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—— Abstract

Applications of complex variables and related manifolds appear throughout mathematics and
science. Here we review a family of basic methods for applying visualization concepts to the
study of complex variables and the properties of specific complex manifolds. We begin with
an outline of the methods we can employ to directly visualize poles and branch cuts as complex
functions of one complex variable. CP? polynomial methods and their higher analogs can then be
exploited to produce visualizations of Calabi-Yau spaces such as those modeling the hypothesized
hidden dimensions of string theory. Finally, we show how the study of N-boson scattering in dual
model/string theory leads to novel cross-ratio-space methods for the treatment of analysis in two
or more complex variables.
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1 Introduction

Mathematical visualization of issues involving complex variables is a fundamental problem
that, sooner or later, is related to almost any problem in science. Our goal here is to review
some general methods that can be used to make the abstract features of complex variables
more concrete by exploiting computer graphics technology, and to illustrate these methods
with some interesting applications. We begin with a number of general concepts, and conclude
with some examples related to problems of mathematical physics motivated by string theory.
The basic methods for the representation of the shapes of homogeneous polynomial
equations in CP? were explored in detail in ([3]), and this will be the starting point for
many of our basic visualizations. We will also briefly summarize some more recent results of
([4]) treating some geometric objects arising naturally in the complex analysis of integrals
appearing in the N-boson scattering amplitudes of the dual models of early string theory.

2  Visualizing Complex Analysis

Complex Numbers

We may think of a complex number in several ways. The most traditional form comes from
the observation that, while the trivial equation 22 = 1 can be solved in the domain of real
numbers, the closely related equation 22 = —1 cannot: one must introduce an “imaginary
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number” obeying i2 = —1 in order to be able to represent the solutions to all algebraic
equations of a single variable.

The most general form of the solution to an algebraic equation in one variable thus has
two parts, a real part and an imaginary part, which can be written in terms of two real
numbers x and y as

z=x+ 1y . (1)
We also introduce the complex conjugation operation,

Z=x—1y, (2)
which in turn leads to the concept of the modulus-squared,

Z= 2P =22+ 42 (3)

The essential properties of products of complex numbers follow directly from the properties
of the symbol 4, yielding

2120 = (x1 +iy1) (w2 +iy2) = (T122 — Y1y2) + i (1Y + T291) - (4)

A more formal way of writing this would be to consider Eq. (4) as a realization of an abstract
algebra relating pairs of numbers, where the corresponding (commutative, associative) algebra
is defined as

(w1, y1) * (2, Y2) = (122 — Y1y2, T1Y2 + T2y1) - (5)

Equations (4) and (5) are indistinguishable in any mathematical sense, though some practi-
tioners may feel strongly about being more comfortable with one or the other.

For completeness, we note that another unique property of complex numbers is that,
besides the trivial case of real multiplication, only complex multiplication is both commutative
and preserves the value of the modulus under multiplication,

|z122] = |21] |22] - (6)

2.0.0.1 Visualizing a Complex Point

Once we have Eq. (1), we may ask immediately how we visualize a complex point. One
approach is that of Figure 1(a), which simply treats 2 and y as Cartesian variables, and so
every complex number is depicted as a point in the 2D plane. However, this does not allow
us to easily treat infinity, which is a critical element in the mathematical analysis of functions
of a complex variable. Thus Figure 1(a) is only a local view of the actual manifold that
mathematicians refer to as “the complex line” because of its one-dimensional complex nature,
and that physicists and engineers, for example, would refer to as the “complex plane” because
of its two-dimensional real nature. In order to treat the space of one complex variable in a
way that infinity is no longer a special point, and can be included naturally in all the tasks
of complex analysis, we must find a way to express coordinates on the space in a way that is
more general than simple Cartesian coordinates. The solution to this problem is to treat the
representation of one complex variable using one-dimensional complex projective space or
CP!, which is the space of pairs of complex numbers (29, z1) that are taken to be equivalent
under multiplication by any nonvanishing complex number A, which is to say

(Z()7 21) ~ ()\Zo, )\2’1) . (7)
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’ o =(0,1)

(a)

Figure 1 (a) The complex plane. (b) The full space of one complex variable, the one-dimensional
complex projective space CP!, which is topologically the same as an ordinary sphere, and is thus
also known as the Riemann sphere.

