
Gröbner Basis Construction Algorithms Based
on Theorem Proving Saturation Loops

Grant Olney Passmore1, Leonardo de Moura2 and Paul B. Jackson1

1 LFCS, University of Edinburgh
2 Microsoft Research, Redmond

Abstract. We present novel Gröbner basis algorithms based on satura-
tion loops used by modern superposition theorem provers. We illustrate
the practical value of the algorithms through an experimental implemen-
tation within the Z3 SMT solver.

1 Introduction

Gröbner bases are an indispensable cornerstone of modern algorithmic algebra.
Though originating as a tool for solving difficult algebro-geometric problems, the
past twenty years have seen tremendous growth in the applications of Gröbner
bases to areas as diverse as loop invariant generation [21], integer programming
[23], reachability in Petri nets [8], and as crucial components to a number of
recent decision methods for nonlinear real arithmetic [18, 19, 24]. In the work
that follows, we are principally motivated by the use of Gröbner bases in the
context of a breed of automated theorem provers known as satisfiability modulo
theories (SMT) solvers. In particular, this study began with our wish to use
Gröbner basis calculations within the high-performance SMT solver Z3 [16].

In attempting to integrate Gröbner basis calculations within Z3, it was ob-
served by the authors that the known Gröbner basis procedures used for solving
difficult algebro-geometric problems and available in modern computer algebra
systems, such as Buchberger’s algorithm [4] and its enhancements F4 and F5 [12,
13], were not able to cope with the flavour of large systems of polynomial con-
straints generated by the SMT solver. These types of nonlinear systems, usually
derived from industrial software verification conditions, often contain massive
(> 1, 000) numbers of polynomial equations, but have a proportionally small
nonlinear component. We call these types of systems ‘large, largely linear’ or ‘L3’
nonlinear systems. This paper is focused on the development of novel Gröbner
basis calculation algorithms which allow us to cope with these L3 systems.

Tasked with the problem of constructing new Gröbner basis calculation algo-
rithms tailored to the needs of SMT solvers, a very pleasing solution presented
itself: We were able to exploit years of work undertaken within the automated
theorem proving community and adapt saturation loops and fast term index-
ing techniques used by modern superposition theorem provers to the context of
Gröbner basis calculation.

Dagstuhl Seminar Proceedings 10161 
Decision Procedures in Software, Hardware and Bioware 
http://drops.dagstuhl.de/opus/volltexte/2010/2734

1



These loops, one derived from McCune’s OTTER [15], the other from Aven-
haus et al’s DISCOUNT [1], combined with sophisticated term indexing, have
enabled modern high-performance theorem provers to reason effectively in the
context of massive clause sets [20]. By adapting these developments to a Gröbner
basis setting, we are able to leverage work done in one community to aid another.
Indeed, these new algorithms allow us to cope Gröbner bases for systems much
larger than those amenable to previously available Gröbner basis algorithms,
provided that these systems contain a relatively small nonlinear component.
While mapping these saturation loops to a Gröbner basis setting is straight-
forward, both proving their correctness and deriving appropriate term indexing
techniques is not. To prove correctness of the top-level algorithms and justify
the term indexing techniques described, we make use of the theory of Abstract
Gröbner Bases [17].

2 Related Work and Novelty of Contribution

There is a rich history of work on connections between Gröbner bases, critical-
pair completion, and automated theorem proving. Already in 1983 [6], the view of
Gröbner basis construction as critical-pair completion was recognised by Buch-
berger and used to fruitfully extend Gröbner basis methods to new domains.
Following this, Buchberger made connections between these ideas and resolution
theorem proving explicit in 1987 [7]. The work most relevant to this paper, how-
ever, concerns abstract frameworks for analysing both completion and Gröbner
basis procedures. In the case of completion, for instance, such a framework al-
lows one to view different completion algorithms as being particular strategies
for sequencing a small set of inference rules. In doing so, one is able use uniform
methods for proving results about a multitude of different completion procedures
simultaneously. There are a number of frameworks upon which we build.

The first is the Bachmair-Dershowitz theory of Abstract Completion [2]. The
second is the Bachmair-Ganzinger framework developed for presenting Buch-
berger’s algorithm as a constraint-based completion procedure [3]. In the end,
we found it necessary to derive our own framework, based upon [2], for analysing
the Gröbner basis algorithms presented in this paper. We call this framework
Abstract Gröbner Bases. The primary impediment to using [2] or [3] directly for
our purposes was that neither allowed us to easily investigate the admissibil-
ity of superfluous S-polynomial criteria in a strategy-independent setting. These
critera, as explained below, are crucial to the term indexing techniques used in
the algorithms presented. A detailed account of Abstract Gröbner Bases and the
superfluous S-polynomial criteria is beyond the scope of this paper and may be
found in [17, 11].

