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Abstract
Visualizations are well suited to communicate large amounts of complex data. With increasing resolution
in the spatial and temporal domain simple imaging techniques meet their limits, as it is quite difficult to
display multiple variables in 3D or analyze long video sequences. Feature detection techniques reduce the
data-set to the essential structures and allow for a highly abstracted representation of the data. However,
current feature detection algorithms commonly rely on a detailed description of each individual feature.
In this paper, we present a feature-based visualization technique that is solely based on the data. Using
concepts from computational mechanics and information theory, a measure, local statistical complexity,
is defined that extracts distinctive structures in the data-set. Local statistical complexity assigns each po-
sition in the (multivariate) data-set a scalar value indicating regions with extraordinary behavior. Local
structures with high local statistical complexity form the features of the data-set. Volume-rendering and
iso-surfacing are used to visualize the automatically extracted features of the data-set. To illustrate the
ability of the technique, we use examples from diffusion, and flow simulations in two and three dimen-
sions.
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1 Introduction

When analyzing their data-sets, one of the important questions of researchers is: Did I see everything
that is relevant? Usually the domain experts can name several structures that they are interested
in and that have significant influence on the system’s evolution. Commonly, such structures are
called features. In fluid dynamics, for example, they comprise structures like vortices, separation
and attachment lines, cycles, and stagnation points. Detecting and visualizing these structures
automatically is of great help for the domain experts. They get a simplified description of the system
and can immediately understand basic properties of their data-set.

In order to detect these prominent structures in a data-set automatically, mathematical descriptions
are required. Some features like stagnation points can be detected very easily, as they are simply
zeros in the vector field. Other features like vortices, however, are very hard to define mathematically.
Several different detection methods based on vorticity, λ2, or the Sujudi and Haimes algorithm exist,
but neither is capable of detecting vortices in all scenarios (Galilean invariance). The vortex example
illustrates that more complex features are often hard to describe with a simple algorithm or formula,
which gets even tougher in an unsteady setting. Here, a less restrictive feature definition would be
beneficial.
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A second problem that arises when looking for features is the fact that there is no general definition
of a feature. In general, features are phenomena, structures or objects in a data set of interest for
the underlying problem [19]. Thus, features strongly depend on the application and the user. Users
from computational fluid dynamics (CFD), magnetic resonance imaging (MRI) and biological system
simulation will be looking for different features and for each field a different set of tools is required
to detect the structures the domain experts are interested in.

Even when provided with the appropriate set of tools, the user still has to run several algorithms
to detect all the different features and usually has to specify parameters for each of them. Hence, the
user has to start five to ten algorithms, set parameters, wait for the results, check whether something
has been found, verify the results and look for structures that are not included in the list of standard
features. Doing this entire procedure for several data-sets can become quite wearisome and much
easier feature detection process would be desirable.

Summarizing these last three scenarios, we found the following weak points of the standard
feature detection procedure:

Most features can be found without domain knowledge even by a novice. Why can’t computers
do this?
A feature may depend on the application. User dependence sounds weird in natural sciences (or
engineering).
If the data describes a physical simulation, a feature should depend only on the data.

To deal with these problems, the feature detection procedure described in the last scenario has to be
highly simplified. The algorithm for the identification of relevant structures we think of, should look
something like this:
1. Load the simulation data.
2. Run the feature detection algorithm.
3. Get a visualization with highlighted features (i.e. the most important regions).
Moreover, we want the logic behind the algorithm to be easy to understand and that the algorithm does
not need a definition or name for all the different types of features it detects. The second requirement
ensures that new structures can be found that have not been identified as features before.

Hence, the goal of the paper is to present a new way towards a feature-based visualization that
does not need a priori definitions of structures that are considered relevant. On the contrary, relevance
is to be directly defined by the data itself and the user is presented those structures that differ from the
basic patterns in the data-set, i.e., the features of the data-set.

