
Dynamic Graph Generation and Dynamic Rolling
Horizon Techniques in Large Scale Train
Timetabling∗

Frank Fischer1 and Christoph Helmberg1

1 Technical University of Chemnitz, Department of Mathematics, 09107
Chemnitz

Abstract
The aim of the train timetabling problem is to find a conflict free timetable for a set of passenger
and freight trains along their routes in an infrastructure network. Several constraints like station
capacities and train dependent running and headway times have to be satisfied.

In this work we deal with large scale instances of the aperiodic train timetabling problem for
the German railway network. The problem is modelled in a classical way via time discretised net-
works, its Lagrange-dual is solved by a bundle method. In order to handle the enormous number
of variables and constraints dynamic graph generation and dynamic rolling horizon techniques
are employed.

1998 ACM Subject Classification G.1.6 [Numerical Analysis]: Optimization

Keywords and phrases combinatorial optimization, train-timetabling

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.45

1 Introduction

Railway planning problems have been in the focus of interest of applied mathematics for
a long time. Many problems from this field have been tackled with methods from discrete
optimization. In this work we deal with the well known train timetabling problem (TTP),
which tries to find conflict free timetables for given set of trains in some railway network.

For the TTP there exist periodic and aperiodic variants. For the periodic case most
well known models are based on the Periodic Event Scheduling Problem introduced in [19],
which is well suited for the description of subway or fast-train networks, see [13] for a detailed
survey on this topic.

The aperiodic TTP is usually modelled in one of two ways. The first approach is to
use event-based models similar to PESP, see [16, 17]. Although quite successful on several
instances, these models have the disadvantage that station capacities cannot easily be incor-
porated into the model. PESP models have also been adapted to non-periodic cases where
periodic corridors are used by different trains [6, 5]. Nevertheless, this model requires that
most trains follow some periodic schedule.

The second approach is based on Integer Programming formulations using time discre-
tised networks for the train routes, see [8, 7, 1, 3]. The main advantage of these formulations
is the ability to deal with headway restrictions, but also other constraints like station ca-
pacities and prescribed timetables can be handled, e. g., [4]. The solution methods include

∗ This work was supported by the Bundesministerium für Bildung und Forschung under grant
03HEPAG4. Responsibility for the content rests with the authors.

© Frank Fischer and Christoph Helmberg;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 45–60

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

46 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

heuristic and exact branch-and-bound based methods using LP relaxation and Lagrangian
Relaxations [3, 9].

Building on [11] in this paper we describe the advances achieved by applying the new
techniques of dynamic graph generation and load balancing in handling the very large scale
TTP instances of the German railway company Deutsche Bahn (DB), stemming from a
common project with “Verkehrsnetzentwicklung und Verkehrsmodelle (GSV)” of DB. The
instances comprise about 10% of the whole German railway network with about 3000 pas-
senger and freight trains in a time period of about six hours. Different train-type dependent
running-times and headway-times as well as station capacities have to be considered.

The paper is structured as follows. In section 2.1 we introduce the TTP in a formal way
and in section 2.2 we formulate the base model. Section 3 describes the solution methods
applied and, finally, some numerical results are given in section 4.

2 The train timetabling problem

2.1 Problem description
The train timetabling problem can be described as follows. We are given an infrastructure
network GI = (V I , AI) with V I the set of nodes representing stations and track switches
and AI a set of directed arcs representing tracks. In a typical network there are two kinds
of tracks, those that may be used in exactly one direction (double line arcs) and those that
may be used in both directions (single line arcs). The set of double line arcs is denoted by
AI,2 and the single line arcs by AI,1 respectively, and we have AI = AI,1∪̇AI,2. Note, for
(u, v), (v, u) ∈ AI we have (u, v) ∈ AI,1 ⇔ (v, u) ∈ AI,1, both representing the same physical
track. Each node u ∈ V I has an absolute capacity cu ∈ N ∪ {∞} denoting the maximal
number of trains to be at that node simultaneously and each arc a = (u, v) ∈ AI has a
directional capacity ca ∈ N ∪ {∞} denoting the maximal number of trains to be at node v
approaching over a.