Finally, the idea of using sophisticated simplification and term indexing tech-
niques during Gröbner basis construction has been explored by many, though
the latter usually under a different name: as Gröbner basis procedures deal solely
with polynomials, the phrase “term indexing” is usually eschewed in Gröbner ba-
sis research in favor of “polynomial representation” [9]. For example, the (very

2



different) techniques underlying both Faugère’s F4 [12] and the Cory-Rossin-
Salvy “sandpiles” method [10] may be seen as combining sophisticated simplifi-
cation and term indexing [9].

2.1 Main Contribution

Given that two core ideas explored in this work – using sophisticated simplifi-
cation and term indexing techniques during Gröbner basis construction – have
been explored by many, we find it prudent to make clear which aspects of this
work are novel.

Our main contribution is the particular instantiation of these ideas. This
instantiation has been motivated by the types of problems encountered when
using the Z3 SMT solver to verify programs with nonlinear arithmetical compo-
nents and is particularly interesting from the perspective of automated theorem
proving. While a number of prior works have put forth theoretical frameworks
for building specialised Gröbner basis procedures, we are aware of none which
actually apply them and present the details of such a specialisation from algo-
rithm description and correctness to implementation and empirical evaluation.
By focusing on specific saturation loops which have been successful in automated
theorem proving and mapping them to a Gröbner basis setting, and by under-
taking this work in the context of a high-performance SMT solver, we provide
a foundation upon which other SMT solver researchers may build. Similarly, we
feel this work gives a tangible basis for researchers in automated theorem prov-
ing to consider how other techniques in their repertoire may be imported to a
Gröbner basis setting.

3 Mathematical Preliminaries

3.1 Notation

Given {p1, . . . , pk} ⊂ Q[x], the polynomial ideal I({p1, . . . , pk}) is the set of

polynomials
{∑k

i=1 piqi | qi ∈ Q[x]
}
. An element xi11 . . . x

in
n in Q[x1, . . . , xn] is

called a power-product (or term), and an element cxi11 . . . x
in
n with c ∈ Q and

xi11 . . . x
in
n a power-product is called a monomial. We say a monomial is monic

if c = 1. Observe that power-products may be seen as monic monomials. We
use M to denote the set of all power-products in Q[x1, . . . , xn]. From hereafter,
we use p, q and r to denote polynomials, m to denote monic monomials, c to
denote coefficients, and cm to denote monomials. We assume all polynomials
are in sum-of-monomials normal form (e.g., a polynomial will never contain two
distinct monomials formed from the same power-product).

We say a power-product xi11 . . . x
in
n contains xk if ik > 0. Given two power-

products m1 = xi11 . . . x
in
n and m2 = xj11 . . . xjnn , m1m2 denotes the power-

product xi1+j11 . . . xin+jnn , if ik ≥ jk for all k ∈ {1, . . . , n}, then m1

m2
denotes the

power-product xi1−j11 . . . xin−jnn , and the least common multiple lcm(m1,m2) of

m1 and m2 is the power product x
max(i1,j1)
1 . . . x

max(in,jn)
n .

3



A total order ≺ on the set M is admissible if m1 ≺ m2 implies that m1m ≺
m2m, for all m1, m2 and m in M. A monomial order is a total order on M
which is admissible and a well ordering. Given two polynomials p1 and p2, we
say p1 ≺ p2 if there is a monomial cm contained in p2 s.t. (i) m is not contained
in p1, and (ii) for all m′ contained in p1, if m ≺ m′, then m′ is contained in
p2. If p = cm + q with q ≺ cm, then we say cm is the leading monomial of p
(LM(p) = cm) and we may write this as p = cm+ q.

Given a monomial order ≺ and two monic monomials p1 = m1 + q1 and
p2 = m2 + q2, let τ1,2 = lcm(m1,m2). Then, we use spol(p1, p2) to denote the
polynomial (

τ1,2
m1

)q1−(
τ1,2
m2

)q2. Given a set of polynomials S, it is easy to see that
if {p1, p2} ⊆ I(S), then spol(p1, p2) ∈ I(S).

3.2 Abstract Gröbner Bases

We now briefly present portions Abstract Gröbner Bases relevant to this work.

Why go abstract? Abstract Gröbner Bases was introduced as a framework
for proving the correctness of Gröbner basis algorithms w.r.t. a multitude of
execution strategies. But what is a strategy? Perhaps the best way to answer
this question is to examine Buchberger’s algorithm (Fig. 2) and consider which
aspects of it might be changed while still preserving its correctness. Observe, for
instance, that once a polynomial is placed in the growing Gröbner basis G, it
is never removed. Notice as well that members of G are only used to simplify
derived S-polynomials, and never the other way around.