2 Related work

Much work has been done in the field of feature detection and visualization. In general four different
concepts can be distinguished: image processing, topological analysis, physical characteristics, and
partition-based approaches. Image processing techniques, e.g. Ebling et al. [6], Schlemmer et al. [24]
and Heiberg et al. [9], often apply pattern matching approaches. Here a two or three-dimensional
pattern is predefined and similar structures are found in the data-set. Although these techniques
are very flexible with respect to finding certain patterns with different scale and/or orientation, the
user still has to define a sample pattern as reference for each of the structures he/she is looking
for. Topological analysis clusters regions of similar behavior/structure. Examples in this area can
be found in the survey by Scheuermann et al. [23]. The topological analysis of a data-set provides
an automatic simplification. However, there is no classification of the importance of the different
structures that have been identified. Many feature detection methods are based on the analysis of
physical characteristics (e.g. Garth et al. [7], Roth [20]), as these are the most intuitive descriptions
for domain experts. Though many excellent methods fall into this category, they all have the problem
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that they are very restrictive concerning the definition. A detailed description of flow feature detection
techniques that fall into these three categories can be found in the survey by Post et al. [19]. The
idea behind partition-based approaches is to separate the domain into regions of similar structure or
behavior. Streamline predicates [22] and pathline attributes [28], for example, cluster integral lines in
the data-set with given properties. The method we are going to present falls into this category, as it
partitions the domain into areas that feature distinct structures and those that do not. Partitioned-based
approaches are summarized in the paper by Salzbrunn et al. [21].

As mentioned before, these standard feature detection methods commonly rely on a given
definition or description of the feature to be found. What we are looking for is a feature description
given by the data-set itself. The third step of the algorithm we have in mind (Section 1) already reveals
the direction we are aiming at. We do not want to provide exact feature definitions, but are looking for
regions of high importance in the data-set. Important is to be understood in an information-theoretic
way, i.e. we want to identify the regions with the highest information content or complexity.

In the literature, a large variety of complexity measures are available, e.g., [2, 4, 8, 16, 27].
Common measures originating from the analysis of strings of data are Shannon entropy [27] and
algorithmic information [1]. Shannon entropy is a measure of the uncertainty associated with a
random variable, whereas the algorithmic information is roughly speaking the length of the shortest
program capable of generating a certain string. Both measures have in common that they are measures
of randomness. In complex systems however, randomness is commonly not considered to be complex.
Likewise, Hogg and Huberman [11] state that complexity is small for completely ordered and
completely disordered patterns and reaches a maximum inbetween. A different approach was taken
by Grassberger [8], who defined complexity as the minimal information that would have to be stored
for optimal predictions. Based on this idea, statistical complexity [4] was introduced identifying
the complexity of a system with the amount of information needed to specify its causal states, i.e.,
its classes of identical behavior. In order to analyze random fields, a point-by-point version was
formulated by Shalizi [25] called local statistical complexity.

3 Specifications

The following work is based on the ideas by Shalizi et al. [26], which assumes the following properties
of a data-set:

1. The data stems from a PDE simulation (in engineering or natural sciences).

2. The solver is based on a finite difference scheme on a Cartesian grid.

3. The data is unsteady and all time-steps and independent variables are available.

The first requirement ensures that the process creating the data is the same at each position in
the resulting field. As PDEs are the standard definition of physical systems, e.g. the Navier-Stokes
equations for fluid flow, this demand sets no limitations. The second requirement allows for the
comparison of local neighborhoods. A sample Cartesian grid is given in Figure 1a. Using finite
difference schemes as solver, clearly defines a local neighborhood that is used to compute the value
in the next time-step as illustrated in Figure 1b. Moreover, initial conditions and boundary conditions
are required for the computation. In the results section we will use data-sets that were computed
using more sophisticated solvers and show that this is no crucial restriction. The third requirement
ensures that exact conclusions about the influence of different positions and variables can be made.

Looking closer at these three requirements, we see that they correspond to the construction rules
of cellular automata, which are well researched.
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(a) Cartesian grid.