Note that this is a two-ended ray of equivalences, since A may take either sign. We see that
in Figure 1(a) we have chosen, e.g., the local coordinates zop = 1 and z = 21 /29 = 2z1. The
point at co now has a precise realization as the coordinate that results when we let zg — 0;
however, in the context of complex projective space, we never allow this to happen, since we
can always write “infinity” as the finite homogenous pair (0, z;). There are thus essentially
two patches in the coordinate system, one where z; is allowed to be zero, but not 21, so the
coordinate system is (z,1), and a second where z; is allowed to be zero, but not zg, so the
coordinate system is (1, z). The origin of each of these coordinate systems is the infinity of
the other, and the two coordinate systems at all other points are related by multiplication
by z1/z9 or by zo/z1.

When we make local pictures, therefore, we must choose one of these two coordinate
systems, and accept that we cannot draw at infinity until we change coordinate systems.
The entire complex plane thus consists of two parts:

North pole. (z; =0 — OK, but zy # 0).

South Pole. (zp =0 — OK, but z; # 0).

When we patch these two neighborhoods together around the equator, we find that the result
is a topological sphere, so CP! ~ 82, as shown schematically in Figure 1(b).

2.0.0.2 Fixing the coordinate system

Complex projective space admits a standard group of transformations, PGL(2,C) or the
linear-fractional transformations, that parameterize all possible transformations of the coor-
dinate system on CP!. The specific transformation on the homogeneous coordinates can be
written using the PGL(2, C) matrix elements

ab’}

o (5)

= |

with det M # 0, as

3] 2]
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or
(20, 21) = (azo + Bz1, Y20 + 621) 9)
in the homogeneous, ray-equivalent coordinates, or as

, _azo+ B2

= 1
vzo + 021 (10)

in the vzg + dz1 # 0 set of inhomogeneous coordinates.

The group of linear fractional transformations thus has three free complex parameters
that can be used to map any three complex points in the complex plane to any chosen
points to fix the degrees of freedom under the map. As illustrated in Figure 1(b), these are
conventionally chosen in the following way:

“0” is projective (1,0),

“1” is projective (1,1), and

“00” is projective (0, 1).

2.1 Cross Ratios and Cross-Ratio Coordinates

An important feature of complex projective space is that there is a family of invariants under
the linear fractional transformations (9) known as the cross ratios, defined as follows:

wlw, 2.y, 2) = <w—y>/<x—y> _(wope=2) a)

In particular, one can verify that there are two distinct cross ratios of four variables,

(z — 20) (21 — 22)

= = 12
U U(Z,Z]7ZO722) (2722)(21 720) ( )
(21 — 2)(22 — 20)
= = 13
U2 u(z1, 22, 2, 20) (21 — 20)(22 — 2) (13)
that are related by the constraint
1= U1 + ug . (14)

Since there are three remaining complex degrees of freedom in the PGL(2,C) matrix
[M] after accounting for projective equivalence, we can exhaust those degrees of freedom
by choosing a coordinate system on CP! that fixes three complex points. This fact ties in
with the definition of the group-invariant cross ratios because it allows us to fix three of the
variables in the cross ratio to be, for example, 0, 1, and oo, thus fixing

up = wu(z,1,0,00) =z (15)
uy = u(l,00,2,0)=1—2. (16)

2.1.0.3 Cross-ratio space

However, even this is not the whole story. As pointed out in ([4]), from Eq. (14) we can
deduce the existence of yet another projective space, the cross-ratio space, which results from
creating a new set of homogeneous coordinates, this time in CP2, by realizing that we must
add a third variable, ug, to Eq. (14) to make it homogenous:

Ug = U] + Uy . (17)
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This equation can be solved projectively in three different sets of variables, corresponding to
choosing the local coordinates ug = 1, u; = 1, or us = 1, and three intervals in inhomogeneous
coordinates as A = [0,1], B = [1,00], and C = [—00,0]. The triples of variables solving the
constraint equation (17) can then be written

A Lt (1—1)]
Bt): [1-1),1, -1 (18)
city: [t (1—1), -1] .

The variables of region A solve 1 = uj + ug with u; = ¢, B solves 1 = u; + us with
u1 = 1/(1 —t) when all is multiplied by (1 —¢), and C solves 1 = u; +ug with u; = (¢t —1)/t
when all is multiplied by t. We note that C(1) = —A(0), so that in fact we have a double
covering of the constraint space: the constraint equation solutions must be adjoined to their
negatives to form a piecewise continuous curve in CP2.