In automated theorem proving, it has long been recognised that sophisticated
simplification methods must be used to handle large sets of deduced clauses. For
this reason, high-performance saturation loops keep two lists of clauses, active
and passive, using active clauses for inferring new facts, and using a number
of different simplification techniques (forward and backward simplification) for
reducing the complexity of kept clauses. When working to solve L3 systems,
it will be shown that such simplification methods can also be adapted to help
compute large Gröbner bases.

A sketch of the theory Given a monomial order ≺, the key idea underly-
ing Gröbner bases is to use a polynomial cm + q as a rewrite rule cm → −q.
To simplify the presentation that follows, we will assume all polynomials used
as rewrite rules are monic. The monic polynomial p = m + q induces a reduc-
tion relation 7→p on polynomials. It is defined as q1 + c1m1m 7→p q1 − c1m1q
for arbitrary monomials c1m1 and polynomials q1. Given a set of monic poly-
nomials G = {p1, . . . , pk}, the reduction relation induced by G is defined as:

7→G=
⋃k
i=1 7→pi .

Definition 1 (Gröbner bases). A finite set of monic polynomials G is a
Gröbner basis of the ideal I(F ) iff I(G) = I(F ) and 7→G is confluent.

4



Orient
S ∪ {cm + q}, G
S,G ∪ {m + ( 1

c
)q}

Superpose
S,G ∪ {p1, p2}

S ∪ {spol(p1, p2)}, G ∪ {p1, p2}

Delete
S ∪ {0}, G

S,G

Simplify-S
S ∪ {c1m1m2 + q1}, G ∪ {m2 + q2}
S ∪ {q1 − c1m1q2}, G ∪ {m2 + q2}

Simplify-H
S,G ∪ {m1m2 + q1, m2 + q2}

S ∪ {q1 −m1q2}, G ∪ {m2 + q2}
if m1 6= 1

Simplify-T
S,G ∪ {m + c1m1m2 + q1, m2 + q2}
S,G ∪ {m− c1m1q2 + q1, m2 + q2}

Fig. 1. Abstract GB calculus

The inference rules in Figure 1 work on pairs of sets of polynomials (S,G). In
all rules, the coefficients c and c1 are assumed to be non-zero. We use (S1, G1) `
(S2, G2) to indicate that (S1, G1) can be transformed to (S2, G2) by applying
one of the inference rules in Figure 1.

Theorem 1. (S1, G1) ` (S2, G2) implies I(S1 ∪G1) = I(S2 ∪G2).

Definition 2 (Procedure). A Gröbner basis procedure G is a program that
accepts a set of polynomials {p1, . . . , pk}, a monomial order ≺, and uses the rules
in Figure 1 to generate a (finite or infinite) sequence (S1 = {p1, . . . , pk}, G1 =
∅) ` (S2, G2) ` (S3, G3) ` . . . . This sequence is called a run of G.

Given a set of monic polynomials G, the set of S-polynomials SP(G) is defined
as the set

{spol(p1, p2) | p1, p2 ∈ G}.

Definition 3 (Correct Procedure). A Gröbner basis procedure G is said to
be correct iff it produces only finite runs (S1, G1 = ∅) ` . . . ` (Sn = ∅, Gn), and

SP(Gn) ⊆ (S1 ∪ S2 ∪ . . . ∪ Sn−1) .

Theorem 2. Let G be a correct Gröbner basis procedure, then for any run
(S1, G1 = ∅) ` . . . ` (Sn = ∅, Gn), Gn is a Gröbner basis for I(S1).

Definition 4 (Eager S-simplification). Given a Gröbner basis procedure G,
we say G implements eager S-simplification iff G only applies Orient to p ∈ Si
when Simplify-S cannot be applied to p.

5



Definition 5 (Fairness). A Gröbner basis procedure G is said to be fair iff for
any run (S1, G1) ` (S2, G2) ` . . .

SP(
⋃
i≥1

⋂
j≥i

Gj) ⊆
⋃
i≥1

Si.

Theorem 3. If a Gröbner basis procedure G implements eager S-simplification,
is fair, and Superpose is applied at most once for any pair of polynomials in⋃
i≥1Gi, then G is correct.

Observe that the rule Superpose may be adjusted to take into account side-
conditions barring its application. Such side-conditions correspond to superfluous
S-polynomial criteria in Gröbner basis theory and an account is given in [17].
The notion of eager SH-simplification will be used for term indexing.

Definition 6 (Eager SH-simplification). We say a Gröbner basis procedure
G implements eager SH-simplification iff G only applies Orient to p ∈ Si when
Simplify-S cannot be applied to p, and G only attempts3 to apply Superpose to
p1, p2 ∈ Gi when Simplify-H cannot be applied to p1, p2.

To gain familiarity with the rules, we present an Abstract GB implementation
of Buchberger’s algorithm in Fig. 3.

