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Abstract
We present a streaming compression algorithm for huge time-varying aerial imagery. New airborne optical
sensors are capable of collecting billion-pixel images at multiple frames per second. These images must
be transmitted through a low-bandwidth pipe requiring aggressive compression techniques. We achieve
such compression by treating foreground portions of the imagery separately from background portions.
Foreground information consists of moving objects, which form a tiny fraction of the total pixels. Back-
ground areas are compressed effectively over time using streaming wavelet analysis to compute a compact
video texture map that represents several frames of raw input images. This map can be rendered efficiently
using an algorithm amenable to GPU implementation. The core algorithmic contributions of this work
are methods for fast, low-memory streaming wavelet compression and efficient display of wavelet video
textures resulting from such compression.
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1 Introduction

Aerial systems are being devised that deploy billion-pixel cameras, providing high-resolution wide-
area video at several frames per second. These new cameras produce data streams that are a factor
of one hundred larger than previously deployed in aerial imaging systems. In this setting, the main
challenges are twofold:

to transmit this huge pixel stream to the ground over available wireless bandwidths, at best about
20 megabits per second; and
to display this huge image stream visualized over 3D terrain models, by extending the best known
view-dependent display optimization techniques to handle data that is not only large spatially, but
large temporally.

Current state-of-the art static image and video compression methods are at best capable of a factor
of 100 compression while keeping high image quality to perform automated mover detection and
analysis. An additional factor of 10 to 100 compression is needed. At the same time, the process of
compression must occur before transmission to ground due to restricted bandwidth, payload storage,
and power available on the aircraft.

To achieve the thousand to ten thousand times compression needed, alternatives to conventional
image and video compression strategies are needed. We make two observations about wide-area
aerial video that enable some specialization in compression techniques:
1. images are taken repeatedly over the same area, and
2. the primary interest is for moving objects.
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Figure 1 For aerial images, such as the one shown in (a), we achieve high levels of compression by
considering two portions of the images. The foreground portion shown in (b) is comprised of moving objects in
the image and makes up only a tiny fraction of the image. The background portion shown in (c) varies slowly
and smoothly over time, making it ideal for aggressive compression.

With two assumptions, the strategy pursued here is to compress foreground and background imagery
separately, see Figure 1. Moving objects comprising the foreground make up a tiny fraction of the
pixels in the image and can be transmitted directly. Background imagery varies slowly and smoothly,
making it ideal for compression.

The background imagery is compressed in a streaming fashion with the aid of 1D wavelet analysis
performed on a per-pixel basis. Using temporal wavelet analysis, the resulting wavelet images
effectively represent several frames of raw input images. Since movers only occupy a tiny fraction
of the overall imagery, and background imagery is reduced significantly to low temporal rates, and
the overall compressed size can easily be a factor of 10 to 100 smaller than using existing state-of-
the-art still-image and video compression on the image stream, while meeting the special accuracy
requirements for analysis.

To minimize memory usage when compressing a large time sequence of huge images, streaming
variants on wavelet analysis are used. The key idea is to view wavelet lifting diagrams as dependency
graphs, and to effectively “parse” the diagrams as soon as images are taken. Overall this reduces the
total memory footprint.

The system consists of several components—image segmentation, temporal compression, and
rendering. In this paper, we focus on the description of an image segmentation approach where meth-
ods are derived from similar techniques used in the visualization and computer graphics community.
Section 4 describes the image segmentation methods. The wavelet-based streaming compression
algorithm is discussed in Sections 5, 6 and 7. Section 8 addresses the replacement of foreground
movers by static elements. Section 9 illustrates the efficient rendering of the compressed information
using a GPU-based algorithm. Sections 10 and 11 illustrates results obtained with this system.