(b) Finite difference.

(c) Light-cone configurations.

Figure 1 Different structures in a Cartesian grid: (a) Empty grid. (b) Sample neighborhood used to compute
finite differences. (c) Light-cone structures used for the computation of local statistical complexity.

4 Cellular Automata

A cellular automaton (CA) is a discrete model of a system, with the game of life being the best-known
example. The automaton consists of a regular uniform lattice with a discrete variable at each cell.
The configuration of an automaton at a certain time step is completely specified by the values of the
variables at each site. Following predefined local rules the configuration can change at each discrete
time step. A rule defines which value a cell will take in the next step, depending on the values of
its neighborhood in the present. Typically, the neighborhood of a cell consists of the cell itself and
all immediately adjacent cells. An example for a rule is: If the cell has value 0 and at least two of
its neighbors have value 1, change the cell’s value to 1. For each time step all values are updated
simultaneously.

An example of a 1D cellular automaton is given in Figure 2. The domain can be separated into two
different classes: stable local patterns and defects. The stable local patterns are the areas, that look
like the background of the image. The defects are the triangles in different sizes that move across the
image. Although the stable patterns dominate after some time, the defects are the ones that determine
the long term behavior. Shalizi et al. [26] proposed a filter for the automatic extraction of coherent
structures, i.e. defects, in CA. Their filter is called local statistical complexity and automatically
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Figure 2 Cellular automaton in 1D (top) and corresponding local statistical complexity field (bottom).

detects prominent formations of arbitrary size and shape in unsteady data-sets. Figure 2(bottom)
shows the filtered image of the 1D cellular automaton, highlighting the defects that move around in
the original data-set.

5 Local Statistical Complexity

Local statistical complexity extracts those regions in an unsteady field, where a lot of information
from the local past is required to predict the dynamics in the local future. This happens where the
temporal evolution is very unusual compared to what happens in the rest of the field. In general, users
are interested in a subset of these distinctive regions, as they know the basic structure of their data-set
and want to find regions that behave differently. Especially for large intricate and little understood
data-sets local statistical complexity is a helpful tool to guide the user to regions that might be relevant
for him or her.

Local statistical complexity focuses on the local temporal evolution of the field. The local past of
position p in the field consists of all the points that might influence p. As effects propagate at finite
speed, the past has the shape of a light-cone that is directed towards the past. The apex is located at p.
This concept is likewise used when computing simulations using finite differences or finite elements.
Here the value at position ~x in time-step t is computed from the neighborhood of the point in the
previous time-step t− 1 (Fig. 1c). (An exception is pressure in incompressible flow.) The future
is given by a light-cone that is directed in the opposite direction, i.e., the future. Each light-cone
comprises a set of positions. The values at these positions together with the neighborhood information
are called a configuration. A configuration can be thought of as a pattern that extends in time, space
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and if appropriate over multiple variables. By definition future configurations contain the value at the
apex, past configurations do not.

For each past-cone configuration we would like to be able to predict, what might happen in the
future. The only value that we can predict exactly, is the one at the future-cone apex, as it results from
the calculation rule of the simulation method (remember Fig. 1b). To predict the remaining values
in the future-cone, we need statistics. We group several similar past-configurations and compute
a histogram over the different futures that occur. This estimated distribution tells us which future
configurations are likely for this particular class of behavior in the past. This procedure is repeated
for all different groups of past-configurations.

Analyzing the histograms we computed in the previous step, we will observe that some of them
are very similar. This means that the differences we detected in the past-configurations have no
significant influence on the dynamics in the future. Thus, we merge all those past groups that have
very similar histograms. The different groups that result after the merging are called causal states. A
causal state represents a cause-and-effect relationship between what was observed in the past and
what might happen in the future. So, if we have a past configuration and can determine its causal
state, we can estimate the most probable future dynamics.