In the network a set of trains R has to be scheduled. For each train r ∈ R its predefined
route is given by the sequence of nodes U(r) = (ur1, . . . , urnr) the train has to visit in order.
Since the trains differ in size and speed, we assign each train a train-type m(r) ∈ M =
MP ∪̇MF , whereMP is the set of passenger train types andMF the set of freight train types.
For each arc we have type and behaviour-dependent running-times tR : AI × M × B2 →
R+, B = {stop, run}, where tR((u, v),m, bu, bv) denotes the running time of a train of type
m over arc (u, v) with stopping behaviours bu, bv on the incident nodes.

Important restrictions are the safety distances on tracks between successive trains. If
two trains enter a track in the same direction or a single-line track in opposite directions
there must be a minimal difference between the two entering times, the so called headway-
time. Like running-times, headway-times depend on the types and stopping-behaviours of
both trains. The mapping tH : AI ×M ×B2 ×M ×B2 → R+ describes the headway times
with tH((u, v),m1, b1,u, b1,v,m2, b2,u, b2,v) the headway-time if a train with type m1 and
behaviours b1,u, b1,v uses the track (u, v) followed by a train with type m2 and behaviours
b2,u, b2,v. Analogously, the mapping tHS : AI ×M × B2 ×M × B2 → R+ describes the
headway-time on a single line track if the second train follows in opposite direction.

A special requirement in our case is a predefined timetable for passenger trains. For each
passenger train r ∈ R,m(r) ∈ MP , and each of its stations u = uri we have a stopping
interval Iru = [tS,ru , tE,ru] ⊆ Z ∪ {±∞} and a minimal stopping time dru ∈ Z+. Train r has
to arrive at station u before the end of its stopping interval tE,ru , must stop and wait at the
station for at least dru minutes and is not allowed to leave before tS,ru +dru. For freight trains

Frank Fischer and Christoph Helmberg 47

only the starting time of the train at its first station is given by tS,rur1 , for convenience we
define Iru = [0,∞] and dru = 0 for all r ∈ R, i = 2, . . . , nr with m(r) ∈MF .

The aim is to find a feasible timetable for all trains, observe the predefined time windows
for all passenger trains or violate them as little as possible, and let all (freight) trains reach
their final station as early as possible.

2.2 Model
We model the TTP in a rather classical way via time discretised networks for each single
train, see, e. g., [11, 2, 3]. Let T = {1, . . . , N} be the discretised time steps, where N is
large enough to guarantee the existence of a feasible solution, and [t] denote the time-step
to which some time t is rounded.

For each train r ∈ R let Gr = (V r, Ar) be the graph representing the predefined train-
route with V r ⊆ (U(r) ∪ {σr = ur0, τ

r = urnr+1}) × B with the interpretation (u, b) ∈
V r ⇔ train r visits station u with stopping behaviour b (note, a train may be forced
to stop or is not allowed to stop at some stations) where σr is an artificial start node
and τ r is an artificial end node at which the train must stop. The set of arcs is Ar =
{((uri , b), (uri+1, b

′)) : (uri , b), (uri+1, b
′) ∈ V r}∪{((uri , stop), (uri , stop)) : (uri , stop) ∈ V r}. Each

arc ((u, b), (u′, b′)) ∈ Ar is assigned a rounded running time

trR(((u, b), (u′, b′)))

=


1 if u = u′,

0 if u 6= u′, {u, u′} ∩ {σr, τ r} 6= ∅,
[tR((u, u′),m(r), b, b′)] if b′ = run, |{u, u′, σr, τ r}| = 4,
[tR((u, u′),m(r), b, b′) + dru′] if b′ = stop, |{u, u′, σr, τ r}| = 4.

