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Abstract
While tensors occur in many areas of science and engineering, little has been done to visualize
tensors with order higher than two. Tensors of higher orders can be used for example to de-
scribe complex diffusion patterns in magnetic resonance imaging (MRI). Recently, we presented
a method for tracking lines in higher order tensor fields that is a generalization of methods known
from first order tensor fields (vector fields) and symmetric second order tensor fields. Here, this
method is applied to magnetic resonance imaging where tensor fields are used to describe diffu-
sion patterns for example of hydrogen in the human brain. These patterns align to the internal
structure and can be used to analyze interconnections between different areas of the brain, the
so called tractography problem. The advantage of using higher order tensor lines is the ability
to detect crossings locally, which is not possible in second order tensor fields. In this paper, the
theoretical details will be extended and tangible results will be given on MRI data sets.
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1 Introduction

Tensors are mathematical objects that are used in physics and engineering for measuring
natural quantities or for describing derived quantities such as the vector derivative which is a
second order tensor. While second order tensors, especially symmetric second order tensors
are well studied and many visualization techniques exist, little has been done to visualize
tensors of order higher than two. Higher order tensor occur for example in mechanical
engineering as the fourth order material tensor but despite of painting complex glyphs, no
method exists for analyzing the structure of higher order tensor fields.

Magnetic resonance tomography (MRT) is an imaging technique used in medicine that
is more sensitive to tissue structures than computer tomography (CT). Diffusion weighted
MRT is a variant where diffusion of hydrogen bound in molecules is measured along gradient
directions of an applied magnetic field. As the magnetic field gradient can be changed,
the diffusion can be sampled using a three dimensional sampling pattern. If six different
directions on a sphere g(i) are acquired leading to six signals s(i), i ∈ {1 . . . 6} measured in
addition to a base image s(0), a second order diffusion tensor can be reconstructed by solving
the system of six equations

s(i) = s(0)e−bTjkg(i)
j g(i)

k (1)

describing a symmetric second order tensor1 Tjk = Tkj . Here s(i) is the signal intensity in
presence of a magnetic field gradient and s(0) is the baseline image which is the signal intensity

1 We use Einstein’s summing convention in all equations where variables are summed up over same indices
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in absence of diffusion-sensitizing field gradients to which the remaining measurements are
related. The parameter b is called b-factor or diffusion weighting factor which will be assumed
to be a constant here. The influence of the b-value to the measurement has been studied for
example by Frank [5] and Jones [9]. Usually, more gradient directions are used to smooth
the data and equation 1 is solved using least squares fitting.

In addition to this approach, other techniques have been introduced to handle the
additional information gained by sampling using more than six points, among these are
q-Space imaging, higher angular resolution diffusion (tensor) imaging HARD(T)I and q-Ball
imaging. While q-Space imaging [1] is difficult to measure and is prone to artefacts [13],
q-Ball imaging needs a high number of gradient directions (about 120 to 300) [13]. HARDI
is a technique using higher order tensors to represent diffusion patterns using higher angular
resolution than second order diffusion tensor imaging while only a reasonable small amount
of gradient directions is needed. The number of gradient directions is important because of
its linear dependence on the measuring time. In clinical environments only ten to twenty
minutes of scanning time are available resulting in six to thirty gradient directions using two
or three images for averaging.

Concerning visualization, the ellipsoidal glyph is a rather simple but the best known
visualization technique. It is an ellipsoid spanned by the scaled eigenvectors of the symmetric,
positive definite second order tensor and may be interpreted as an isosurface of the density
function of particles placed in a fluid after a certain diffusion time. In addition many other
glyphs exist like the superquadric glyph presented by Kindlmann [10]. It presents a better
technique providing a direction independent interpretation by reducing errors of introduced
by visual artifacts. Unfortunately, the physical interpretation partly vanishes.