Now that we can predict the dynamics in the future given the past configuration, we want to find a
minimal lossless encoding for this information. The code with the shortest expected length is given by
a Huffman-code. A Huffman-code assigns frequent symbols short codewords and rare symbols longer
ones. The entropy H[X ] is a measure of the smallest average codeword length that is theoretically
possible for the given alphabet X . For functions f (x) x ∈ X , mutual information I[ f (X),X ] equals
entropy H[ f (X)]. In order to find an optimal encoding for the past-configurations, we have to find
a function f that minimizes the mutual information I[ f (PastCon f );PastCon f ]. Shalizi et al. [26]
showed that the unique function that minimizes the mutual information is the mapping to the causal
states. Thus, if we store at each position the Huffman-code of the corresponding causal state, we
resolve the file with shortest expected length that still gives us all informations about the dynamics in
the local future.

The encoded file can finally be used to detect distinctive regions. The Huffman-code assigns each
causal state a codeword whose length depends on the number of positions that are assigned to it.
Causal states with a very long codeword feature dynamics in the future that occur very rarely in the
field. Local statistical complexity measures for a past-configuration the length of the codeword of
the corresponding causal state, i.e., the amount of information that is needed to predict the causal
state/the dynamics in the future. The longer the codeword, the more likely it is that something
extraordinary is going to happen in the local future of this position. More information on the theory
and implementation of local statistical complexity and causal states can be found in [26, 14].

6 Application to Finite Difference Schemes

Complexity analysis using local statistical complexity can be applied to scientific simulations as
finite difference schemes, a direct analog to CA rules, can be used to discretize PDEs. The following
simple example of an isotropic diffusion, e.g., ion concentration in water, is used for illustrations.
Given a concentration f (~x, t0) at each position ~x ∈ B at time t0, the temporal development of this
concentration f (~x, t) is observed. The governing PDE is

∂ f
∂ t

(~x, t) = D∆ f (~x, t) (1)

with a constant diffusion coefficient D, time derivative ∂ f
∂ t (~x, t) and Laplacian ∆ f (~x, t). As boundary

conditions constant concentrations are assumed: f (~x, t) = f (~x, t0) for x ∈ ∂B. A simple finite

Chapte r 5



68 Towards Automatic Feature-based Visualization

(a) Configuration. (b) Config space. (c) Discretization.

(d) Region growing (e) Voronoi cells.

Figure 3 Density-driven Voronoi tessellation: (a) A past configuration extracted from the data-set consisting
of eight variables. (b) This configuration marked in high-dimensional configuration space (only first two of the
eight variables illustrated). (c) Initial fine-grained discretization of the configuration space. (d) Density-driven
region growing starting in densest regions. (e) Final Voronoi tessellation of the configuration space. (f) Final
partitioning of the domain.

difference scheme in the plane consists of a Cartesian lattice L = {0, . . . ,255}×{0, . . . ,255}, a given
concentration f0 : L→ R, and the difference equation
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1
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1
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1
4
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8

f (x1,x2−1, t)+
1

16
f (x1 +1,x2−1, t)

which is also known as applying a binomial 3×3 filter to a digital image in image processing [12]. In
this example L is the lattice of the CA, f contains the values over time and Eq. 2 gives the complete
rule. As c = 1, the configurations are as illustrated in Fig. 1c. The reader familiar with either finite
difference schemes or image processing might imagine a larger stencil or filter for c > 1. Similar
schemes can be applied to any PDE, allowing for analysis using local statistical complexity.

7 Computation of Local Statistical Complexity

The first step in visualizing the local statistical complexity of a data-set consists of the computation of
causal states. Causal states are defined by:

Causal State = ε(l−) = {λ : P(l+|λ ) = P(l+|l−)}. (3)
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Hence, a causal state is the equivalence class of all past-cones (l−) that have the same distribution
(P(l+|l−)) over possible futures (l+), i.e., each causal state predicts a certain future and the possible
futures of different causal states differ.