Input: 〈F = {p1, . . . , pk} ⊂ Q[x],≺〉
Output: G s.t. G is a GBasis of F w.r.t. ≺
G := F; S := {〈pi, pj〉 | 1 ≤ i < j ≤ k}
while S 6= ∅ do

Let 〈pi, pj〉 ∈ S

For some q s.t. S-polynomial(pi, pj)
G−→ q

if q 6= 0 then
S := S ∪ {〈p, q〉 | p ∈ G}
G := G ∪ {q}

end if
S := S \ {〈pi, pj〉}

end while

Fig. 2. Buchberger’s Algorithm

4 Algorithms: OTTER-GB and DISCOUNT-GB

We now describe two new algorithms for computing Gröbner bases. These al-
gorithms are aimed at solving L3 systems which are beyond the reach of pre-
viously available methods. There are two main procedural ingredients to these

3 By “attempts to apply” we mean that Superpose is either applied as usual, or it
is tried but is ultimately skipped because of an active side-condition ϕ barring its
application.

6



Input: 〈S = {p1, . . . , pk} ⊂ Q[x],≺〉
Output: G s.t. G is a GBasis of S w.r.t. ≺
Apply Orient to every member of S
Apply Superpose between every pi, pj ∈ G (pi 6= pj)
while S 6= ∅ do

Choose spol(pi, pj) ∈ S
Apply Simplify-S to spol(pi, pj) ∈ S as long as possible
Call the resulting simplified polynomial (in S) q
if q 6= 0 then

Apply Orient to q
Apply Superpose to all pairs 〈p, q〉 (p 6= q ∈ G)

for which Superpose has not been previously
applied

else
Apply Delete to q

end if
end while

Fig. 3. Rule-based Simulation of Buchberger’s Algorithm

algorithms: (i) top-level loops adapted from the OTTER and DISCOUNT sat-
uration algorithms, and (ii) term indexing techniques derived from both the
theorem proving literature [22] and so-called ‘superfluous S-polynomial crite-
ria’ which are important in Gröbner basis theory. The term indexing techniques
are designed for facilitating fast applications of the inference rules Superpose,
Simplify-S, Simplify-T, and Simplify-H. It will be easily seen that these algo-
rithms correspond formally to correct strategies in the sense of of Abstract GBs.
Thus, by Theorem 2, they are guaranteed to be terminating, functionally correct
Gröbner basis construction algorithms.

4.1 Understanding the algorithms

To help understand these algorithms, it is instructive to examine some differ-
ences between them and both Buchberger’s algorithm and Faugére’s F4. But
before doing so, let us reflect on how OTTER-GB and DISCOUNT-GB differ
from each other. Through every iteration of OTTER-GB, both G and S are kept
maximally simplified w.r.t. G. Contrast this with DISCOUNT-GB in which only
G is kept maximally simplified w.r.t. G. If we associate G with active and S
with passive, this is precisely the fundamental difference between the OTTER
and DISCOUNT saturation loops. As in Figs. 4 and 5, use new to denote the re-
sult of applying an inference procedure to deduce new facts (perhaps resolution
in the case of theorem proving and the computation of S-polynomials in the case
of Gröbner bases). In saturation vernacular, using members of active to sim-
plify members of new in the OTTER loop, as well as the picked polynomial p in
the DISCOUNT loop, is called forward simplification. Using the current/picked
polynomial q to simplify members of active ∪ passive is called backward sim-

7



Input: 〈S = {p1, . . . , pk} ⊂ Q[x],≺〉
Output: G s.t. G is a GBasis of S w.r.t. ≺
while S 6= ∅ do

Invariant: G and S are maximally simplified w.r.t. G
Choose p ∈ S
Apply Orient to p
Let q be the resulting oriented polynomial (in G)
Use q to simplify G as long as possible

using Simplify-H and Simplify-T
Use G to simplify S as long as possible

using Simplify-S
Let Sold := S
Apply Superpose to all pairs 〈pi, q〉 (pi 6= q ∈ G)

for which Superpose has not been previously
applied

Let new := S \ Sold
Use G to simplify members of S in new

as long as possible using Simplify-S
Apply Delete if possible
if ((G ∪ S) ∩ (Q \ {0}) 6= ∅) then

return {1}
end if

end while
return G

Fig. 4. GB algorithm based on OTTER saturation loop

8



Input: 〈S = {p1, . . . , pk} ⊂ Q[x],≺〉
Output: G s.t. G is a GBasis of S w.r.t. ≺
while S 6= ∅ do

Invariant: G is maximally simplified w.r.t. G
Choose p ∈ S
Use G to simplify p as long as possible

using Simplify-S
Let s be the resulting simplified polynomial (in S)
if s 6= 0 then

Apply Orient to s
Let q be the resulting oriented polynomial (in G)
Use q to simplify G as long as possible

using Simplify-H and Simplify-T
Apply Superpose to all pairs 〈pi, q〉 (pi 6= q ∈ G)

for which Superpose has not been previously
applied

Apply Delete if possible
if ((G ∪ S) ∩ (Q \ {0}) 6= ∅) then

return {1}
end if

else
Apply Delete to s

end if
end while
return G

Fig. 5. GB algorithm based on DISCOUNT saturation loop

9



plification. We will see that in this sense, Buchberger’s algorithm performs only
forward simplification, whereas OTTER-GB and DISCOUNT-GB perform both.