This concludes our introduction to the basic concepts we need to build various visual-
izations related to a single complex variable. Next we work out some examples in complex
analysis.

2.2 \Visualizing a Simple Pole
The simplest example of a complex function is a constant function,
z =a+1b.

Choosing a particular local CP! coordinate system allows us to plot this as a point in a
plane as in Figure 1(a). However, even this is not quite as simple as it looks. First we recall
that ordinary real graphs of functions are written as

y=f(x),

so that we use one space dimension to graph the value of the independent variable and a
second one to graph the result. Thus the correct complex analog would involve two complex
variables: z describing the value of the independent variable, and, say,

w = f(2) = Re f(2) +i1m f(2)

to describe the (complex) result of evaluating the function. Thus, we might consider the
graphing process to be described more clearly using two variables, z; = z1 + iy; and
Z9 = T + 1Yo, Where

Z9 = f(Zl) . (19)
We can easily see how this works with the classic example of a simple pole at the origin,

1 xz—uy

2 - 2 + y2 :

Using the two-variable form, we find that the result involves four variables, (1,1, 22, y2),
and one complex or two real equations, so the shape described is a surface with components
given by the real and imaginary parts of the following:

1 oz —i
B

. 20
2 2+ yR (20)
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(a) (b)

Figure 2 (a) Conventional picture of a complex pole f(z) = 1/(z — 20) at 2o, indicating the
positive sense of a contour to pick up the residue. (b) Visualizing the geometric shape of a complex
pole w = 1/z showing Rew as a function of z. The imaginary part looks basically the same.

The result must be projected from 4D to 3D to be rendered using standard graphics methods.
In Figure 2, we show the location of a general pole f(z) = 1/(z — zp) using a textbook 2D
complex analysis plot, and then show the visualization of the complex surface corresponding
to the pole using Re zo = x5 as the third axis.

Remark: The analysis of a pole typically involves one more step, namely the description
of a circular contour integral surrounding the pole. From the classic theorems of complex
analysis, this integral

/ dz
closed circle #

vanishes if the contour does not enclose the pole, and has the constant value 27i as long as
the contour encloses the pole. The proof is trivial in polar coordinates with z = r exp(if):

dz 2T iret? do .
— = T = 2w .
circle with radius r # 0 re

2.3 Integrating with Branch Cuts

Moving on from simple poles, we next examine functions with multiple roots, and hence
multiple branches of the Riemann surfaces that are needed to precisely define the functions.
The square root already has ample complexity to challenge our visualization technology.
If we consider the contour integral of the function w = /1 — 22 along a path that passes
around z = +1, we find the standard textbook drawing in Figure 3 describing the integral

/ dz+/1—22.
a+b

The main characteristic distinguishing a branch cut in analysis is that, while, e.g., the
phase of the function changes by a full (27) along a path going around a pole, it changes by a
precise fraction, namely 27 /n, along a path going from one side of an n-th root branch point
to the other. Thus, for example, the relative phase between the integrand on the path of the
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Square Root Riemann Surface

Figure 3 Complex contour integral around the square-root branch point of v/1 — 22 at z = +1.

a branch and the path of the b branch for the square root branch cut shown in Figure 3 is

o272 — 1

Here, once again, we need to go beyond conventional diagrams such as Figure 3 to create
a useful visualization. One approach to functions with multiple branch points is to realize
that the Riemann surface to be displayed should not just represent a single branch, e.g.,

w=4+V1-2z2 (21)

or
w=—\1-22, (22)

but should represent all branches. With a little thought we can see that everything is
summarized nicely in the equation

w22 =1. (23)

There are many different ways to plot this surface (remember, 4 real variables, with 2 real
equations means it is a surface), including just using the separate pieces from Egs. (21) and
(22) directly. We typically prefer the methods introduced in ([3]), which will be described
shortly, and which recreate the entire surface from a very simple fundamental domain via
complex phase transformations around the fixed points of the surface. The basic problem
goes back once again to the difference between homogeneous and inhomogeneous coordinates:
we should really be looking at Eq. (23) as a homogeneous equation in CP? of the form

200+ 22+ 22 =0 (24)

Choosing any one of the CP? variables (zo, 21, 22) to be a constant (zg = i is just as good
as zp = 1) gives a partial shape that does not include infinity (where the constant variable
vanishes, e.g., zo — 0). Thus we are left with holes in the surface that are represented as
rings that go off to infinity when we plot the surface using a local pair of inhomogeneous
variables as in Figure 4. The square root branch points and cuts can be explicitly seen in
the projection of Figure 4 as the ending points of the X-shaped crossings.