To determine the causal states that occur within a data-set, the conditional probabilities P(l+|l−)
have to be estimated. As exactly the same pattern l+ or l− commonly only occurs once in a scientific
data-set, the probabilities cannot be estimated directly, but similar configurations have to be grouped
for the estimation. The grouping has to fulfill two requirements. First, all samples in the data-set have
to be assigned to a group and second, the size of each group in high-dimensional space (dimensionality
is given by the number of entries in the cone, cf. Fig. 1c) has to be the same to allow for a correct
estimation.

In [13], Jänicke et al. proposed a fast strategy to estimate probabilities with a single sweep through
the data. We use this approach based on density-driven Voronoi tessellation, which consists of three
steps:

1. Discretization: Compute the past- and future-cone (Fig. 3a) at each position and store the
discretized cones in two trees.

2. Density-driven Voronoi Tessellation: Partition the high-dimensional discrete cone space (Fig. 3b)
using a Voronoi tessellation (Fig. 3(c-e)) that takes the underlying distribution of cone configura-
tions into account. This step is performed for the past and future tree separately. Resulting IDs
are stored for each leaf in the two trees.

3. Probability Estimation: For each past cell, the corresponding future cells are counted and used to
estimate the probabilities.

The idea behind density-driven Voronoi Tessellation is to let the discretization adapt to the structure
of the high-dimensional data. The initial discretization in Step 1. is used to estimate a local density.
Starting from densest regions, a region growing algorithm is applied that iteratively captures the entire
space. The method ensures that the Voronoi cells have equal size and that clusters are well preserved.

To identify causal states, the conditional probabilities have to be estimated. This is achieved by
counting the number of occurrences of different future classes per past Voronoi cell. Dividing by the
total number of configurations per past cell, gives the conditional probability P(l+|l−). In a last step,
those Voronoi past cells are grouped that feature a similar distribution over futures using a χ2-test
[10]. The resulting grouped classes are the causal states of the process.

Each of these causal states represents a spatio-temporal pattern, indicating what might happen
next if a certain past was observed. After the identification of the causal states, new fields that hold
the ID of the causal state at each position are created. As we are not interested in the local pattern but
in the complexity of the current position, we have to evaluate the local statistical complexity of each
causal state and assign appropriate values to the field of causal state IDs.

Local statistical complexity measures how much information from the local past is required to
predict the dynamics in the local future at a certain position. If the dynamics of a configuration
match the average behavior in the data-set, only little information is required. On the contrary if
something unusual happens, more information is required. To measure how extraordinary some
local dynamics are, Shalizi et al. [26] proposed local statistical complexity, which was extended to
scientific simulation data by Jänicke et al. ([14, 13]). The local statistical complexity at a certain
position p in the field is defined as the mutual information between the corresponding configuration’s
past (l−) and its causal state (ε(l−)):

LSC(p) = I[ε(l−); l−]. (4)

Mutual information is a measure from information theory, which tells how much information one
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random variable contains about another one:

I[A;B] = ∑
a∈A;b∈B

P(a,b) log2
P(a,b)

P(a)P(b)
(5)

where P(a) is the probability that the random variable A takes the value a and P(a,b) is the corre-
sponding joint probability of variables A and B. Using this definition, the local statistical complexity
of a cone configuration tells how much information from the past is required to identify its causal
state. If one knows the causal state, the dynamics in the future are clear as well. Hence, if a lot of
information is required to identify the causal state, the local dynamics are extraordinary compared to
what is happening in the rest of the data-set.

8 Results

The three data-sets we are going to analyze have increasing complexity. The first one is an isotropic
diffusion which is a perfect analogon to CA. In the second example we will analyze swirling flow.
This 2d examples consists of multiple variables and contains different features experts are interested
in. The third test-case is a simulation of the flow around a delta wing. In this large 3d example several
intricate features are present. The results of local statistical complexity will be compared to standard
feature detection techniques for both CFD examples to verify the correctness of the automatic detected
features.

