMI must only orient one rule
strictly and the other two rules weakly (compared to all three rules strictly). It has to be
clarified if the relative formulation of the problem can be used to simplify the proof in [1].

The next example shows that although the modular approach permits lower bounds
compared to the old one further criteria for splitting TRSs should be investigated.

4 http://rtaloop.mancoosi.univ-paris-diderot.fr
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Example 5.7. Consider the TRS R (SK90/4.30) consisting of the following rules:

f(nil) — nil f(niloy) — nil o f(y) f((xoy)oz) = f(xo(yoz))

g(nil) — nil g(x onil) = g(x) o nil glxo(yoz)) = g((zoy)oz)
In [19] a TMI compatible with R of dimension four is given showing that the derivational
complexity is bounded by a polynomial of degree four. Using Theorem 4.4 with TMIs
of dimension three yields a cubic upper bound (see web site in Footnote 5 on page 398).
Although our approach enables showing a lower complexity than [19] this bound is still
not tight since the derivational complexity of R is quadratic. For this particular TRS it is
easy to observe that rules defining f do not interfere with rules defining g and vice versa.

Thereby we could estimate the derivational complexity of R by bounding the two TRSs
defining f and g separately.

6. Implementation

To estimate the derivational complexity of a TRS R we first transform R into the
relative TRS R/@. If the input is already a relative TRS this step is omitted. Afterwards
we try to estimate the derivational complexity of R /S by splitting R into TRSs R; and Ro
such that dI(¢, —x,/s,) +dI(t, —=r,/s,) = dI(t, >r/s). This is done by moving step by step
those rewrite rules from R to S of which the derivational complexity can be bounded. In
each step a different technique can be applied. As soon as R is empty, we can compute the
derivational complexity of R/S by summing up all intermediate results. In the following we
describe the presented approach more formally and refer to it as the complezity framework.

A complexity problem (CP problem for short) is a pair (R/S, f) consisting of a rel-
ative TRS R/S and a unary function f. In order to prove the derivational complexity
of a CP problem so-called CP processors are applied. A CP processor is a function that
takes a CP problem (R/S, f) as input and returns a new CP problem (R;i/(R2US), f’)
as output. Here R = R; URs. In order to be employed to prove an upper bound on
the complexity of a given CP problem they need to be sound: f(n) + dc(n, —g/s) €
O(f'(n) + dc(n, =g, /R, us)))- To ensure that a CP processor can be used to prove a
lower-bound on the derivational complexity of a given CP problem it must be complete,
ie., f(n)+dc(n, —r/s) € Qf (n) +dc(n, =g, R, us))). From the preceding sections the
following CP processors can be derived.

Theorem 6.1. The CP processor

(R1/(R2US), f') if Re €= and R1US C =
(R/S, f) for some complexity pair (>, >)
(R/S, ) otherwise

where R = R4 URy and f'(n) = f(n) +dc(n, =) is sound.
Proof. Follows from Corollary 3.3 and Theorem 4.4. [
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Table 1: Derivational complexity of 1172 TRSs

p Il g ¢ time timeout
direct 287 180 87 20 0.72 192
modular 311 198 86 27 1.19 340

Note that the above theorem defines a general version of a CP processor based on a
complexity pair (>, >). To obtain concrete instances of this CP processor one can use for
example the complexity pairs from Theorem 3.4 and Corollary 4.10.

Theorem 6.2. The CP processor
(R1/(R2US), f) if Ry is non-duplicating and

(R/S, f) — Ro C =pm and S C =y for some SLI M
(R/S, f) otherwise
where R = Ry U Ry and f'(n) = f(n) + n is sound.
Proof. Straightforward by Corollary 4.14. L]

7. Experimental Results

The techniques described in the preceding sections are implemented in the complexity
analyzer @I (freely available from http://cl-informatik.uibk.ac.at/software/cat)
which is built on top of TqTy [18], a powerful termination tool for TRSs. Both tools are
written in OCaml and interface MiniSat [6] and Yices [5].