2.4 Visualizations of Homogeneous Polynomials in CP?

The square root Riemann surface is a special case of a general family of polynomials that
are of interest. Here we review the properties and visualization methods for the simplest
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Figure 4 Assorted views of the full square-root Riemann surface with Rew projected to the 3rd
axis. The surface is a topological sphere, but the local inhomogeneous coordinates obscure that
fact since there are two rings going off to the surface at infinity. The inner ends of the X-shaped
crossings are the branch points.

homogeneous polynomials that arise in the study of CP2. Starting from the n-th root of a
polynomial of one complex variable with zeros at the n roots of unity, that is

w=(1-2z")1" (25)

and following the same procedure as for the square root, we arrive at the corresponding
homogeneous polynomial in CP?:

2o+ Ttz t=0. (26)

As we have noted, there are a variety ways to solve this equation, including:
= n roots: Set z,™ = —1 and solve for the n roots of (1 — 2")'/™ (which are found by
multiplying by a phase exp(2wik/n), k=0,...,n—1).
= Spinor variables: Parameterize the solution using the variables typically used to define
null spinors, wy 2 4+ w; 2 +wy 2 =0 ([1]):
. 2
0 = (i +y?)""
2
2 = (xQ _ yz) /n

z2 = (2339)2/” :
Because of the projective equivalence, only n? of the n® phase choices available here are
meaningful.
= n? roots: In the method of ([3]), the relative phases of n? different congruent patches
tie together to create the full topological surface, where the obvious locations of the
fixed points of the z; and z, phase transformations expose many key features of the
surface. The method starts as before by setting z, ™ = —1. Then we exploit the complex
trigonometric identity

cos(f 4 i&)? +sin(0 +i€)* =1

to define one patch, the fundamental domain, as the quadrant where 6 gives a positive
real part for cos and sin, namely 0 < 6 < 7/2 and —&nax < § < +&max. Thus the first
and most elementary of the n? patches is

w, = (cos(f +i€))*"

wy = (sin(6+i&)*" .
The remaining patches are found by making phase transformations on both z; and z,
until the entire surface is covered; all the patches are then labeled by the n? integer pairs
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Figure 5 n = 3 in CP?: The cubic is a Figure 6 n = 4 in CP?: The quartic is a

torus. section of the K3 surface, a 4-manifold.

(k1,k2), where k1 =0,...,n—1, ks =0,...,n — 1, and the parametric solutions of the
equations become
z1 = exp(2wiky/n)w;y

zo = exp(2mike/n)ws .

Typical results are shown in the Figures as follows:

Cubic Torus. The cubic is topologically a torus (genus 1), though it is hard to see due
to the infinities in local coordinates. It is also technically the standard polynomial in
CP? that is a Calabi-Yau space. See Figure 5.

Slice of K3 Quartic. K3 is described by the quartic polynomial of complex dimension
2 (4 real dimensions) in CP3. This is the unique simply-connected Calabi-Yau 4-manifold,
and we can write the equation locally as

(z1)* + (z2)* + (23)* =1. (27)

This is one complex constraint in 3D complex space, and thus is a manifold with 2
complex, 4 real, dimensions. Setting, e.g., z3 = 0, gives a slice that is a surface in CP?
with genus 3. See Figure 6.

Slice of Calabi-Yau Quintic. It is hypothesized that 10-dimensional string theory
includes 4 dimensions of space-time and 6 dimensions that are curled up into a Calabi-Yau
space at the scale of the Planck length. A popular (but by no means unique) candidate
for this space is the quintic in CP* given locally by the equation

(21)° + (22)° + (23)° + (z4)° =1. (28)

This is one complex constraint in 4D complex space, and thus is a manifold with 3
complex, 6 real, dimensions. Setting, e.g., z3 = z4 = 0, gives a slice that is a surface in
CP? with genus 6. See Figure 7.