8.1 Isotropic Diffusion
An isotropic diffusion, simulated using finite differences as explained in Section 6, is a simple example
of a large variety of diffusion processes, i.e., equalization of differences in concentration, heat, matter
or momentum, appearing in nature. The dataset is simulated by repeated filtering using a binomial
filter. In the diffusion field, the cells at the left border are set to 1, and those at the right border to
0. Upper and lower boundaries are initialized with linearly decreasing values that range from 1 to 0.
The inner part is initialized with random values between 0.0 and 1.0. The process displayed in the
upper row of Fig. 4, is defined on a square lattice with 150 cells in each direction. 800 time-steps are
simulated.

The left half of the images in Figure 4 shows the evolution of the diffusion. In time-step 1 the
image consists of many small coherent structures that still feature a large variety of values. After 20
time-steps these homogeneous regions have become much larger and the range of values has shrunk.
At the boundaries small bands with the extremal values are visible. This process continues in time-step
50. While the center becomes more homogeneous, the gradients starting from the boundaries grow.
In time-step 800 half of the domain has reached the equilibrium of the diffusion process.

On the right hand-side of this series of snapshots, the corresponding complexity fields are depicted.
In the first time-step the entire domain is covered by small black and gray spots. The areas that appear
in light gray, are those that hold values close to 0.5, the most common value in this data-set. Black
cells hold formations that have either very different or extremal values in their configurations. In
time-step 20 the diffusion has formed larger homogeneous regions, which are found by local statistical
complexity. Again, black areas indicate extreme values and gray areas normal ones. These areas grow
(time-step 50) until in time-step 200 the entire center of the data-set holds value 0.5. Thus, this pattern
is the basic one and considered to be uninteresting. In time-step 800 the gradient covers half of the
data-set. As we only analyze those time-steps in which the gradient evolves, these configurations
with increasing/decreasing values are something extraordinary, whereas configurations containing
only value 0.5, the standard result of the diffusion process, are considered to be normal.
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(a) Time-step 1.

(b) Time-step 20.

(c) Time-step 50.

(d) Time-step 800.

Figure 4 Evolution of the diffusion data-set (left - original values, right - lsc field): (a) (left) Random
initialization in time-step 1. (right) Local patterns that are close to equilibrium occur in light-gray in the lsc-field,
which indicates small complexity. Pixels colored in black include extremal values which seldom occur in the
entire unsteady data-set. (b) Time-step 20: Coherent structures start to form. (c) Time-step 50: Coherent
structures in the center grow. Large areas reach equilibrium (light-gray in center). The gradient grows starting
from the boundary. (d) Time-step 800: The center has reached equilibrium (value 0.5) and the boundary gradient
grows further.
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(a) Original. (b) Norm of velocity.

(c) Vorticity. (d) Local statistical complexity.

Figure 5 Swirling flow: In each image the line integral convolution (LIC) of the velocity field is overlayed
with an additional quantity. (a) The conical shear region (blue) outlines the region where the flow enters the
domain. Two red points mark one of the ring-like vortex structures. (b) The norm of velocity overlay highlights
regions with a strong current and reveals the relevant structures. (c) Vorticity indicates strong swirling motion.
The color-coding gives the orientation. (d) Local statistical complexity automatically extracts analog structures.

8.2 Swirling Flow
The development of a recirculation zone in a swirling flow is investigated by numerical simulation.
This type of flow is relevant to several applications where residence time is important to enable mixing
and chemical reactions.

The unsteady flow in a swirling jet is simulated with an accurate finite-difference method. The
Navier-Stokes equations for an incompressible, Newtonian fluid are set up in cylindrical coordinates
assuming axi-symmetry in terms of streamfunction and azimuthal vorticity. All equations are dimen-
sionless containing the Reynolds number Re and the swirl number S as defined by Billant et al. [3]

Re≡ vz(0,z0)D
ν

S≡ 2vθ (R/2,z0)

vz(0,z0)
(6)

where z0 = 0.4D, D = 2R is the nozzle diameter and ν the kinematic viscosity, as dimensionless
parameters.

