
Railway Track Allocation by Rapid Branching∗

Ralf Borndörfer1, Thomas Schlechte1, and Steffen Weider1

1 Zuse-Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany, Email
{borndoerfer, schlechte, weider}@zib.de

Abstract

The track allocation problem, also known as train routing problem or train timetabling problem, is
to find a conflict-free set of train routes of maximum value in a railway network. Although it can
be modeled as a standard path packing problem, instances of sizes relevant for real-world railway
applications could not be solved up to now. We propose a rapid branching column generation
approach that integrates the solution of the LP relaxation of a path coupling formulation of
the problem with a special rounding heuristic. The approach is based on and exploits special
properties of the bundle method for the approximate solution of convex piecewise linear functions.
Computational results for difficult instances of the benchmark library TTPlib are reported.

1998 ACM Subject Classification G.1.6 Optimization, G.2.3 Application

Keywords and phrases track allocation problem, integer programming, rapid branching heuris-
tic, proximal bundle method

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.13

1 Introduction

Routing a maximum number of trains in a conflict-free way through a track network is
one of the basic scheduling problems for a railway company. This optimal track allocation
problem, also known as train routing problem or train timetabling problem, has received
growing attention in the operations research literature, see [8, 2, 11, 6, 17] for some recent
references. A branch on the study of advanced models that incorporate, e.g., additional
robustness aspects, has already been started, see, e.g., [12]. However, the problem remains
that up to now the basic problem can hardly be solved even for small instances. Corridors
or single stations mark or are quickly beyond the limits of the current solution technology,
such that network optimization problems can not be addressed.

Finding a good track allocation model is a key prerequisite for progress towards the solution
of large-scale track allocation problems. The authors of [4] proposed a novel path coupling
formulation based on train path and track configuration variables. The model provides
a strong LP bound, is amenable to standard column generation techniques, and therefore
suited for large-scale computation. Indeed, it was shown that LP relaxations of large-scale
track allocation problems involving hundreds of potential trains could be solved to proven

∗This research was funded by the German Federal Ministry of Economics and Technology (BMWi),
project Trassenbörse, grant 19M4031A.

© Ralf Borndörfer, Thomas Schlechte and Steffen Weider;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 13–23

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

14 Railway Track Allocation by Rapid Branching

or near optimality in this way. However, similar results for integer solutions could not be
provided at that time.

This topic is addressed in this paper. Extending the work in [4], we present a sophisti-
cated solution approach that is able to compute high-quality integer solutions for large-scale
railway track allocation problems. Our algorithm is an adaptation of the rapid branching
method introduced in [3] (see also the thesis [20]) for integrated vehicle and duty scheduling
in public transport. The method solves a Lagrangean relaxation of the track allocation
problem as a basis for a branch-and-generate procedure that is guided by approximate LP
solutions computed by the bundle method. This successful second application provides ev-
idence that rapid branching is a general solution method for large-scale path packing and
covering problems.

The paper is structured as follows. Section 2 recapitulates the track allocation problem and
the path configuration model. Section 3 discusses the solution of an associated Lagrangean
relaxation by the bundle method. In Section 4 we adapt the rapid branching heuristic
to deal with track allocation (maximization) problems. Section 5 reports computational
results. We demonstrate that rapid branching can be used to produce high quality solutions
for large-scale track allocation problems.

2 The Track Allocation Problem

We briefly recall in this section a formal description of the track allocation problem; more
details can be found in the articles [5, 8, 2]. Consider an acyclic digraph D = (V,A)
that represents a time-expanded railway network. Its nodes represent arrival and departure
events of trains at a set S of stations at discrete times T ⊆ Z, its arcs model activities of
running a train over a track, parking, or turning around. Let I be a set of requests to route
trains through D. More precisely, train i ∈ I can be routed on a path through some suitably
defined subdigraph Di = (Vi, Ai) ⊆ D from a starting point si ∈ Vi to a terminal point
ti ∈ Vi. Denote by Pi the set of all routes for train i ∈ I, and by P =

⋃
i∈I Pi the set of all

train routes (taking the disjoint union).