In general, it can be shown that every homogeneous polynomial of degree N + 1 in CPY

is in fact a Calabi-Yau space and therefore admits a Ricci-Flat metric. Calabi conjectured
and Yau proved the existence of these metrics ([8]), but, except for trivial cases such as the
CP? cubic torus, none are explicitly known. In Table 1, we summarize this family of spaces.
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Figure 7 n = 5 in CP%: The quintic is a section of the Calabi-Yau quintic, the 6-manifold

N\ 4

proposed for the hidden dimensions of string theory.

Table 1 Road map of the simple homogeneous polynomial Calabi-Yau spaces.

N
> )N =1
=1

| N | CP | deg(f) | C dim | R dim || Remarks
1| Ccp! 2 0 0 z = %1, the 0-sphere S°
2 | Cp? 3 1 2 flat torus T2
3| Ccp? 4 2 4 K3 surface
4 | cp* 5 3 6 CY String Theory quintic
N | CPY | N+1 N-1 | 2(N-1) || Solution of
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C==9

Figure 8 The Euler Beta Function has this remarkable unshrinkable contour representation due

OOC

Figure 9 When v + v =0, —1,..., deformation through co has no obstruction: one can simply
unloop the contour and pass through the [0, 1] branch line, resulting in a contour that shrinks to

Zero.

2.5 \Visualizing Infinite Riemann Surfaces: the Pochhammer Contour

The next challenge is to consider the problems of visualizing complex functions that, unlike
the square root and its analogs, may have infinite Riemann surfaces. There is a classic
example from the 19th century that provides all the features relevant to this problem. The
Euler Beta Function can be represented as the improper integral

1
B(u,v) = / 211 — )1 dg (29)
0
with the analytic continuation
_ P()I'(v)

Now, if one considers the integrand of Eq. (29) as a branched complex function 2% ~1(1—z)v~1
defining a Riemann surface, one finds branch points at z = 0 and at z = 1 with possibly
infinite branchings if u or v should be irrational. However, in 1890 Pochhammer was clever
enough to see this not as a problem but as an opportunity to define a new kind of contour
integral that was not sensitive to infinite branchings ([5]). In Figure 8 we show the usual
planar sketch of Pochhammer’s Contour, from which a little analysis allows us to compute
its value as

e(u,v) = (1—62”’?“)(1—6%“))/0 21— 2)" (31)

= (1—¢e*™")(1—e*™)B(u,v) . (32)
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Figure 11 The corresponding embedded
Pochhammer contour is a commutator, en-

Figure 10 Sample Riemann surface for
the By integrand — multiple branch cover-

ings spiral to infinity. circling each branch point twice.

Through an interesting trick of complex analysis, one can determine the zeroes of the
function directly to occur when u4+v =0, —1,...: at these values, the contour can be “pulled
over” the point at infinity as shown in Figure 9 and deformed to an equivalent vanishing

loop. These zeroes can be confirmed explicitly from the analytic continuation Eq. (30).
Finally, we can explicitly create a function representing the Riemann surface of the Euler
Beta function integrand.
B(z; u,v) = 2711 — 2)vH (33)
and create a 3D projection with, e.g., the vertical axis given by Re 3(z; u,v). Figures 10 and
11 show a section of a branched covering that could in principle spiral indefinitely, along

with the closed Pochhammer loop that can be traced on the Riemann surface, no matter
how complex. Figure 12 superimposes these on the same space to illustrate the context.

3 Extending CP? Visualization Methods to CP?

Our next objective is to see how we can create some basic images of the K3 surface that give
more global information than the 2D slice representation that we saw in Figure 6. We recall
that K3 can be represented in general as a homogeneous quartic polynomial in CP? in the
form

2ottt t=0, (34)

which reduces after division by zg # 0 (or equivalently, after division by z1, 22, or z3) to Eq.

(27). Even though this is a 4-manifold (after division, 6 real variables and two real constraint
equations), we can pick out some of its global, non-slicing, properties by considering what
amounts to the “real subspace” of the parameterization.
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0.5
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Figure 12 Pochhammer contour plotted directly on the Riemann surface.