Tensor lines are a well known and widely used method for visualizing symmetric second
order tensor fields which are applied in many different settings like mechanical engineering [3,
8] and medical imaging [14]. In MRT of the human brain, neural fibers hinder diffusion
perpendicular to their course. Therefore tensor lines approximate the neural fiber structures
found in the white matter of the brain. While second order tensors can represent only a
single direction (the direction of the major eigenvector discarding its orientation), higher
order functions are able to represent a higher angular resolution and thus a higher amount of
directions inside the same volume element. This makes it possible to extract a higher amount
of information from the scanned data compared to simple second order tensor approaches.
Usually crossings are detected by looking at the neighboring voxels which reduces the absolute
resolution of the data. As current diffusion tensor images still have a relatively low resolution
(usually larger than 1× 1× 1mm3 compared to the fiber structures which are at a resolution
of micrometers in diameter) and many fiber tracts span only across two or three voxels, it is
important to work with the highest resolution of data available. This implies that analysis of
data at voxel resolution or beyond is crucial for analyzing MRT data.

on one side of the equation. Free indices or indices on different sides of the equation lead to a system of
equations.
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2 Higher Order Tensors

A tensor of order (rank)2 r and dimension d is a multilinear form mapping r d-dimensional
vectors to a scalar:

T : (Rd)r → R (2)

(
v(1), . . . ,v(r)

)
→ Ti1...ir · v

(1)
i1
· · ·v(r)

ir
. (3)

When using the same normalized direction vector g (we call it gradient vector as used in the
MRT nomenclature) a tensor can be interpreted as a scalar function defined on the sphere

fT (g) = Tj1...jr · g
(i)
j1
· · ·g(i)

jr
(4)

There is an analogy between symmetric even order tensors and the symmetric spherical
harmonics approach presented by Frank [6] which has been pointed out by Özerslan et al. [12].
This can be used as an alternative to the tensor representation. A discussion of the use of
spherical harmonics in detail can also be found in Hlawitschka et al. [7]. Here we only want to
emphasize the similarity of the spherical harmonic transform to the Fourier transform. Thus,
higher order spherical harmonic basis functions contain higher frequency components. As
spherical harmonics and the tensor functions fT of same order r describe the same function
space, the frequency information is contained in the tensors, too.

We compute a higher order tensor using the raw information s(0) and s(n) and map it to
a tensor T of order r using

s(n) = s(0)e−bTi1...ir ·gi1 ···gir (5)

To display this information, we use a generalization of Reynold’s stress glyph that is defined
by the surface

S = {p ∈ R3 : pj = Ti1...ir
· vi1 · · ·vir

· vj ∧ v ∈ S2}. (6)

The usual color map for medical imaging indicating the direction of the largest expansion
can be applied to this, too, as shown in Fig. 1. Fading out the color by anisotropy values is
difficult for higher order tensors because anisotropy measures of higher order tensors can
not be compared to those of second order tensors. This is due to the fact that higher order
components are independent of lower order components. Color mapping on the surface
function can be applied to strengthen the shape of the glyph. In addition, arrows can be
drawn to improve visibility of local maxima as shown in Figures 2–5 and 8.

3 Higher Order Tensor Lines

Despite of the fact that glyphs give a good impression of the properties of a tensor defined at a
certain position, no information is shown about its neighborhood. Therefore stream lines and

2 We are ignoring the difference between contravariant and covariant indices here and use a fixed
orthonormal coordinate system for the sake of readability. Therefore all tensor indices are lower indices
and vector indices should be interpreted as upper indices to preserve mathematical correctness but are
written as lower indices to simplify notation and to allow upper indices to be reused differently where
needed.
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Figure 1 A comparison of different tensor glyphs in the area marked by the red box including
parts of the forceps minor and the pyramidal tract. Middle: Box glyphs aligned to the eigenvectors
(left) and Superquadric tensor glyphs (right). Bottom: second order Reynold’s glyph (left) and its
fourth order modification (right).