Let s(v) ∈ S be the station associated with departure or arrival event v ∈ V , t(v) the time,
and J = {s(u)s(v) : (u, v) ∈ A} the set of all railway tracks. An arc (u, v) ∈ A blocks
the underlying track s(u)s(v) for the time interval [t(u), t(v)[, and two arcs a, b ∈ A are in
conflict if their respective blocking time intervals overlap. Two train routes p, q ∈ P are
in conflict if any of their arcs are in conflict. A track allocation or timetable is a set of
conflict-free train routes, at most one for each request set. Given arc weights wa, a ∈ A,
the weight of route p ∈ P is wp =

∑
a∈p wa, and the weight of a track allocation X ⊆ P is

w(X) =
∑
p∈X wp. The track allocation problem is to find a conflict-free track allocation of

maximum weight.

The track allocation problem can be modeled as a multi-commodity flow problem with
additional packing constraints, see [8, 2, 11]. This model is computationally difficult. We
consider in this article an alternative formulation as a path coupling problem based on ‘track
configurations’ as proposed by the authors of [4]. A valid configuration is a set of arcs on
some track j ∈ J that are mutually not in conflict. Denote by Qj the set of configurations
for track j ∈ J , and by Q =

⋃
j∈J Qj the set of all configurations. Introducing 0/1-variables

xp, p ∈ P , and yq, q ∈ Q, for train paths and track configurations, the track allocation

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 15

problem can be stated as the following integer program:

(PCP) max
∑
p∈P

wpxp (i)

s.t.
∑
p∈Pi

xp ≤ 1, ∀ i ∈ I (ii)∑
q∈Qj

yq ≤ 1, ∀ j ∈ J (iii)∑
a∈p∈P

xp −
∑

a∈q∈Q
yq ≤ 0, ∀ a ∈ A (iv)

xp, yq ≥ 0, ∀ p ∈ P, q ∈ Q (v)
xp, yq ∈ {0, 1}, ∀ p ∈ P, q ∈ Q. (vi)

The objective PCP (i) maximizes the weight of the track allocation. Constraints (ii) state
that a train can run on at most one route, constraints (iii) allow at most one configuration
for each track. Inequalities (iv) link train routes and track configurations to guarantee a
conflict-free allocation, (v) and (vi) are the non-negativity and integrality constraints. Note
that the upper bounds xp ≤ 1, p ∈ P , and yq ≤ 1, q ∈ Q, are redundant.

Introducing appropriately defined matrices A ∈ QI×P , B ∈ QJ×Q, C ∈ QI×A, D ∈ QJ×A,
and a weight vector w ∈ QP , program (PCP) can be stated in matrix form as follows:

(PCP) max wTx, Ax = 1, By = 1, Cx−Dy ≤ 0, (x, y) ∈ {0, 1}P×Q.

The authors of [4] have shown that train path and track configuration variables can be
priced by solving shortest path problems in suitably defined acyclic digraphs, such that the
LP relaxation of program (PCP) can be solved in polynomial time.

3 A Bundle Approach

The PCP consists of a train routing and a track configuration sub-model that are linked
by coupling constraints. The sub-models are easy, but time consuming to solve using a
column generation procedure based on acyclic shortest path computations, the coupling
constraints are simple but numerous. This combinatorial structure can be exploited using a
Lagrangean relaxation approach in which, of course, precision and speed of convergence are
critical issues. It turns out that the bundle method fits perfectly with such a scheme.

A Lagrangean dual of model PCP arises from a Lagrangean relaxation of the coupling
constraints PCP (iv) and a relaxation of the integrality constraints PCP (vi) and (vii):

(LD) min
λ≥0

 max
Ax=1,
x∈[0,1]P

(wT − λTC)x+ max
By=1,
y∈[0,1]Q

(λTD)y

 .
LD is equivalent to the dual of the LP relaxation of PCP, and hence provides upper bounds
for PCP. Introducing functions

fP : RA → R, λ 7→ max(wT − λTC)x, Ax = 1, x ∈ [0, 1]P

fQ : RA → R, λ 7→ max(λTD)y, By = 1, y ∈ [0, 1]Q

fP,Q := fP + fQ,

ATMOS ’10

16 Railway Track Allocation by Rapid Branching

LD can be stated more shortly as follows:

(LD) min
λ≥0

fP,Q(λ) = min
λ≥0

[fP (λ) + fQ(λ)] .