Below we report on the experiments we performed with (T on the 1172 TRSs in version
7.0.2 of the TPDB that are non-duplicating.® All tests have been performed on a server
equipped with eight dual-core AMD Opteron® processors 885 running at a clock rate of
2.6 GHz and on 64 GB of main memory. We remark that similar results have been ob-
tained on a dual-core laptop. Our results are summarized in Table 1. Here, direct refers
to the conventional setting where all rules must be oriented at once whereas modular first
transforms a TRS R into a relative TRS R/@ before the CP processors from Section 6 are
employed. As base methods we use the match-bounds technique as well as TMIs and arctic
matrix interpretations [16] of dimensions one to three. The latter two are implemented by
bit-blasting arithmetic operations to SAT [7,16]. The coefficients of a matrix of dimen-
sion d are represented in 6 — d bits, one additional bit is used for intermediate results. All
base methods are run in parallel, but criteria that yield larger derivational complexity are
executed slightly delayed. This allows to maximize the number of low bounds.

Table 1 shows that the modular approach allows to prove significantly more polynomial
bounds (column p) for the systems; furthermore these bounds are also smaller. Here column |
refers to linear, q to quadratic, and c to cubic derivational complexity. We also list the
average time (in seconds) needed for finding a bound and the number of timeouts, i.e, when
the tool did not deliver an answer within 60 seconds. The modular setting is slower since
there typically more proofs are required to succeed. However, we anticipate that by making
use of incremental SAT solvers (for the matrix methods) the time can be reduced.

% Full details available from http://cl-informatik.uibk.ac.at/software/cat/modular.
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Table 2: Termination competition 2009 (derivational complexity)

points p Il g c r
a@ar 540 137 84 41 7 5
Matchbox 397 102 44 52 5 1
TcT 380 109 32 69 8 0

For a comparison of our method with other tools we refer the reader to the interna-
tional termination competition (referenced in Footnote 1 on page 385). In 2008 and 2009,
@T won all categories related to derivational complexity analysis. Note that in 2009 it used
a slightly weaker implementation of Theorem 4.4 than presented here and did not imple-
ment Corollary 4.14; especially the latter speeds up proofs. Some statistics from the 2009
competition are listed in Table 2. The total points are computed by a scoring scheme that
favors tools that yield small upper bounds. The column r indicates polynomial bounds of
degree four.

8. Conclusion

In this paper we have introduced a modular approach for estimating the derivational
complexity of TRSs by considering relative rewriting. We showed how existing criteria (for
full rewriting) can be lifted into the relative setting without much effort. The modular
approach is easy to implement and has been proved strictly more powerful than traditional
methods in theory and practice. Since the modular method allows to combine different
criteria, typically smaller complexity bounds are achieved. All our results directly extend
to more restrictive notions of complexity, e.g., runtime complexity (see below). We stress
that as a by-product of our investigations we obtained an alternative approach to [23] that
can be used to prove relative termination using match-bounds. It remains open which
of the two approaches is more powerful. Finally we remark that our setting allows a more
fine-grained complexity analysis, i.e., while traditionally a quadratic derivational complexity
ensures that any rule is applied at most quadratically often, our approach can make different
statements about single rules. Hence even if a proof attempt does not succeed completely,
it may highlight the problematic rules.

As related work we mention [15] which also considers relative rewriting for complexity
analysis. However, there the complexity of R U Ry is investigated by considering R;/R2
and Rq. Hence [15] also gives rise to a modular reasoning but the obtained complexities are
typically beyond polynomials. For runtime complexity analysis Hirokawa and Moser [12,13]
consider weak dependency pair steps relative to the usable rules, i.e., WDP(R)/UR(R).
However, since in the current formulation of weak dependency pairs some complexity might
be hidden in the usable rules they do not really obtain a relative problem. As a consequence
they can only apply restricted criteria for the usable rules. Note that our approach can
directly be used to show bounds on WDP(R)/UR(R) by considering WDP(R)UUR(R). Due
to Corollary 4.14 this problem can be transformed into an (unrestricted) relative problem
WDP(R)/UR(R) whenever the constraints in [12] are satisfied. Moreover, if somehow the
problematic usable rules could be determined and shifted into the WDP(R) component, then
this improved version of weak dependency pairs corresponds to a relative problem without
additional restrictions, admitting further benefit from our contributions.
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We plan to investigate if the arctic matrix method also satisfies the weight gap principle.

Other promising techniques that (might) allow a modular processing of subsystems comprise
criteria for constructor sharing TRSs [20]. Last but not least it seems feasible to combine the
approach for relative match-bounds introduced in [23] with the one presented in Section 4.1.
By doing so, a stronger version of relative match-bounds could be obtained.

Acknowledgments. We thank Johannes Waldmann for communicating Example 4.12.
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