Figure 2 First order tensor are defined by the scalar product of the direction vector and the
vector sampling the surface. It is obvious that lines can be drawn and that they correspond to
streamlines. (The scaling of the sampling vector has been normalized for this drawing, blue values
are negative.)
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Figure 3 Second order tensor lines in general have one major eigendirection. They also are a
subset of fourth order tensors.

Figure 4 Symmetric, fourth order tensors may have more directions and have special degenerated
cases like the one in the middle where a single major direction still exists.

Figure 5 Our approach of tracking lines is also applicable to mixed order tensors (here zeroth
and third order), but this is not investigated any further due to the lack of application.
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Figure 6 A second order Reynold’s glyph with maxima and minima indicated by red and blue
arrows resp. and its eigenvector decomposition (thin green lines).

tensor lines have been introduced to depict the information present in a certain neighborhood
around a point of interest or – when using randomly seeded lines or lines seeded by complex
algorithms determining good seed points – global information about the behavior of the
vector or tensor field. Therefore, tensor lines have been used in many fields of visualization.
Even though tracking of second order tensor lines reveals a reasonable visualization for
medical images on the first view, it does not handle crossings of fibers at all due to its nature
and underlying model of gaussian diffusion. Thus, the interconnections between the inner
part of the corpus callosum and the outer areas of the corpus callosum are not handled
correctly because they seem to be divided by the pyramidal tract. For a detailed description
about the commissural fibers (neofibrae commissurales) from a neurological/topical point of
view refer to Duus [4].

In second order tensor fields these techniques are based on the eigenvector decomposition
of the matrix representation of second order tensors, especially symmetric, positive definite
tensors which have three positive eigenvalues and three orthogonal eigenvectors. As there is
no such decomposition for higher order tensors [11], we introduce a technique leading to the
same results for stream lines and tensor lines that is applicable to higher order tensor fields,
too.

A non degenerated symmetric second order tensor as shown in Fig. 6 has two distinct
maxima, two minima and two saddle points which correspond to its eigenvector directions.
We use this property to define a major tensor line as a line following these maxima.

Let Σ be the set of tensors of arbitrary order r and let

T : R3 ⊇ U → Σ (7)
p → T (p) (8)

be a C2 continuous tensor field. In the following, we study the corresponding function fT (p)
at each position, i.e.

fT (p) : S2 → R (9)
(θ, φ) → fT (p)(θ, φ) (10)

so we have a function on the sphere at every position.

I Definition 1. We call a position p ∈ U degenerated if there is a position (θ, φ) ∈ S2 where

∇S2fT (p)(θ, φ) = 0 (11)

and

det |∇2
S2fT (p)(θ, φ)| = 0. (12)
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Figure 7 A tensor T at a position p in the data set with two maxima m1 and m2 provides
two neighborhoods N1 and N2 around p. On both neighborhoods a C1 continuous vector field is
defined. Because the area contains no critical points, streamlines can be integrated everywhere in
the neighborhood. Both sets of lines are combined to areas containing two, one or no streamlines.
Usually only lines going through the point p are of interest.

(The name is well chosen because some tensor lines are not uniquely defined at these positions
in accordance to the usual notion of degenerate points introduced by Delmarcelle and
Hesselink [2]. Fig. 8 gives a visual impression of some of those tensor glyphs.) Usually,
testing higher derivatives would lead to a more restrictive definition of degenerated points.
There are special instable cases in which study of higher order derivatives would reveal, that
what we call degenerated is not degenerated. For simplicity, we ignore these very rare cases
in the following sections.

At a regular point (i.e. a point that is not degenerated) q ∈ U , we have a finite number
M of isolated maxima m1, . . . ,mM = (θ1, φ1), . . . , (θM , φM ) of fT (q). Using the implicit
function theorem, we obtain neighborhoods U1, . . . , UM ⊂ U and unique C1 continuous
functions

wm : Nm → S2 (13)
p → wm(p) = (θm(p), φm(p)) (14)

that parametrize the maxima (θm(p), φm(p)) in the neighborhood Nm, i.e. we can extract
M C1-continuous vector fields around p as shown in Fig. 7. Using these vector fields on Nm

we define major arbitrary order tensor lines.