The functions fP and fQ are convex and piecewise linear. Their sum fP,Q is therefore a
decomposable, convex, and piecewise linear function; fP,Q is, in particular, non-smooth.
This is precisely the setting for an application of the proximal bundle method (PBM) to a
maximization problem, see [14, 15, 13, 3, 20] for details.

When applied to LD, the PBM constructs cutting plane models of the functions fP and
fQ in terms of subgradient bundles J iP and J iQ that are used to produce two sequences of
iterates λi, µi ∈ RA, i = 0, 1, The points µi are called stability centers; they converge to
a solution of LD. The points λi are trial points calculated by solving a quadratic program
over a trust region around the current stability center, whose size is controlled by some
positive weight u:

(QP iP,Q) λi+1 := argmin
λ

fP,Q(λ)− u
2
∥∥µi − λ∥∥2

. (1)

A function evaluation at a trial points results either in a shift of the stability center, or
in an improvement of the cutting plane model. A key point is that the high-dimensional
quadratic program (QP iP,Q) (the dimension is equal to the number of coupling constraints)
has a dual whose dimension coincides with the number subgradients in the current bundle.
The method converges for a bundle size of two, typical sizes in practice are around 10 or 15.
This dimension reduction makes the problem computationally tractable.

Another key point is that the PBM produces a sequence not only of approximate dual,
but also of approximate primal solutions, that converge, in contrast to, e.g., subgradient
methods or the volume method, both to optimal LP solutions:

The series (µi) converges to an optimal solution of LD, i.e., an optimal dual solution of
the LP relaxation of PCP.

The series (xiP (λi), yiQ(λi)) defined as

(xiP (λi), yiQ(λi)) =

 ∑
λj∈JiP

αiP,jxP (λj),
∑
λj∈JiQ

αiQ,jyQ(λj)


converges to an optimal primal solution of the LP relaxation of PCP.

Here, αiQ,j are optimal solutions of the dual of the quadratic program (QP iP,Q), and xP (λj) =
argmaxx∈[0,1]P fP (λj) and yQ(λj) = argmaxy∈[0,1]Q fQ(λj) are optimal primal solutions of
fP and fQ. Note that in our application, determining xP and yQ amounts to computing
optimal train paths and track configurations; this can be done by acyclic shortest path
calculations. The primal approximation is useful to guide branching decisions, see next
section.

4 Rapid Branching

We propose in this section a branch-and-generate (BANG) approach (i.e., a branch-and-
price algorithm with partial branching, see [18]) for the construction of high-quality integer
solutions of the PCP.

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 17

The main idea of this rapid branching heuristic is that a fix of a single variable to zero or
one has almost no effect on the value of the LP relaxation of a problem such as the PCP, see
[16]. The authors of [3], see also the thesis [20], proposed in the context of integrated vehicle
and duty scheduling a heuristic that tries to overcome this problem by a combination of
cost perturbation to “make the LP more integer”, partial pricing to generate variables that
are needed to complete an integer solution down in the tree, a selective branching scheme
to fix large sets of variables, and an associated backtracking mechanism to correct wrong
decisions. Our setting is of obvious similarity, and it will turn out that rapid branching can
indeed be successfully applied to solve large-scale track allocation problems.

We use the following notation. Recall the PCP

(PCP) max
0≤x,y≤1

wTx, Ax = 1, By = 1, Cx−Dy ≤ 0, (x, y) ∈ {0, 1}P×Q.

Let l, u ∈ {0, 1}P×Q, l ≤ u, be vectors of bounds that model fixings of variables to 0 and 1.
Denote by L := {j ∈ P ×Q : uj = 0} and U := {j ∈ P ×Q : lj = 1} the set of variables
fixed to 0 and 1, respectively, and by