The PDEs are discretized with fourth order central difference operators for the non-convective
terms and with a fifth order, upwind-biased operator [17] for the convective terms. The time integrator
is an explicit s-stage, state space Runge-Kutta method ([5], [15]), the present method is fourth order
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accurate with s = 5. The time step is controlled by the minimum of two criteria: The limit set
by linearized stability analysis and the limit set by the error norms of an embedded third order
Runge-Kutta scheme [5]. The Helmholtz PDE for streamfunction Ψ̃(r,z, t) is solved with an iterative
method using deferred corrections and LU-decomposition of the coefficient matrix. The deferred
corrections method is designed to reduce the bandwidth of the coefficient matrix. It converges rapidly
using about ten to twenty steps.

The flow domain is the meridional plane D = {(r,z) : 0≤ r≤ R,0≤ z≤ L} with R = 5D, L = 8D
and D denoting the nozzle diameter at the entrance boundary. The flow domain is mapped onto the
unit rectangle which is discretized with constant spacing. The mapping is separable and allows to a
limited extent crowding of grid points in regions of interest. The present simulation uses nr = 91 and
nz = 175 grid points in radial and axial directions. The boundary conditions are of Dirichlet type at
the entrance section and the outer boundary and at the exit convective conditions are imposed for the
azimuthal vorticity. The initial conditions are stagnant flow and the entrance conditions are smoothly
ramped up to their asymptotic values within four time units.

The simulation results for Re = 103, S = 1.1 (within the range of the experiments [3], [18]) used
for the complexity analysis are ten time steps after the formation of the recirculation bubble (which
forms at t = 6.02) at times t = 33.63092 to t = 33.70560. The flow is unsteady and does not approach
a steady asymptotic state as the velocity and vorticity fields show (Fig. 5(a-c)).

Figure 5(a) shows a line integral convolution (LIC) of the velocity field, featuring several vortices.
Relevant features are highlighted in this image. The structure outlined in blue is the conical shear
region surrounding the inlet of the swirling flow. The two red dots indicate one ringlike vortex
structure. The coreline of this vortex lies in a plane orthogonal to displayed cross-section and passed
through the red points. Comparing this image to the one overlayed with the norm of velocity (Fig.
5b), we see that the simple LIC image gives a misleading impression of the flow as several of the
clearly visible vortices are detected in regions close to noise.

The vorticity overlay in Figure 5c results in a similar image as norm of velocity. Basically the
same structures are highlighted. Differences occur at the inlet, where, as expected by the technique,
only the shear flow is highlighted. Moreover, the ring-like vortex structures are more pronounced
than the connecting structures. The color-coding provides an additional hint telling the orientation of
the rotation.

Local statistical complexity is computed for the combination of velocity and vorticity and layed
over the original LIC to provide context (Fig. 5d). Both features, the shear region and the ring-like
vortex structures, are automatically detected by local statistical complexity. Unlike vorticity, local
statistical complexity marks both features as equally complex. Both, the conical shear region, as well
as the vortex structure are assigned highest complexity, while the vortices exhibit only small vorticity,
compared to the shear flow.

8.3 Delta Wing
This data-set represents the airflow around a delta wing at low speeds with an increasing angle
of attack. Multiple vortex structures form on the wing due to the rolling-up of the viscous shear
layers that separate from the upper surface. These formations of three vortices can be observed
on either side of the wing (Fig. 6a). With increasing angle of attack the intensity of the primary
vortices (purple) increases until in time-step 700 a vortex breakdown occurs. This phenomenon is
characterized by rapid deceleration of both the axial and tangential mean velocity components inside
the vortex. During breakdown, the axial mean velocity component vanishes and becomes negative
on the axis of the vortex, corresponding to appearance in the flow structure of a stagnation point
followed by a recirculation bubble. The analysis of vortex breakdown is highly interesting, as it is one
of the limiting factors of extreme flight maneuvers. The extraction and visualization of the individual
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(a) Streamsurfaces (b) Sujudi-Haimes