Note that each arc (((u, b), t), ((u′, b′), t′) ∈ Ar, u 6= u′ between two successive stations
incorporates the minimal stopping time dru′ at its destination. Now the time-expanded
network GrT = (V rT , ArT) is defined as V rT = V r × T and ArT = {((u, t), (u′, t′)) : (u, u′) ∈
Ar, t′ = t+ trR((u, u′))}. As usual we introduce binary variables for each arc

xre ∈ {0, 1}, r ∈ R, e ∈ ArT , (1)

and the stopping-intervals are enforced by the simple constraints

xr((u,t),(u′,t′)) = 0, u 6= u′, t < [tS,ru + dru]. (2)

There are two classes of constraints to be considered. First the capacity constraints in
the nodes are modelled via coupling inequalities. Let t ∈ T be a time step and u ∈ V I be
an infrastructure node. Then

A(u, t) ={e = (((u′, b′), t′), ((u, stop), t̄)) : e ∈ ArT , r ∈ R, u 6= u′, t− dru ≤ t̄ ≤ t}
∪{e = (((u′, b′), t′), ((u, run), t)) : e ∈ ArT , r ∈ R}
∪{e = (((u, stop), t− 1), ((u, stop), t)) : e ∈ ArT , r ∈ R},

denotes the set of all arcs that represent some train arriving (or waiting) at station u at
time step t. Analogously, for a = (u′, u) ∈ AI we define

A((u′, u), t) ={e = (((u′, b′), t′), ((u, stop), t̄)) : e ∈ ArT , r ∈ R, u 6= u′, t− dru ≤ t̄ ≤ t}
∪{e = (((u′, b′), t′), ((u, run), t)) : e ∈ ArT , r ∈ R}
∪{e = (((u, stop), t− 1), ((u, stop), t)) : e ∈ ArT , r ∈ R, (u, u′) ∈ Ar},

ATMOS ’10

48 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

the set of all arcs representing some train arriving (or waiting) at station u at time t coming
over arc a. The absolute and directional capacities are then enforced by constraints∑

e∈A(p,t)

xre ≤ cp, p ∈ V I ∪AI , t ∈ T. (3)

The second class of constraints are the headway constraints. Because headway times
depend on train-types and stopping-behaviour which leads to complex conflict-graphs on
the arcs, we used the idea of Borndoerfer und Schlechte [2] of configuration networks, which
model feasible track allocations of an infrastructure arc instead of excluding conflicting
arcs by cutting-planes. Let a = (u, u′) ∈ AI be an infrastructure arc. For simplicity, we
assume a is a double-line track. The configuration network Ga = (V a, Aa) of a is defined
as follows. The set of nodes is V a = {(e, p) : e = ((u, b), (u′, b′)) ∈ Ar, u 6= u′, r ∈ R, p ∈
{1, 2}} ∪ {σa, τa} and the set of arcs is Aa =

⋃4
i=1A

a,i with

Aa,1 ={((e, 1), (e, 2)) : (e, 1), (e, 2) ∈ V a}, . . . configuration arcs,
Aa,2 ={((e, 2), (e′, 1)) : (e, 2), (e′, 1) ∈ V a, e 6= e′}, . . . headway arcs,
Aa,3 ={((e, 1), (e, 1)) : (e, 1) ∈ V a} ∪ {(σa, σa), (τa, τa)}, . . . holdover arcs,
Aa,4 ={(σa, (e, 1)) : (e, 1) ∈ V a}

∪ {((e, 2), τa) : (e, 2) ∈ V a} . . . artificial start/stop-arcs.

As for train-graphs, we time-expand this graphs w.r.t. headway times,

taH(g) =



1 if g ∈ Aa,3,
0 if g ∈ Aa,1 ∪Aa,4,

[tH(a,m(r1), b1, b′1,m(r2), b2, b′2)] if


g = ((e1, 2), (e2, 1)),
ei = ((u, bi), (u′, b′i)) ∈ Ari ,
i = 1, 2,

and GaT (V aT = V a × T,AaT) is the time-expanded configuration graph with

AaT = {((u, t), (u′, t′)) : (u, u′) ∈ Aa, t′ = t+ taH((u, u′))}.