(PCP)(l, u) max
l≤x,y≤u

wTx, Ax = 1, By = 1, Cx−Dy ≤ 0, (x, y) ∈ {0, 1}P×Q

the IP derived from PCP by such fixings. Denote further by N ⊆ P × Q some set of
variables which have, at some point in time, already been generated by a column generation
algorithm for the solution of PCP. Let RPCP and RPCP(l, u) be the restrictions of the
respective IPs to the variables in N (we assume that L,U ⊆ N holds at any time when
such a program is considered, i.e., variables that have not yet been generated are not fixed).
Finally, denote by MLP, MLP(w, l, u), RMLP, and RMLP(w, l, u) the LP relaxations of
the integer programs under consideration; MLP and MLP(w, l, u) are called master LPs,
RMLP and RMLP(w, l, u) restricted master LPs (the objective w is included in the notation
for MLP(w, l, u) and RMLP(w, l, u) for reasons that will become clear in the following
Section 4.1).

Rapid branching tries to compute a solution of PCP by means of a search tree with nodes
PCP(l, u). Starting from the root PCP = PCP(0,1), nodes are spawned by additional
variable fixes using a strategy that we call perturbation branching. The tree is depth-first
searched, i.e., rapid branching is a plunging (or diving) heuristic. The nodes are ana-
lyzed heuristically using restricted master LPs RMLP(w, l, u). The generation of additional
columns and node pruning are guided by so-called target values as in the branch-and-generate
method. To escape unfavorable branches, a special backtracking mechanism is used that per-
forms a kind of partial binary search on variable fixings. The idea of the method is as follows:
we try to make rapid progress towards a feasible integer solution by fixing large numbers of
variables by perturbation branching (Section 4.1) in each iteration, repairing infeasibilities
or deteriorations of the objective by regeneration of columns if possible and by controlled
backtracking otherwise (Section 4.2).

4.1 Perturbation Branching

The idea of perturbation branching is to solve a series of MLPs with objectives wi, i =
0, 1, 2, . . . that are perturbed in such a way that the associated LP solutions xi are likely
to become more and more integral. In this way, we hope to construct an almost integer

ATMOS ’10

18 Railway Track Allocation by Rapid Branching

solution at little cost. The perturbation is done by increasing the utility of variables with
LP values close to one according to the formula:

w0
j := wj , j ∈ N

wi+1
j := wij + wjαx

2
j , j ∈ N, i = 0, 1, 2,

The idea behind this quadratic perturbation is that variables with values close to 1 are driven
towards 1. The progress of this procedure is measured in terms of the potential function

v(xi) := wTx+ δ|B(xi)|,

where ε and δ are parameters for measuring near-integrality and the relative importance of
near-integrality (we use ε = 0.1 and δ = 1), and B(xi) := {j ∈ N : xij > 1 − ε} is the set
of variables that are set or almost set to one. The perturbation is continued as long as the
potential function increases; if the potential does not increase for some time, a spacer step is
taken in an attempt to continue. On termination, the variables in the set B(xi) associated
with the highest potential are fixed to one. If no variables at all are fixed, we choose a single
candidate by strong branching, see [1]. Objective perturbation has also been used in [19]
for the solution of large-scale set partitioning problems, and, e.g., in [9] in the context of
general mixed integer programming.

Algorithm 1 gives a pseudocode listing of the complete perturbation branching procedure.
The main work is in solving the perturbed reduced master LP (line 3), generating new vari-
ables if necessary. Fixing candidates are determined (line 4) and the potential is evaluated
(line 5). If the potential increases (lines 15–17), the perturbation is continued (line 18). If
no progress was made for ks steps (line 10), the objective is heavily perturbed by a spacer
step in an attempt to continue (lines 10–13). However, even this perturbation does not
guarantee that any variable will get a value above 1− ε, if ε < 1/2. If this happens and the
iteration limit is reached, a single variable is fixed by strong branching (line 24).

4.2 Binary Search Branching

The fixing candidate sets B∗ produced by the perturbation branching algorithm are used to
define nodes in a branch-and-generate search tree by imposing bounds xi = 1 for all i ∈ B∗.
This typically fixes many variables to one, which is what we wanted to achieve. However,
sometimes too much is fixed and some of the fixings turn out to be disadvantageous. In such
a case we must backtrack. We propose to do this in a binary search manner by successively
undoing half of the fixes until either the fixings work well or only a single fix is left. This
procedure is called binary search branching.