2 Related Work

There is an extensive volume of work on segmenting foreground from background in computer vision
[2]. Algorithms for object recognition and video tracking are most related to our work. In particular,
the goal of video tracking is to locate moving objects in time. While the literature has primarily
focused on improving the speed and accuracy of locating a few moving objects, relatively little
research has been devoted to locating a large number of moving objects efficiently. Consider that
aerial image sequences may contain hundreds of moving vehicles.

Wavelets have been used in computer graphics and visualization for a number of applications,
including multiresolution analysis, variational modeling, and compression [7]. B-spline wavelets

Chapter 22



338 Streaming Aerial Video Textures

... raw input
images

image
segmentation

gap
filling

wavelet
compression

foreground

background

foreground
images

wavelet
images

wavelet
video

texture

wavelet
images

foreground
images

G
PU

 fr
ag

m
en

t
pr

og
ra

m

foreground
image at ti

ti

... transmit ...

air ground

Figure 2 Overview of the complete compression system. A raw input stream of images are segmented
into foreground and background images. Moving objects comprising the foreground make up a tiny fraction
of the pixels in the image and are transmitted directly. Background images are compressed aggressively using
wavelet-based techniques, greatly reducing the number of frames that need to be transmitted. After transmission,
wavelet images are “decompressed” efficiently in the renderer for a user-specified time point ti, and foreground
pixels are overlayed on top.

have been combined with subdivision surface techniques to represent geometric models at multiple
levels-of-detail [1, 7]. They compute wavelet transforms using a lifting approach [8] that divide
wavelet analysis into smaller, more efficient lifting operations.

Streaming techniques treat the data as a continuous stream of information. These algorithms
operate on restricted contiguous portions of data which are currently “in focus.” Because streaming
methods operate on a fixed amount of data at a time, they are often faster, more efficient, and
more scalable than “global” techniques that require an entire data set to reside in main memory
[5]. Recent research has focused on streaming algorithms for simplifying and compressing 3D
geometric models [5]. The availability of online media has increased the need for streaming video
encoding and decoding methods [6]. Several codecs for streaming video exist, however many of these
methods focus on only streaming content delivery. Compression and encoding of the content is often
considered a preprocess.

In our work, we combine image segmentation and wavelet methods to compress long sequences
of huge aerial imagery in a streaming fashion. We analyze pixel intensity values over time to separate
pixels that represent moving foreground objects from stationary background pixels. Background
pixels form a slowly varying image sequence that we compress with the aid of wavelet analysis. We
use streaming evaluation of the wavelet transformation to allow both compression and delivery to
occur as soon as possible in a streaming fashion while keeping the memory footprint low. Wavelet
encoded images compactly represent large numbers of images. They can be rendered efficiently
making them suitable for incorporation into state-of-the-art large terrain, large texture viewers, such
as the one developed by Hwa et al. [3, 4].

3 System Overview

Given a raw input stream of huge images, our system outputs foreground images and wavelet-
compressed background images. In the first stage of processing, raw input images are segmented
into foreground and background images by analyzing changes in pixel intensity over time. Holes in
the background images are filled in preparation for wavelet compression. The background images
are passed to a wavelet compression engine comprised of several levels of wavelet transform. We
refer to these output background images as wavelet images. The number of wavelet images output
is a constant factor smaller than the number of images input to the system. Wavelet images and
foreground images constitute a compressed set of information that is suitable for transmission. After
transmission, consecutive sets of wavelet images are used to render larger video sequences using a
texture-mapping approach. Foreground images are overlayed on top of the reconstituted backgrounds.
We refer to the sets of wavelet images as wavelet video textures. Figure 2 illustrates our complete
system.
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4 Image Segmentation

Segmentation of moving objects is performed in two phases, detection and completion. In the
detection phase, the goal is to have at least a single pixel of positive detection per moving object,
not including paralax motion of buildings, trees, or other tall structures. In the completion phase,
pixels for the entire object are determined. Extra “guard pixels” surrounding the object are also
labeled as part of the mover to obtain a conservative segmentation. Both phases of this algorithm
could be accomplished with well known but expensive search and correlation strategies. For real-time
processing on small sensor platforms, fast, local computations are desired.