In our working analogy between Gröbner basis construction and saturation
theorem proving, we have the following intuitive correspondence.

ATP GB
unit clause polynomial
infer Superpose
resolvent S-polynomial
active G
passive S
forward simp. Simplify-S
backward simp. Simplify-H, Simplify-T
subsumed resolvent superfluous S-polynomial

Thus, we see fundamentally how Buchberger’s algorithm differs from those
presented here. In Buchberger’s algorithm, once a reduced S-polynomial is placed
in G, it is never removed. It only further participates in the algorithm by be-
ing used as a simplifier to reduce newly computed S-polynomials. Thus, Buch-
berger’s algorithm only performs forward simplification. Both OTTER-GB and
DISCOUNT-GB perform forward and backward simplification, but do so in dif-
ferent ways. In OTTER-GB, backward simplification is applied to both G and
S, whereas in DISCOUNT-GB it is applied only to G.

While also only performing forward simplifications, Faugére’s F4 differs from
Buchberger’s algorithm in that it (using deep insights from linear algebra) sim-
plifies many S-polynomials simultaneously. In a primitive sense, a related phe-
nomenon happens in the algorithms we present. Once a chosen polynomial is
used to compute a set of S-polynomials against the other members of G, any of
the deduced S-polynomials may become an immediate target for simplification,
and the simplification steps of multiple S-polynomials may be interleaved.

4.2 Term indexing

As with terms in high-performance automated theorem proving [22], it is imper-
ative to have efficient methods for computing sets of polynomials which match a
given polynomial w.r.t. the Abstract GB inference rules. These techniques need
to answer queries of the form “which polynomials in X can be used to perform
an inference using rule R with polynomial p?”.

It is fair to say that without such indexing methods, our new procedures
would likely not perform better than those which were previously available. Both
the adapted saturation loops and the term indexing are crucial to the improved
performance.

Indexing for Superpose For the application of Superpose, the indexing tech-
nique is based on superfluous S-polynomial criteria in Gröbner basis theory. Such

10



a criterion is a computationally efficient sufficient condition for recognising when
a given S-polynomial would reduce to zero w.r.t. the Gröbner basis being con-
structed, and thus can be ignored. Such a criteria is in a sense a subsumption
check, as an S-polynomial reducing to zero implies that all reductions it induces
are present in the rewrite system induced by the portion of the Gröbner ba-
sis already constructed. Hence it would not contribute to obtaining a confluent
rewriting system and need not be considered.

There is, however, a difficulty in using such criteria in non-standard Gröbner
basis loops: classical criteria, such as Buchberger 1 and 2, were originally proved
correct only w.r.t. a fixed basis construction strategy, e.g., using an inductive
cut-point argument w.r.t. the classical Buchberger’s algorithm [5]. This problem
has recently been addressed in [17] where both of these criteria are proved to be
admissible in the context of Abstract GBs.

In our implementation, we make use of Criteria4 1 and 3 in [17]. Letting
p1 = m1 + q1, p2 = m2 + q2:

Criteria 1 (Buchberger-1) If lcm(m1,m2) = m1m2 then spol(p1, p2) is su-
perfluous.

Criteria 3 If p1, p2 have been eagerly SH-simplified and m1|m2 or m2|m1, then
spol(p1, p2) is superfluous.

It follows from Criteria 3 that polynomials with linear leading monomials
need not participate in Superpose inferences, given that both algorithms pre-
sented implement eager SH-simplification. Thus, for the application of Superpose,
we index polynomials by their leading monomials so that given a polynomial p,
we may quickly return lists of other polynomials whose leading monomials are
(i) not relatively prime to p, and (ii) nonlinear. The index is essentially tracking
the occurrences of variables in leading monomials of polynomials in G which
have the potential to mate with p to contribute non-superfluous S-polynomials.

Indexing for forward simplification For the application of forward simplifi-
cation (Simplify-S), the indexing technique is based on the following observation.

Observation 1 For an oriented polynomial p2 = m2 + q2 ∈ G to be used to
simplify an unoriented p1 = c1m1m2 + q ∈ S using Simplify-S, it follows that (i)
totaldeg(m2) ≤ totaldeg(m1m2), and (ii) every variable in m2 must appear in
m1m2.

While the above observation may seem a triviality, in practice it implies
that to find an oriented polynomial which may Simplify-S a target monomial, we
may place oriented polynomials in an index which facilitates (i) only considering
polynomials whose leading monomial’s total degree does not surpass that of the

4 In fact, the statement of Criteria 3 in this work is really the combination of Criteria
3 and Theorem 9 in [17] together with the fact that polynomials with linear leading
monomials in different variables need not be Superposed (corollary of Criteria 1).