Here are the details. Let B∗ be a set of potential variable fixes and K = |B∗|. Order the
variables in B∗ by some criterion as i1, i2, . . . , iK and define sets

B∗k := {i1, . . . , ik}, k = 1, . . . ,K.

Consider search tree nodes defined by fixing

xj = lj = 1, j ∈ B∗k , k = K, dK/2e, dK/4e, . . . , 2, 1.

These nodes are examined in the above order. Namely, we first try to fix all variables in B∗K
to one, since this raises hopes for maximal progress. If this branch comes out worse than

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 19

Algorithm 1: Perturbation Branching.
Data: RMLP(w, l, u), integrality tolerance ε ∈ [0, 0.5), integrality weight δ > 0,

perturbation factor α > 0, bonus weight M > 0, spacer step interval ks, iteration
limit kmax

Result: set of variables B∗ that can be fixed to one

1 init i← k ← 0; w0 ← w; B∗ ← ∅; v∗ ←∞;
2 while k < kmax do /* maximum number of iterations not reached */
3 compute xi ← argmax RMLP(wi, l, u);
4 set Bi ← {j : xij ≥ 1− ε, lj = 0};
5 set v(xi)← wTxi + δ|Bi|;
6 if xi is integer then
7 set B∗ ← Bi ; /* candidates found */
8 break;
9 else

10 if k ≡ 0 mod ks and k > 0 then
11 set j∗ ← argmaxlj=0 x

i
j ;

12 set wij ←M ;
13 set B∗ ← Bi ∪ {j∗} ; /* spacer step */
14 else
15 if v(xi) > v∗ then
16 set B∗ ← Bi; v∗ ← v(xi); k ← −1; /* progress */
17 end
18 set wi+1

j ← wij + αwj(xij)2 ∀j; /* perturb */
19 end
20 end
21 set i← i+ 1; k ← k + 1;
22 end
23 if B∗ = ∅ then
24 set B∗ ← {j∗} ← strongBranching() ; /* strong branching */
25 end
26 return B∗;

expected, it is pruned, and we backtrack to examine B∗dK/2e and so on until possibly B∗1 is
reached. In this situation, the single fix is applied imperatively. The resulting search tree
is a path with some pruned branches, i.e., binary search branching is a plunging heuristic.
In our implementation, we order the variables by increasing reduced cost of the restricted
root LP, i.e., we unfix half of the variables of smallest reduced cost. This sorting is inspired
by the scoring technique of [7]. The decision whether a branch is pruned or not is done
by means of a target value as introduced in [18]. Such a target value is a guess about the
development of the LP bound if a set of fixes is applied; we use a linear function of the integer
infeasibility. If the LP bound stays below the target value, the branch develops according
to our expectations, if not, the branch “looks worse than expected” and we backtrack.

5 Computational Results

We test our approach on a selection of three large instances that are freely available from
the benchmark library TTPlib, see [10]. They are associated with a macroscopic railway
network model of the area spanned by the cities of Hannover, Kassel, and Fulda in Germany.

ATMOS ’10

20 Railway Track Allocation by Rapid Branching

0 10,000 20,000 30,000

0

100

200

300

400

LP Stage IP Stage

time in seconds

upper bound on objective function value
objective function value of integral solution

number of columns fixed to one
objective function value of fixed variables
number of active columns (in thousands)

IP target value

Figure 1 Solving a track allocation problem with TS-OPT; dual (LP) and primal (IP) stage.

scenario trains (|I|) tracks (|J|) |A| |VI | |AI | |VJ | |AJ |

req_31 1062 79 6006 11397 16493 12162 26694
req_32 1140 101 11187 22980 34852 22568 59037
req_33 570 101 5845 11490 17426 11884 31095

Table 1 Track allocation test instances.

This HaKaFu network consists of 37 stations and 120 tracks (hakafu_simple_37_120_6),
giving rise to 4320 different headway times for 6 standard train types. The test instances
differ with respect to requests for trains, i.e., by traffic demand, and we remark that simple
greedy or rounding procedures fail to construct satisfactory solutions for them.