3.1 CP? Example

We can see an example of a dimensional reduction in the CP? case by remembering that in
the n? patch method ([3]), each patch is parameterized as

(cos( + i€))*/™
(sin(6 + i€))¥/™

21

z22

with 0 < 0 < /2, so, with the imaginary part of the argument approaching zero (£ ~ 0),
the complex variables (z1, z2) become purely real and describe a circular quarter arc from
z1(0 =7/2) = 0 to 22(6 = 0) = 0. Since, at z; = 0, multiplying by the z; phase exp(2mik;/n)
leaves zero as a fixed point, there will be n copies of the circular arc fanning out from z; =0
to n copies of the intersection point zo = 0. (Note: these may be understood simply as the
roots of (z1)™ + (22)™ = 1 with either z; = 0 or 22 =0.)

In Figure 13, we show the z; = 0 intersection points as green cubes, the zo = 0 intersection
points as red cubes, and let ¢ have a finite range to show the surface shape near the core.
In Figure 14, we set ¢ ~ 0 to expose the n? “real core” curves forming the graph of the
surface skeleton in this local inhomogeneous coordinate system. Note that this is not quite a
topologically symmetric structure because infinity has been treated specially in this coordinate
system, but a great deal of the structure, e.g., the degree of the polynomial, is clearly exposed.
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Figure 13 Left: n = 3 cubic. Right: n = 4 quartic. Red and Green points represented as small
cubes indicate where the zeros of z; and z2 pass through the surface; each of zo = 0 Red points is
connected to all n copies of the z; = 0 Green points, and vice versa, through the “real” central line
of each of the n? patches.

Figure 14 Shrinking the complex extent of the surface parameterization so that only the “real
core” curves remain shows a connected graph of n? arcs connecting the 2n nodes.

3.2 The K3 “Real Core”

The representation of the K3 surface as a fourth-degree homogeneous polynomial in CP3,
like the general case of the CP? polynomials described earlier, can be solved in a variety of
ways. Here we will focus on generalizing the n? patch method ([3]) to CP3, which turns out
to lead naturally to n® patches of dimension 4 (and for CP?, to n"V patches of dimension
2(N —1)). Thus the basic equation for which we seek a 4-parameter parametric form is

(20)* + (22) + (z3)* = 1. (35)

Following the complexified circle ( S') method used for CP2, we arrive at a 4-manifold
parameterization based on the complexified sphere S2, namely

(cos sin ¢, sin 8 sin ¢, cos @) (36)

with 0 < ¢ < 7, 0 < 0 < 27. For the full 4D patch, we would complexify the angular
variables as 6 — 0 + &, ¢ — ¢ + ip to get exponential growth towards infinity. To retain
the “real skeleton” surface analogous to the network of edges shown in Figure 14 for CP?
polynomials, all we need to do is recast the real equation (36) in the form

wy = (cos@sin ¢)2/n
wy = (sinfsing)*/"
ws = (cosg)’"
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Figure 15 The “real core” of the quartic K3 Calabi-Yau space, delimited by 4% = 64 spherical
triangles. Each spherical triangle is bounded by the intersections of the zeros of the three local
complex variables with the K3 surface (a 4-manifold).

with n = 4 selecting the K3 fundamental domain (2/n = 2/4 = 1/2 so each term is a square
root). The remaining patches are found by making phase transformations on (z1, 22, 23)
until the entire surface is covered; all the patches are then labeled by the n® = 64 integers
(k1, ko, k3), where k; = 0,1,2,3 and the parametric solutions of the equations become

z1 = exp(2miky/4)w;
zo = exp(2mika/4)ws
z3 = exp(2miks/4)ws .

The result is a collection of octants of the sphere, spherical triangles that fan out four at a
time from the curves where z; = 0, 2o = 0, and 23 = 0 intersect the manifold. The result
is depicted in Figure 15, where part of the shape is cut away so that the interior “fanning
out” is made visible. We remark that just as Figure 14 appears to have non-manifold triple
or quadruple intersections, but in fact, when complexified, yields the smoothed continuous
surface of Figure 13, we need to imagine that in 4D, Figure 15 also extends completely
smoothly away from the 4-way fan-out junctions.