For detection, two approaches were tested. The first approach uses two buffered frames to perform
detection. Pixels are declared likely movers in frame f if (1) their value v f (x,y) is different from
all the values within one pixel in frame f +1, (2) this frame-to-frame difference has a high gradient
magnitude, (3) the gradient magnitude at frame f is high, and (4) the gradient directions in the
two cases above are parallel to one another (either the same or exact opposite directions). This is
formulated by defining a unit gradient vector

~g =
∇v f (x,y)
||∇v f (x,y)||

and defining
d f (x,y) = min

dx,dy∈ [−1,1]
|v f (x,y)− v f+1(x+dx,y+dy)|

along with

~h =
∇d f (x,y)
||∇d f (x,y)||

and
q = (~h′ ·~g′)(||~g||−gmmin)||~h|| .

This consistently finds some pixels per mover, but is somewhat sensitive to noise, and does not
completely eliminate paralax-induced detections of tall building edges.

The second detection approach uses five frames. The median value is obtained for a pixel over
these frames. The detection is then the difference between the current frame’s value and the least
different value from a small neighborhood of the next frame. A small amount of “soft erosion” is
performed on the results. This was found to be very reliable at detecting some pixels per mover, and
was not as sensitive to noise or to building edge paralax.

After detecting a set of pixels from each mover, a conservative region of pixels is determined
around each complete mover. Using the results of the five-frame detection, there are good starting
points to seed a search for all mover pixels. We start with the core pixel of each connected component,
defined as the last pixel to be deleted for the component by repeated erosion operations that are
restricted to not break components into two pieces. From this starting point, we flood fill to all pixels
that are near pixels with frame-to-frame differences with magnitudes above a specified threshold.

5 Wavelet Analysis Reviewed

The lifting approach [8] for discrete wavelet analysis uses a 1D input signal F represented by a set of
samples fi uniformly spaced in time at points ti. F is decomposed into scaling-function coefficients,
or s-values, and wavelet coefficients, or w-values. In the lifting approach, this decomposition is
computed by relabeling signal values as

si = f2i and wi = f2i+1
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Figure 3 Illustration of cubic wavelet analysis. Input values shown as blue circles are relabeled as s-values
and w-values. Three alternating s- and w-lift operations compute the final cubic wavelet coefficients outlined in
red. Black arrows show which values contribute to intermediate values between lifting operations. Gray arrows
illustrate which values remain the same between operations.

followed by a sequence of alternating s-lift and w-lift operations. The s-lift and w-lift operations are
defined as
s-lift( a, b ):

s j = aw j−1 +bs j +aw j ∀ j and (1)

w-lift( a, b ):

w j = as j +bw j +as j+1 ∀ j. (2)

Therefore, s-lifts compute new s-values by computing a weighted sum of a given s-value with
its neighboring w-values. Likewise, w-lifts compute new w-values by computing a weighted sum of
a given w-value with its neighboring s-values. The order and number of lifting operations and the
values of the weights a and b determine the type of wavelet used. In our work, we use uniform cubic
B-spline wavelets [1, 7]. This transform is defined by the sequence of three lifting operations s-lift( -
1/4, 1 ), followed by w-lift( -1, 1 ), and then s-lift( 3/8, 2 ). Figure 3 illustrates the lifting approach to
wavelet analysis.