Table 1 gives some statistics on the number of requested trains (|I|), the number of tracks
(|J |), the number of coupling arcs (|A|), and the total sizes of the train routing and the
track configuration digraphs (|VI |, |AI |, |VJ |, |AJ |) associated with the test instances. The
coupling arcs are those arcs that correspond to train movements along a track; they are in
one-to-one correspondence with the coupling constraints (PCP) (iv). The remaining arcs
corresponding to pull-ins and pull-outs, and to movements and parkings in stations do not
give rise to conflicts (the instances do not involve station capacities) and do therefore not
give rise to coupling constraints.

All our computations were performed on computers with an Intel Core 2 Extreme CPU
X9650 with 3GHz, 6MB cache, and 8GB of RAM. Figure 1 shows a typical run of our code
TS-OPT. In the initial LP stage (red or dark), a global upper bound is computed by solving
the Lagrangean dual using column generation and the bundle method. The bundle method
converges after approximately 9 hours and pricing 50.000 variables. In the succeeding IP
stage (green or light) an integer solution is constructed by the rapid branching heuristic. It
can be seen that the upper bound does almost not move, i.e., the final integer solution has
virtually the same objective value as the LP relaxation, and that indeed often large numbers
of variables are fixed to one throughout the course of the rapid branching heuristic.

5.1 Bundle Calibration

Figure 2 compares the effect of different choices for the size of the bundle (2, 5, 10, 15,
20, 25) on the solution of the root LP relaxation of our test instances. It can be seen that
larger bundles lead in general to a reduction in the number of iterations to a certain limit.
However, larger bundles also produce larger and more difficult quadratic programs, such
that the total solution time increases after a certain point. A bundle size of 10 or 15 seems

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 21

to be a good choice.

2 5 10 15 20 25

2,000

2,500

3,000

bundle size

req32

iterations
time in seconds

2 5 10 15 20 25

500

1,000

1,500

2,000

2,500

bundle size

req31

iterations
time in seconds

2 5 10 15 20 25

500

1,000

1,500

bundle size

req33

iterations
time in seconds

Figure 2 Testing different bundle sizes.

5.2 Rapid Branching

Tables 2 and 3 show results for solving the test instances by our code TS-OPT. The tables list
the number of scheduled trains in the best solution found, the upper bound, the optimality
gap, the total running time in CPU seconds, and the number of (rapid) branching nodes.
The computations in Table 2 have been performed with an aggressive choice of the rapid
branching integrality tolerance of ε = 0.4, Table 3 shows the results for a cautious choice of
ε = 0.2. It can be seen that the aggressive choice tends to be faster, because more variables
are fixed at once to explore fewer nodes, but the solution quality is lower. By choosing
ε = 0.2, high quality solutions for large-scale track allocation problems involving hundreds
of train requests can be computed.

scenario |I| trains upper objective of gap time branching
in solution bound solution in % nodes

req31 1062 356 464.40 457.79 1.44 45min 53
req32 1140 288 240.71 231.19 4.12 1h52min 56
req33 570 154 126.38 122.03 3.57 18min 47

Table 2 Solving track allocation problems by rapid branching (int. tolerance ε = 0.4)

scenario |I| trains upper objective of gap time branching
in solution bound solution in % nodes

req31 1062 356 464.41 457.54 1.50 5h 59
req32 1140 298 240.71 239.61 0.46 11h 67
req33 570 154 126.38 122.03 3.57 1h23min 51

Table 3 Solving track allocation problems by rapid branching (int. tolerance ε = 0.2)

References

1 D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts in the TSP (a preliminary
report). Technical report, Center for Discrete Mathematics and Theoretical Computer
Science (DIMACS), March 1995. DIMACS Technical Report 95-05.

2 Ralf Borndörfer, Martin Grötschel, Sascha Lukac, Kay Mitusch, Thomas Schlechte, Sören
Schultz, and Andreas Tanner. An auctioning approach to railway slot allocation. Com-

ATMOS ’10

22 Railway Track Allocation by Rapid Branching

petition and Regulation in Network Industries, 1(2):163–196, 2006. ZIB Report 05-45 at
http://opus.kobv.de/zib/volltexte/2005/878/.