I Definition 2. A unique (major) tensor line in the tensor field T through the point q
following a maximum m is a curve

xm : Im → Nm (15)
t → xm(t) (16)

with

xm(0) = q (17)

and
∂xm

∂t
(t) = wm(xm(t)). (18)
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Figure 8 A fourth order tensor glyph showing two main directions of diffusion (left) and a
degenerated fourth order glyph with a single main direction and a “degenerated ring” (right).

4 Properties of Higher Order Tensor Lines

Similar definitions can be given for minor tensor lines following the minima and medium
tensor lines following the directions of saddle points of the functions fT . This provides us
with a framework of lines in arbitrary order tensor fields where crossing is a valid behavior of
lines following different maxima in overlapping areas. Every parameterized line is uniquely
defined by a position and an initial oriented direction. In symmetric tensor fields, two lines
having the same direction but different orientation differ in their parameterization only
by the relation of their parameters t1 = −t2. In the following sections, we will deal only
with symmetric tensors. As the number of maxima on the function fT is even because of
its symmetry, we will speak of one (two, three...) direction when having two (four, six...)
maxima of fT .

Despite of the fact that our definition of higher order tensor lines is closely related to
the definition of second order tensor lines it is independent of the order of the tensor. Thus,
this definition can be applied to zeroth, first and second order tensors, too. Obviously, for a
zeroth order tensor fT is constant which is also the most important degenerate case in higher
order tensor fields i.e. a completely isotropic tensor.

4.1 First Order Tensors
First order tensors (vectors) are simply build by the scalar product of the vector direction
and the sampling direction v.

fT = Tivi =< T, v >= ‖T‖‖v‖ cos γ, (19)

thus its maximum in the non degenerated case is in the same direction as the vector direction
and our higher order tensor lines correspond to streamlines. A special case about asymmetric
functions fT is that there exists a minimum that can be tracked leading to an reverse
parameterized line. In the case of first order tensor fields, there is only one minimum which
describes backward integration of the streamline. The only degenerated case here is Ti = 0,
thus fT = 0.

4.2 Symmetric Second Order Tensors
For symmetric second order tensors, the maximum is in the direction of the largest eigenvector.
This can be seen by decomposing T into R−1DR where R is a rotation of the eigenvector
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Figure 9 Slice through a human brain. Top left: Kindlmann’s superquadric glyphs, right: Full
brain tracking of second order tensor lines colored by direction. Bottom left: second order tensors
displayed by surface glyphs. Bottom right: Fourth order glyphs shown in the same dataset. The
red glyphs indicate crossings where the fourth order glyph reveals much more information than
the corresponding second order glyph in the same data set. The data set has been provided by
Max-Planck-Institute for Human Cognitive and Brain Sciences Leipzig.

basis of the tensor to the cartesian basis vectors and Dii = λi a diagonal tensor containing
the eigenvalues.

For a vector e(k) along the k-th eigendirection of T , fT can be written as

fT (e(k)) = Tije
(k)
i e

(k)
j = λ1e

(k)
j e

(k)
j = λ1‖e(k)‖2. (20)

For any other direction, the vector v can be projected into the basis of the tensor which can
be expressed by the rotation ṽ = Rv. Let e(k) now be the normalized eigenvectors of the
tensor then

fT (v) = fT (ṽ1e
(1) + ṽ2e

(2) + ṽ3e
(3))

= Tijṽ1e
(1)
i ṽ1e

(1)
j + Tk`ṽ2e

(2)
k ṽ1e

(2)
` + Tmnṽ3e

(3)
m ṽ1e

(3)
n

= λ1ṽ2
1 + λ2ṽ2

2 + λ3ṽ2
3 (21)

Obviously the maximum of fT for a constant length of v is reached at ṽ1 → max which is
achieved by turning the vector v in the direction of the eigenvector of the largest eigenvalue
λ1. This shows that higher order tensor lines are the same lines as second order tensor lines.