6 Streaming Wavelet Analysis

Values resulting from wavelet analysis can be computed in a streaming fashion. We view the stages
of the lifting operations as a dependency graph, where nodes represent computed values and directed
edges represent how terms are combined to produce a computed value. From this perspective, the
relationship between input signal values and output values reveals that the first s- and w-values
can be computed after the first four input signal values have been received, see Figure 4a. Further
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Figure 4 Illustration of streaming cubic wavelet analysis. The beginning of the computation shown in
(a) requires four initial values shown here in green. These values produce one s-value and one w-value. Post-
initialization computations are shown in (b). Here, pairs of input values produce pairs of output values. The pink
circles represent stream values currently being computed, and orange circles represent those computed from the
last stream update. Note that the new output values depend on three values from the previous computation, and
so three values must be maintained in memory across stream updates. This dependence is visualized here as pink
arrows emanating from orange circles. Gray circles represent values that have not yet been processed.

investigation reveals that subsequent pairs of s- and w-values can be computed as soon as pairs of
input signal values are received, see Figure 4b. Only three internal results from previous computations
need to be maintained between updates to compute two new output values. Thus, values from
wavelet analysis can be produced in a streaming fashion, using a small memory footprint to track
the computation state. For the purposes of this discussion, we call the computational engine that
performs streaming wavelet analysis a stream analyzer.

7 Wavelet Compression

Compression is achieved by discarding w-values and performing several levels of wavelet analysis.
Discarding w-values achieves a factor of two reduction in data size. The s-values from one level of
analysis are used as input to the next level. Since each level of wavelet analysis achieves a factor of
two reduction in data size, k levels of such nested wavelet analysis achieve a factor of 2k reduction in
data size. We achieve streaming wavelet compression by cascading k stream analyzers together such
that s-value output from one stream analyzer is used as input to the next stream analyzer. Figure 5
illustrates a sample wavelet compression system constructed from three stream analyzers.

8 Filling Gaps

This wavelet analysis requires a uniform spacing of samples over time. Image segmentation removes
foreground pixels, creating gaps in the stream passed to the wavelet compressor, and we must fill
these temporal gaps in order to perform wavelet compression.

We adopt a simple strategy to fill in the gaps created by foreground pixels. The buffer keeps track
of the last value received as well as the point in time it was received. Let flast be the last pixel value
received and tlast be the point in time it was received. Let fcurr be the newly arrived pixel value and
tcurr be the current point in time. A gap exists if tcurr− tlast > 1. Missing values corresponding to
time values tlast+1, ..., tcurr−1 are computed using linear interpolation between flast and fcurr. We note
that the goal here is to provide noise-free input to the wavelet compressor, and so linear interpolation
suffices to maintain a stable input signal and is more desirable than filling gaps with zeroes. Figure 6
illustrates the gap filling process.
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Figure 5 Illustration of a streaming wavelet compression system. A pixel value stream is input to the system,
which computes a smaller output stream of wavelet coefficients. The system is constructed from three stream
analyzers. Here, each box represents a stream analyzer that performs wavelet analysis, producing s- and w-values.
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Figure 6 Illustration of gap filling. Gaps are detected easily by comparing the arrival time of the current
pixel value against the arrival time of the last pixel value. Missing values are linearly interpolated using the
current and last pixel values. Solid circles represent received values and dashed circles represent interpolated
values.
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9 Rendering Compressed Video Images

Our system performs gap filling and wavelet compression for each pixel of each background image,
producing output images whose pixel values correspond to wavelet coefficients. We refer to the output
images containing wavelet coefficients as wavelet images.

Each set of four consecutive wavelet images defines a single four-channel texture that compactly
represents several frames of the raw input video. The four intensity values of each pixel of this image
define a uniform cubic B-spline curve. Evaluating these per pixel B-spline curves at time ti provides
the pixel intensities comprising an image that approximates frame ti of the raw input video. We refer
to the four-channel textures as wavelet video textures and note that they can be rendered efficiently
using a GPU fragment program.

Let Iu be the set of wavelet images. Each Iu represents 2k frames of the original input video. At
time ti, the four wavelet images necessary to construct a wavelet video texture are Iu−1, Iu, Iu+1, and
Iu+2 where u = i/2k. Given the wavelet video texture and a specific point in time, a GPU fragment
program renders the appropriate background image by evaluating a uniform cubic B-spline. Once the
compressed background image has been rendered, foreground pixels are overlayed onto the result.