11



target, and (ii) in doing so only one variable of each leading monomial need be
indexed. To build such an index fw index : Nat × Nat → 2Q[x] we process each
p ∈ G as follows (where # : Var→ Nat is an appropriate injection):

Let v be some variable in the leading monomial of p
Let n be the power of v in this monomial in p
Add p to fw index[#(v)][n]

Now, to find a polynomial p which can rewrite a monomialm, we may perform
a restricted search:

for each variable v in m do
Let deg = totaldeg(m)
for n in [1 . . . deg] do

for each q ∈ fw index[#(v)][n] do
if (LM(q)|m) then

return q
end if

end for
end for

end for

In practice for L3 systems, most polynomials have low degree. So, we add
a threshold in our index, and don’t distinguish in the index between exponents
with values greater than the threshold. In our implementation, variables are
encoded as natural numbers, so the injection # : Var → Nat is just the identity
function.

Indexing for backward simplification The index used for backwards sim-
plification (Simplify-H and Simplify-T) is the most expensive of the three, as
it requires we index every monomial. This index is slightly different depend-
ing on the loops, as in DISCOUNT-GB we only need to backwards simplify
G, and so less targets for backward simplification need be indexed. The index
bw index : Nat× Nat→ 2〈Q[x],Nat,Nat〉 maps a variable x and a degree d to a set
of tuples of the form 〈p, i, j〉, where each tuple stores the fact that x is the j-th
variable in the i-th monomial of p. Differently from fw index, every variable in
every monomial of p is indexed instead of just some variable in the lead mono-
mial. Given p = m + q, we find targets for simplification using the following
algorithm.

v’ = undef

min = UINT MAX

n = totaldeg(m)

for each variable v in m do
if (v’ = undef or num occs(v,n) < min) then
v’ = v

12



min = num occs(v,n)

end if
end for

At this point, v’ is the variable with the least number of occurrences in
monomials with degree at most n, and we assume max is the maximum multi-
variate total degree of all monomials which are possible targets (in L3 systems,
max is usually low). We now finish finding targets as simplify.

for i in [n . . . max] do
for each m’ in bw index[#(v’)][i] do

if (m|m’) then
Apply backward simplification

end if
end for

end for

In our implementation, the sets used in fw index and bw index are imple-
mented using dynamic arrays (vectors). To efficiently remove elements from
these indices, we allow empty entries in these dynamic arrays, so entries do not
need to be moved when removed. We also store the value k in every polynomial
p, when p is the k-th entry in the dynamic array fw index[#(v)][d]. Moreover,
we store the value k in the j-th variable of the i-th monomial of the polyno-
mial p, when 〈p, i, j〉 is the k-th entry in the dynamic array bw index[#(v)][d].
These additional data-structures allows us to update the indices in constant
time. Note that, our indices are simpler than the ones used in saturation provers
(e.g., Substitution Tree [14]) because our terms are shallow and ground.

4.3 Algorithm correctness

Theorem 4. OTTER-GB and DISCOUNT-GB are terminating, functionally
correct GB algorithms.

Proof. By admissibility of Criteria 1 and 3, term indexing may be ignored. By
the definition of polynomial ideal, if (G∪S)∩(Q\{0}) 6= ∅ then I(G∪S) = Q[x].
Hence {1} is a Gröbner basis for I(G ∪ S) w.r.t. any ≺ and the return {1}
statement does not affect functional correctness. By Theorem 3, correctness is
guaranteed if the procedures are fair, implement eager S-simplification, and Su-
perpose is applied at most once between any two polynomials. The latter two prop-
erties are obvious. To observe fairness, we show SP(

⋃
i≥1

⋂
j≥iGj) ⊆

⋃
i≥1 Si.

Suppose not. Then, there must be some persistent pair p1, p2 ∈
⋃
i≥1

⋂
j≥iGj s.t.

spol(p1, p2) 6∈
⋃
i≥1 Si. WLOG, assume p1 ∈

⋂
j≥k1 Gj and p2 ∈

⋂
j≥k2 Gj s.t.