(c) λ2 < -1,500,000 (d) Vorticity > 5,000

(e) LSC > 10 (f) LSC > 12

Figure 6 Delta Wing: (a) Streamsurfaces to indicate the vortices above the delta-wing. (b) Sujudi-Haimes
vortex detection algorithm applied to the vector field. (c) Isosurface in the λ2-field (isovalue = -1,500,000). (d)
Isosurface in the vorticity field (isovalue = 5000). (e,f) Isosurface in the local statistical complexity field of the
norm of velocity (Isovalue = 10 (e), Isovalue = 12 (f)).
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structures, however, is still a challenging task as the different structures are nested and interact with
each other. The unstructured grid was resampled on a 292x224x75 grid (∼ 4.1 Million positions) and
consists of more than 1000 time-steps. The images in Figure 6 depict time-step 700.

Images 6(b-d) give an overview over standard vortex detection techniques. The algorithm by
Sujudi and Haimes [29] (Fig. 6b) is a technique that detects vortex core-lines. Applied to the delta
wing, this method perfectly extracts the core-line of the major vortices. However, we only get a
vague indication of the core-lines close to the surface, whose vortices are less dominant and interact
with each other. The λ2-criterion extracts the “hull” of the vortex. Finding an appropriate isovalue
(-1,500,000) to separate the two minor vortices without missing the recirculating bubble takes some
time. The isosurface of the magnitude of the vorticity (Fig. 6d) gives approximately the same result.

Figures 6(d–f) show the local statistical complexity of the norm of velocity. Figure 6e shows
all positions that are assigned a complexity value greater than 10 (maximum: 14.7). The visualized
structures do not only comprise the vortices and the recirculation bubble, but also the regions at the
outer corners of the wing, where the flow from the smaller vortices and the flow from underneath the
wing interact and form a swirling motion that is classified by the other techniques as vortex. Increasing
the complexity value further (Fig. 6f), we see that the individual vortices are better separated. The
major vortices are no longer visible as their complexity value is smaller than those of the small
vortices. This observation means, that the local temporal evolution of the norm of the velocity is
very distinct for vortices and for the recirculating bubble. The exceptional behavior of the norm of
the velocity is a typical characteristic for recirculating bubbles, as was explained earlier. With our
method we can extract these distinctive formations automatically without defining a definite pattern
beforehand. This feature is an important characteristic of our method, as it is capable of identifying
structures that exhibit an extraordinary formation without precisely describing its pattern.

9 Conclusion

In this paper we described a filter called local statistical complexity based on concepts from informa-
tion theory which automatically extracts coherent structures from unsteady multi-fields. It assigns
each position in the data-set a scalar value whose magnitude depends on how extraordinary the local
dynamics at the current position are. Color-mapping or isosurfacing can be used to visualize the most
distinct structures in the data-set.

Local statistical complexity is intrinsic to unsteady multi-field visualization as this is required by
the theory and quantities of different type (scalar, tensor, vector valued) can be used simultaneously
in the computation. The process reduces the multi-field to a single scalar field giving the importance
of each position. The entire process is fully automatic and requires no application-specific knowledge.
(The user has to provide two parameters for the Voronoi tessellation, which could be estimated as
well.)

Current problems arise, when analyzing divergence-free flow, as the concept of local influence
propagation is not preserved. When the dynamics are too turbulent, memory costs increase a lot, as
many different configurations have to be stored. The alternative is to compute coarser causal states,
which makes the results more inaccurate.

In our future work we would like to work on a complete mathematical basis in the continuous case.
More research has to be done regarding the influence of the parameters in the Voronoi tessellation
process. The original concept was designed for PDEs solved using finite differences. Extending the
theory to other numerical schemes is a further task that should be addressed in the future.
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