Note, if a = (u, u′) is a single line arc the network is defined analogously but w.r.t. to tH
and tHS and we have G(u,u′) ≡ G(u′,u). A feasible configuration of infrastructure arc a ∈ AI
corresponds to a path from (σa, 1) to (τa, N) and in the graphs Gr an arc e ∈ ArT , r ∈ R
may be used only if its corresponding configuration arc ((e, 1), t), ((e, 2), t)) is contained in
that path. Again, we introduce binary variables

xae ∈ {0, 1}, a ∈ AI , e ∈ Aa, (4)

and coupling configuration constraints

xre = xae′ , e
′ = (((e, 1), t), ((e, 2), t)), ((e, 1), (e, 2)) ∈ Aa,1, a ∈ AI . (5)

For both graph types, a feasible solution corresponds to a path from the start to the end
nodes. It will be convenient to collect the characteristic vectors of all feasible solutions in
one of these graphs in the sets X p, p ∈ R ∪AI ,

X p = {xp is a feasible solution in GpT },

Frank Fischer and Christoph Helmberg 49

where xp = (xpe)e∈ApT , p ∈ A
I ∪R.

The objective function is designed so that delays of passenger trains are minimized and
freight trains tend to run as fast as possible. Furthermore one has to take care of the different
lengths of the train-routes. Let trmin(u) ∈ T be the earliest possible time when train r may
leave from station u. For each time-step of delay the train is penalized by putting increasing
costs on the outgoing run-arcs. We define the cost-function w :

⋃
r∈RA

r
T → R+ as follows.

Let e = (((u, b), t), ((u′, b′), t′)) ∈
⋃
r∈RA

r
T be an arc then

wre = αm(r) · le ·

{∑t
t̂=trmin(u) t̂, e = ((u, t), (u′, t′)), u 6= u′,

0, otherwise.

where αm(r) is a train-type-dependent scaling factor and le is the relative running-time over
this arc w.r.t. the minimal running time of the train over its complete route.

The ILP formulation reads

maximize
subject to

∑
r∈R

∑
e∈Ar

−wrexre

xp ∈ X p, p ∈ R ∪AI ,
(3), (5), [coupling constraints].

Note that we formulate this problem as a maximization problem so the dual becomes a
minimization problem. Furthermore, since we have artificial arcs ((σr, t), (σr, t+ 1)) which
are not contained in any constraint, there is always a feasible solution of the model (each
train can just start “late enough”). Because this may be unintentional, we usually assign
high costs to those arcs.

3 Solution Methods

In this section we describe the methods used to solve the TTP. As the instances we regard
have a very large number of stations, tracks and trains, standard solvers are not sufficient
to handle those problems.

3.1 Bundle Method
The solution method is based on the Lagrangian dual of the model above obtained by
relaxing the coupling constraints (3) and (5). Let C̄1x̄ ≤ c̄1 denote the capacity constraints
(3) and C̄2x̄ = c̄2 denote the configuration constraints (5). The Lagrangian dual problem
reads

min
y1≥0
y2 free

ϕ(y1, y2)

where

ϕ(y1, y2) :=
2∑
i=1

c̄Ti yi +
∑

p∈R∪AI
ϕp(y1, y2),

with

ϕr(y1, y2) := max
xr∈X r

∑
e∈Ar

−wexre − (
2∑
i=1

yTi C̄
r
i)xr, r ∈ R,

ϕa(y1, y2) := max
xa∈Xa

−(yT2 C̄a2)xa, a ∈ AI .

ATMOS ’10

50 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

Obviously, the ϕp are convex functions as maxima over affine functions. For each y1, y2 the
evaluation of ϕ(y1, y2) requires the solution of |R ∪AI | simple shortest path problems. Let
x(y1, y2) be an optimal solution of all subproblems for given y1, y2. Then

g(y1, y2) =
(
c̄1 − C̄1x(y1, y2)
c̄2 − C̄2x(y1, y2)

)
is a subgradient of ϕ at (y1, y2).

The ConicBundle [12] library implements a bundle method to solve problems of type

min
y1≥0
y2 free

f(y)

where f(y) is a convex function given by a first-order oracle, i. e., for given y the oracle
returns f(y) and a subgradient g(y) of f at y. The method generates a sequence (xk)k∈N
of primal aggregates that are convex combinations of the solutions returned by the oracle.
For an appropriate subsequence L ⊆ N, (xk)k∈L converges to an optimal solution of the LP
relaxation of the primal problem. Note that in general the xk violate the coupling constraints
C̄1x ≤ c̄1 and C̄2x = c̄2 but nonetheless can be used as a good approximation to the optimal
relaxed solution.