(k2 > k1) and let k1, k2 be the least indices with this property. Then Simplify-H
and Simplify-T must not have been used to simplify p1, p2 beyond states k1, k2
resp., as this would violate persistence. Consider the pass of either loop in which
the Orient step corresponding to state k2 occurs. Since p1 is also persistent in G
beyond state k2, it follows that in such a pass Superpose must have been applied

13



between p1 and p2, or Superpose must have been skipped because it had been pre-
viously applied to p1, p2. In either case we have spol(p1, p2) ∈

⋃
i≥1 Si. =⇒⇐=

ut

5 Experimental results

To evaluate our implementation5, we created sets of random benchmarks with
4 kinds of polynomials: (a) identity polynomials of form x − y, (b) difference
polynomials of form x− y + k where k is an integer constant, (c) general linear
polynomials, and (d) general polynomials. We experimented with two distribu-
tions of these kinds, a mostly-lin distribution with 40%, 50%, 5%, 5% of the
four kinds, which reflects distributions of L3 problems we see in practice, and a
non-lin distribution with 100% of kind (d).

discount otter m-fgb m-f4 m-buchb
Distrib #Polys #Vars #i avtm #i avtm #i avtm #i avtm #i avtm

mostly-lin 100 100 10 .00(10) 10 .00(10) 10 .05(10) 10 .14(10) 10 .45(10)
100 200 3 .00(10) 3 .00(10) 3 .12(10) 3 .53(10) 3 1.30(10)
100 500 1 .00(10) 1 .00(10) 1 .14(10) 1 .25(10) 1 1.27(10)

1000 1000 10 .00(10) 10 .00(10) 0 TO 9 4.39(9) 0 6.96(7)
1000 2000 4 .00(4) 4 .00(4) 0 TO 3 6.65(3) 0 TO
1000 5000 0 .01(10) 0 .01(10) 0 TO 0 TO 0 TO

10000 10000 10 .06(10) 10 .07(10) 0 TO 0 TO 0 TO
10000 20000 10 .07(10) 10 .09(10) 0 TO 0 TO 0 TO
10000 50000 4 .11(10) 4 .13(10) 0 TO 0 TO 0 TO

non-lin 10 5 8 .71(8) 9 .46(9) 10 .01(10) 10 .05(10) 10 .05(10)
10 10 0 8.06(1) 0 2.08(2) 0 1.90(6) 0 1.74(4) 0 1.93(3)
50 20 9 .61(9) 9 .34(9) 10 .05(10) 9 .24(9) 10 1.31(10)
50 50 2 .00(2) 2 .00(2) 1 .03(1) 2 .18(2) 2 .27(2)

hard-a-g 5-8 5-8 0 TO 0 TO 0 .25(4) 0 3.91(3) 0 2.72(2)
Table 1. Experimental Results

Our results are summarised in Table 1. Each row but the last shows the
results for 10 benchmarks with #Polys polynomials in #Vars variables. The last
row shows results with 4 hard algebro-geometric benchmark problems which
have been used to demonstrate the value of the F4 algorithm. The discount
and otter columns are for our two implementations, and the other three are
for Gröbner basis algorithms available in Maple 13: the m-fgb column is for a
compiled implementation of the F4 algorithm written by J.C. Faugere, the m-f4
column is for a Maple re-implementation of F4, and the m-buchb column for
the traditional Maple implementation of the Buchberger algorithm. Each of the

5 A tarball containing all of our experimental data, including imple-
mentation binaries, may be found at: http://research.microsoft.com/en-
us/um/people/leonardo/dagstuhl-2010-experiments.tar.gz

14



entries in a column has 3 components: the number in the #i sub-column is the
number of problems where the computed Gröbner basis is {1}, i.e. the set of
polynomial equations is inconsistent, the 2nd number in the avtm sub-column
is the average run-time in seconds for those problems on which tests halted in
under 10 seconds, and the number in parentheses is the number of tests which
halted in under 10 seconds. If the runs of all problems were over 10 seconds, the
2nd and 3rd numbers are replaced by TO for time-out.

As expected, as the ratio of polynomials to variables increases, we get more
constrained systems and more definitely inconsistent problems. With the mostly-
linear problems, as problem size increases, we see our procedures perform signif-
icantly better than those in Maple. One reason for this is that algorithms based
on the principles of Buchberger’s algorithm, which includes F4, have a quadratic
preprocessing step of computing all initial pairs of non-identical polynomials of
the input basis, whereas our algorithms do not require this for correctness.

We see with the general non-linear random problems the Maple algorithms
are usually better, and, with the hard algebro-geometric problems, the Maple
algorithms are far superior.

6 Future work

We see one immediate way in which these algorithms may be improved. This
involves the mapping of Criteria 2 in [17] into an appropriate modification of
our term indexing routines for Superpose. While this would likely not drastically
affect performance on L3 systems, it seems plausible that this would be a boon
in practice for computing with large systems of polynomials which have a higher
nonlinear component than those currently amenable to our methods.

7 Conclusion

We have leveraged work within the automated theorem proving community to
aid the extension of core computer algebra techniques to a challenging new type
of problem. In particular, we have designed, implemented, and evaluated new
Gröbner basis construction algorithms based on a combination of the OTTER
and DISCOUNT saturation loops and term indexing techniques derived from
both high-performance theorem proving and superfluous S-polynomial criteria
in Gröbner basis theory. These procedures have been observed to significantly
outperform previously available Gröbner basis algorithms for large, largely linear
(L3) nonlinear systems. While proving these new algorithms correct was non-
trivial, it became easy given the theory of Abstract Gröbner Bases. We see this
work as an exciting cross-pollenation between core techniques of the theorem
proving and computer algebra communities, and look forward to furthering this
natural symbiosis.