3 Ralf Borndörfer, Andreas Löbel, and Steffen Weider. A bundle method for integrated multi-
depot vehicle and duty scheduling in public transit. In Mark Hickman, Pitu Mirchandani,
and Stefan Voß, editors, Computer-aided Systems in Public Transport, volume 600 of Lec-
ture Notes in Economics and Mathematical Systems, pages 3–24. Springer-Verlag, 2008.
ZIB Report 04-14 at http://opus.kobv.de/zib/volltexte/2004/790/.

4 Ralf Borndörfer and Thomas Schlechte. Models for railway track allocation. In Christian
Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, ATMOS 2007 - 7th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007. http://drops.dagstuhl.de/opus/volltexte/
2007/1170.

5 U. Brännlund, P.O. Lindberg, A. Nou, and J.-E. Nilsson. Railway timetabling using La-
grangian relaxation. Transportation Science, 32(4):358–369, 1998.

6 Gabrio Caimi. Algorithmic decision support for train scheduling in a large and highly utilised
railway network. PhD thesis, ETH Zurich, 2009.

7 Alberto Caprara, Matteo Fischetti, and Paolo Toth. Algorithms for the set covering prob-
lem. Annals of Operations Research, 98:2000, 1998.

8 Alberto Caprara, Michele Monaci, Paolo Toth, and Pier Luigi Guida. A Lagrangian heuris-
tic algorithm for a real-world train timetabling problem. Discrete Appl. Math., 154(5):738–
753, 2006.

9 Jonathan Eckstein and Mikhail Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed
integer programming. J. Heuristics, 13(5):471–503, 2007.

10 Berkan Erol, Marc Klemenz, Thomas Schlechte, Sören Schultz, and Andreas Tanner.
TTPlib 2008 - A library for train timetabling problems. In A. Tomii, J. Allan, E. Arias,
C.A. Brebbia, C. Goodman, A.F. Rumsey, and G. Sciutto, editors, Computers in Railways
XI. WIT Press, 2008.

11 Frank Fischer, Christoph Helmberg, Jürgen Janßen, and Boris Krostitz. Towards solving
very large scale train timetabling problems by Lagrangian relaxation. In Matteo Fischetti
and Peter Widmayer, editors, ATMOS 2008 - 8th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems, Dagstuhl, Germany, 2008. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Germany.

12 Matteo Fischetti, Domenico Salvagnin, and Arrigo Zanette. Fast approaches to improve
the robustness of a railway timetable. Transportation Science, 43(3):321–335, 2009.

13 C. Helmberg. Semidefinite Programming for Combinatorial Optimization. Habilitation
Thesis, Technische Universität Berlin, October 2000.

14 K. C. Kiwiel. Proximal bundle methods. Mathematical Programming, 46(123):105–122,
1990.

15 K. C. Kiwiel. Approximation in proximal bundle methods and decomposition of convex
programs. Journal of Optimization Theory and applications, 84(3):529–548, 1995.

16 M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Oper. Res.,
53(6):1007–1023, 2005.

http://opus.kobv.de/zib/volltexte/2005/878/
http://opus.kobv.de/zib/volltexte/2004/790/
http://drops.dagstuhl.de/opus/volltexte/2007/1170
http://drops.dagstuhl.de/opus/volltexte/2007/1170

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 23

17 Richard Lusby, Jesper Larsen, Matthias Ehrgott, and David Ryan. Railway track allocation:
models and methods. OR Spectrum, December 2009.

18 R. Subramanian, R.P. Sheff, J.D. Quillinan, D.S. Wiper, and R.E. Marsten. Coldstart:
Fleet assignment at delta air lines. Interfaces, 24(1):104–120, 1994.

19 D. Wedelin. An algorithm for a large scale 0-1 integer programming with application to
airline crew scheduling. Annals of Operations Research, 57:283–301, 1995.

20 Steffen Weider. Integration of Vehicle and Duty Scheduling in Public Transport. PhD thesis,
TU Berlin, 2007. http://opus.kobv.de/tuberlin/volltexte/2007/1624/.

ATMOS ’10

http://opus.kobv.de/tuberlin/volltexte/2007/1624/

	Introduction
	The Track Allocation Problem
	A Bundle Approach
	Rapid Branching
	Perturbation Branching
	Binary Search Branching

	Computational Results
	Bundle Calibration
	Rapid Branching