10 Discussion

Performing streaming wavelet compression is advantageous for several reasons. It keeps the memory
footprint small, which is critical, as the process is performed on a per-pixel basis. Since three internal
values per pixel need to be kept between stream updates, 3×2k values are needed per pixel to perform
cubic wavelet compression. Streaming allows values to be returned as soon as possible, enabling
results to be displayed sooner despite the extra computation. Our compression saves bandwidth in
that a single wavelet image need only be sent once for every 2k raw input images.

Our wavelet encoding provides a few distinct advantages. The smooth nature of our compression
naturally removes undesirable noise found in the original image sequence. The encoding is amenable
to hardware-accelerated rendering through the use of texture mapping and programmable GPUs,
enabling rendering efficiency. The encoding results in a stack of wavelet image textures, which can
be incorporated into state-of-the-art terrain visualization systems capable of managing and rendering
large textures [3, 4].

Naturally, streaming compression impacts the latency between when images are captured and
when they are displayed. This latency is most significant at the initialization of the compression
system, where 3×2k−2 frames are necessary before the first wavelet image is produced. Subsequent
wavelet images are produced for every 2k raw input images, and three additional images are necessary
before the first wavelet video texture can be rendered. Thus, the initial cold-start latency is (3×2k−
2)+(3×2k) = 6×2k−2 frames.

Our approach to compression has some limitations. As with many other vision algorithms, our
image segmentation procedure is sensitive to reflections off of shiny objects such as bodies of water
or metal roof tops. Tall structures such as skyscrapers appear to move as the vantage point of the
sensors shifts. Both of these issues cause fluctuations in pixel intensity over time making the problem
of identifying foreground movers even more difficult and will be addressed in future work.

11 Results

We have tested our method on a 100 frame sequence consisting of 1 megapixel images. The total raw
input size was 100 MB. Our test machine was a 2.8 GHz P4 PC with 2 GB of memory to perform
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Figure 7 Difference images for select time steps of a 100 frame data set show two things: (1) the error
introduced by cubic wavelet approximation is low and (2) some pixels corresponding to moving objects are not
classified as foreground.

streaming wavelet compression on the sequence. In our implementation, we use k = 4 levels of
wavelet analysis for compression, achieving a 16:1 compression ratio.

Figure 7 shows difference images between our compressed result and the original images. They
demonstrate that our compression scheme works relatively well, but is sensitive to foreground pixels
mislabeled as background pixels. The difference images also illustrate that undesirable noise in the
original image sequence do not exist in the compressed result. We note that some images show
portions of the original images toward the borders of the images. This is due to image registration,
since some frames simply do not contain pixel information contained in other frames.

12 Conclusions and Future Work

We have described a streaming compression algorithm designed for huge time-varying aerial imagery.
By treating foreground and background imagery separately, our system is able to achieve high levels
of compression. We have developed a streaming formulation for wavelet analysis that satisfies several
requirements of high-resolution aerial photography: computational efficiency, low-memory footprint,
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compression suitable for transmission in low-bandwidth environments, streaming update of recently
captured images, and high-quality approximation to slowly-varying background images. The wavelet
images resulting from this compression are combined creating wavelet video textures that compactly
represent large numbers of raw input frames and that are inexpensive to render. As our compression
method is a streaming technique, it scales well to larger input image sizes and is insensitive to the
duration of the image sequence.

As future work, we will investigate ways to achieve further compression. After all pixels are
processed in the 1D temporal streaming transform, the wavelet images can be compressed spatially
using a number of image compression techniques, including those based on biorthogonal wavelets. We
hope to develop compression techniques tailored for fast-varying foreground imagery. Although the
compression we have presented is highly effective, it depends on a good segmentation of background
from foreground. This prerequisite motivates further development of fast and effective segmentation
techniques.
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