3.2.0.4 Regular global tessellations

The representations shown here are local and are limited in their effectiveness for exposing
the overall topology of the polynomials in CP? and CP3, etc. Extending these limited
local representations to global tessellations with maximal symmetries is a subject of ongoing
research.
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4 Two Complex Variables and the Dodecahedron

Finally, we review our approach to creating visualizations for problems arising in many-
complex-variable analysis, outlining the two-complex-variable case as our main example ([4]).
We begin with the N-particle bosonic scattering amplitude of the original dual model, the
precursor to string theory, which is given by the integral

Hdulk
B :// ui_ai_fl k
N vol 1;[ J (1 —wia) - (1 —wi,n-1)

The N-point cross-ratios u;; obey a set of constraints that is non-linear except for the
4-particle case By, which in fact is the Euler Beta function treated earlier:

j—1 i—1

’U@jzlf H Humn

m=1+1 n=j5+1

These constraints define manifolds in CPN(V=3)/2 that provide new insight into the nature
of the analytic continuation of these integrals.

The N =5 case is the simplest non-trivial example that we can work out explicitly; the
corresponding improper integral is two-dimensional,

B5(OL1, 2, (3, 04, 0[5) =

1,1
// soTleeml(] _ g)as=l(] _ gpyeaas=as (] _ p)os—l gg gy
0Jo

_ //(zl)alfl(22)a2*1(23)a3*1(24)%1(25)&5*1 dsdt/(1— st) | (37)

and thus must eventually be treated using two complex variables.
The Bj cross-ratio constraints are quadratic,

1—2’1—2324 =
1— 20— 2425
1—23—2521

1—24— 2129

o o oo o o
—
w
oo
N

172572223 = y

and, in these variables, there are twelve different possible integration domains of Eq. (37)
that we can initially represent as in Figure 16. Using CP® cross-ratio variables, we would
properly represent these equations as z,? — 2921 — 2324 = 0, etc., but we will omit the details
here.

Each individual region, when plotted using Eq. (38), is not simply a square or triangle as
one might guess from the Cartesian variable plot in Figure 16, but is actually a pentagon, as
shown in Figure 17

The resulting figure is a “blown-up” dodecahedral manifold formed from twelve pentagons,
but this dodecahedron, shown in Figure 18, is quite different topologically from the familiar
Platonic dodecahedron, and in fact has Euler characteristic y = —3, so it is a surface
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X
(9’/
t=1
4
t=0
6]
2
o

s=0 s=1

Figure 16 The 12 connected components of the domain of parameters for the set of 5-point
cross-ratios.

Figure 17 A direct plot of the solu- Figure 18 The 12 Bs connected compo-
tions (e.g., (z,(1 — z)/(1 — zy),y)) shows nents without singularities.
“stretched” limits turning squares or trian-
gles in (s,t) coordinates into pentagons in
[21, 22, 23, 24, 25]-Space.
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(b)

Figure 19 (a) The 12 Bs connected components with double covering extensions noted by barred
numbers. (b) Graph showing each vertex and the 10 hexagons corresponding to the double-covered
CP' branch lines in the Bs integrand.

Figure 20 Genus 4 double cover of five-cross-cap surface projected from RS.
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Figure 21 Projected embedding of the five-cross-cap surface itself.

corresponding to a sphere with five cross-caps. Figure 19 shows the solutions of the cross-
ratio constraints, which double cover the five-cross-cap surface, and Figure 20 finally shows
the visualization of the full double-covered surface embedded in R®. Creating an identified
embedding of the five cross-cap surface itself (the single cover, not the double cover) employing
the methods of ([4]) leads to the example image in Figure 21.

Much remains to be done to create further informative visualizations of these families of
surfaces.

5 Discussion and Remarks

We have reviewed a family of basic problems in the complex analysis of one and many
variables, and presented visualizations of a number of the manifolds that naturally arise. A
new method, the use of cross-ratio variables instead of the expected CPY variables for the
analysis of N complex variables, shows promise and is essential for the treatment of certain
N-dimensional integrals. Among the surprising and unexpected aspects of this investigation
was the discovery of a relationship to a family of objects known as the Stasheff associahedra
([7, 6, 2]). The explicit geometric embeddings that we discovered as part of our explicit
graphics-oriented approach are in fact new geometric realizations of these topological objects.

Complex analysis is a fertile proving ground for developing and testing mathematical
visualization methods. Here we have reviewed a variety of basic approaches that can be
used for visualization in complex analysis, focusing on several families of complex algebraic
equations and their geometry. Much remains to be done.
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