Due to the fact that the neighborhoods are areas of smooth behavior, their borders have
to be degenerated. Even though this seems obvious their calculation and mathematical
analysis is still an open topic and will be a subject of further research.
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5 Application to Real World Data Sets

We applied the method to several measured data sets of healthy volunteers. 36 gradient
directions are measured in addition to the base image. The data has been converted to
symmetric tensors using equation 4. No additional filtering or smoothing has been applied.
The data set consists of a rectilinear grid of size 128×128×44 with a voxel size of approximately
1.7× 1.7× 3.0mm3. Lines are seeded at every grid point inside the brain or randomly in an
region of interest. We tracked several lines in areas where crossings are assumed in medical
literature, e.g. in Duus [4], most important the area close to the corpus callosum.

5.1 Second Order Tensor Lines
Second order tensor lines are used to compare our results to previous results. We seeded a
second order tensor line at every position of the grid inside the brain where the fractional
anisotropy is larger than 0.2. All lines were stopped when the FA reaches the threshold of
0.15. The resulting lines were filtered by a maximal length of about the diameter of the brain
and maximal number of steps to prevent loops and a minimal length of 30mm to remove
visual clutter from too short lines. Results of the tracking can be seen in Fig. 9. We further
magnified the area where the corpus callosum and the pyramidal tract meet as described by
Duus. This area is shown in Fig. 10. Due to limitations of second order tensors tensor lines
from the bottom to the top (blue) split the image into two parts. This separatrix cannot be
crossed by other lines which can be clearly seen in the figure.

5.2 Higher Order Tensor Lines
The higher order approach has been applied to the same data set. Again, no filtering has been
applied. Fourth order tensors are reconstructed as described previously. Random seedpoints
have been selected in a region of interest which is approximately the area of the assumed
crossing and are marked by different colors than the lines themselves. Due to simplicity, a
simple Euler approach with adaptive stepsize control has been used for the integration of
lines. The result can be seen in Fig. 11. A comparison to the second order tensor lines that
can be seen in Fig. 10 shows that the knowledge of physicians is much better represented
by the higher order approach as a crossing of lines can be detected and a smaller amount
of lines of the corpus callosum is deflected by the influence of the diffusion pattern of the
pyramidal tract and the corona radiata.

6 Conclusion and Future Work

The theoretical basis of tracking higher order tensor lines has been presented. Proofs of
equality to first order and symmetric second order lines have been indicated. Furthermore, we
have shown that higher order tensor lines can be applied to noisy medical data sets acquired
using diffusion weighted magnetic resonance imaging with a relatively small amount of
gradient directions. There, well known crossings of the pyramidal tract and corpus callosum
have been reconstructed that are not visible in second order tensor fields. A comparison to
images found in medical literature reveals many similarities, like the crossing structure and
their directions that can not be present in second order tensor fields. Further investigations
have to be done relating the influence of noise in second and higher order tensor fields,
describing the reliability of the tracking. Application to other higher order tensor data such
as complex fourth order material tensors is still an open topic.
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Figure 10 Crossings of the pyramidal tract and the corpus callosum shown using second order
tensor lines in a measured data set of a young healthy volunteer. Even though a crossing is
expected, second order tensors are not capable of displaying crossing behavior. Data set provided by
Max-Planck-Institute for Human Cognitive and Brain Sciences Leipzig.

Figure 11 Similar view of the same data set as in Fig. 10. Crossings of the pyramidal tract and
the corpus callosum painted as tubes. Colored points indicate the random seeding points of the
lines. The data set has been provided by the Max-Planck-Institute for Human Cognitive and Brain
Sciences Leipzig.
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