15



References

1. Jürgen Avenhaus, Jörg Denzinger, and Matthias Fuchs. Discount: A system for
distributed equational deduction. In RTA ’95: Proceedings of the 6th International
Conference on Rewriting Techniques and Applications, pages 397–402, London,
UK, 1995. Springer-Verlag.

2. L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof
orderings. Journal of ACM, 42(2), 1994.

3. Leo Bachmair and Harald Ganzinger. Buchberger’s algorithm: A constraint-based
completion procedure. In Jean-Pierre Jouannaud, editor, CCL, volume 845 of
Lecture Notes in Computer Science, pages 285–301. Springer, 1994.

4. B. Buchberger. Ein algorithmus zum auffinden der basiselemente des restklassen-
ringes nach einem nulldimensionalen polynomideal. Technical report, Mathemati-
cal Institute, University of Innsbruck, Austria, 1965.

5. Bruno Buchberger. A criterion for detecting unnecessary reductions in the con-
struction of groebner bases. In EUROSAM ’79: Proceedings of the International
Symposiumon on Symbolic and Algebraic Computation, pages 3–21, London, UK,
1979. Springer-Verlag.

6. Bruno Buchberger. A critical-pair/completion algorithm for finitely generated ide-
als in rings. In Proceedings of the Symposium ”Rekursive Kombinatorik” on Logic
and Machines: Decision Problems and Complexity, pages 137–161, London, UK,
1984. Springer-Verlag.

7. Bruno Buchberger. History and basic features of the critical-pair/completion pro-
cedure. J. Symb. Comput., 3(1-2):3–38, 1987.

8. O. Caprotti, A. Ferscha, and H. Hong. Reachability Test in Petri Nets by Gröbner
Bases. Johannes Kepler University Linz Technical Report, 1995.

9. Jacques Carette. Personal communication, 2010.
10. Robert Cori, Dominique Rossin, and Bruno Salvy. Polynomial ideals for sandpiles

and their gröbner bases. Theor. Comput. Sci., 276(1-2):1–15, 2002.
11. L. de Moura and G. O. Passmore. On locally minimal nullstellensatz proofs. In

SMT ’09: Proceedings of the 7th International Workshop on Satisfiability Modulo
Theories, pages 35–42, New York, NY, USA, 2009. ACM.

12. Jean Charles Faugère. A new efficient algorithm for computing Gröbner bases (f4).
Journal of Pure and Applied Algebra, 1999.

13. Jean Charles Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to zero (f5). In ISSAC ’02: Proceedings of the 2002 international
symposium on Symbolic and algebraic computation, pages 75–83, New York, NY,
USA, 2002. ACM.

14. Peter Graf. Substitution tree indexing. In RTA ’95: Proceedings of the 6th In-
ternational Conference on Rewriting Techniques and Applications, pages 117–131,
London, UK, 1995. Springer-Verlag.

15. William McCune. Otter 2.0. In Mark E. Stickel, editor, CADE, volume 449 of
Lecture Notes in Computer Science, pages 663–664. Springer, 1990.

16. Leonardo De Moura and Nikolaj Bjrner. Z3: An efficient SMT solver. In TACAS’08,
2008.

17. G. O. Passmore and L. de Moura. Superfluous S-polynomials in Strategy-
Independent Gröbner Bases. In SYNASC’09, 2009.

18. G. O. Passmore and P. B. Jackson. Combined decision techniques for the existen-
tial theory of the reals. In Calculemus’09: 16th Symposium on the Integration of
Symbolic Computation and Mechanised Reasoning, 2009.

16



19. A. Platzer, J. Quesel, and P. Rümmer. Real world verification. In CADE-22, 2009.
20. Alexandre Riazanov and Andrei Voronkov. Limited resource strategy in resolution

theorem proving. J. Symb. Comput., 36(1-2):101–115, 2003.
21. Enric Rodŕıguez-Carbonell and Deepak Kapur. Automatic generation of polyno-

mial loop invariants: Algebraic foundations. In ISSAC ’04: Proceedings of the 2004
international symposium on Symbolic and algebraic computation, pages 266–273,
New York, NY, USA, 2004. ACM.

22. R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov. Term indexing. pages 1853–
1964, 2001.

23. R. Thomas. Gröbner bases in integer programming. In D.-Z. Du and P.M. Pardalos,
editors, Handbook of Combinatorial Optimization. Kluwer Academic Publishers,
1998.

24. A. Tiwari. An algebraic approach for the unsatisfiability of nonlinear constraints.
In CSL’05, volume 3634 of LNCS, 2005.

17