3.2 Dynamic Graph Generation
Because of the large number of arcs and nodes and the possibly large number of time steps
N , it is not possible to keep the complete problem in memory. Therefore the concept of
dynamic graph generation has been developed in order to reduce the memory requirements
without losing any information of the model. Dynamic techniques for solving shortest-path
problems on large networks attained significant attention in the last years, usually focused
on road networks for route planning problems, see, e. g., [18, 15, 14, 10]. In contrast to
those problems, the cost functions in our case may change arbitrarily (i. e., the weights may
increase and decrease) at every iteration.

The key observation is that although a single train-graph may be huge due to time-
expansion over many time steps, most trains only use a small portion of their graphs.
Indeed, because the objective encourages trains to use “early” arcs, most paths tend to be
near the first time-steps covered by the graphs. Therefore it seems worthwhile to keep only
the necessary subgraphs in memory so that all shortest-path problems still can be solved
correctly.

In this section we describe the concept of dynamic graph generation and how it fits into
the bundle framework. Let G = (V,A) be an acyclic graph, we allow loops, and let � denote
the induced partial order (for generality in this section G is not restructured to the special
structure of section 2). We assume that there are a unique minimal element u ∈ V and a
unique maximal element u ∈ V (i. e., each node is contained in some path from u to u) and
(u, u), (u, u) ∈ A.

Let T = {1, 2, . . . } be the set of time steps.
I Definition 1. Let d : A → {X ⊆ N0 : |X| < ∞} be a function with d((u, u)) = {1} for all
(u, u) ∈ A. Then the graph GT = (VT , AT) with

VT := V × T,
AT := {((u, tu), (v, tv)) ∈ VT × VT : (u, v) ∈ A, tv − tu ∈ d((u, v))}

is called time-expansion of G.

Frank Fischer and Christoph Helmberg 51

Let c0 : AT → R+ be a cost-function on the arcs of GT . We partition the set AT in two
parts AT = A1∪̇A2 where A1 is closed in the sense that (u, t) ∈ V (A1)⇒ ∀ t′ ≤ t : (u, t′) ∈
V (A1), A1 = AT (V (A1)) is induced and (u, 1) ∈ V (A1). Let c : AT → R be another cost-
function with c|A2 ≥ c0|A2 . Now we define a subnetwork of GT that is sufficiently large to
solve the shortest-path problem on GT w.r.t. c or detecting that this may not be possible.
c0 is a cost function with a well-known structure on the arcs AT . The subset A1 contains
those arcs a ∈ AT whose actual costs c(a) may differ from their original costs c0(a) due
to the Lagrange multipliers, in fact, no information of the structure of c on A1 is known.
Because of this it is clear that the whole set A1 must be kept in memory in order to solve the
shortest-path problem w.r.t. c on GT . In contrast, since we have some information about
the structure of c on A2 (see (C1) below for the precise requirement), not all arcs of A2 must
be kept in memory. The aim is now to characterize an appropriate subset A′2 ⊆ A2 that is
large enough to solve the shortest path problem on GT or provides a certificate wherever it
needs to be updated for this purpose.

We denote by ∂A1 := {u ∈ V (A1) : ∃ (u, v) ∈ A2} ∪ ({u} × T) the set of “boundary”
nodes of A1.

I Definition 2. Let GT be a network and c be a cost-function as above. Then G′T = (V ′T , A′T)
with A′T = A1∪̇A′2, A′2 ⊆ A2, is a valid subnetwork of GT w.r.t. c if

(S1) ∀w,w′ ∈ ∂A1,∀w-w′-paths P ⊆ A2 there is a w-w′-path P ′ ⊆ A′2 with c0(P ′) ≤ c0(P).

I Observation 3. Let G′T be a valid subnetwork of GT , u ∈ V (A1), v ∈ V (A1) ∪ ∂A1 and
P be a shortest u-v-path in G′T w.r.t. c′, where c′ : A′T → R, c′|A1

= c|A1 , c
′
|A′2

= c0|A′2 . If
A(P) ∩A′2 = ∅ then P is a shortest u-v-path in GT w.r.t. c.

Proof. Let P be a shortest u-v-path in G′T w.r.t. c′ with P ⊆ A1 and assume there exists
a u-v-path P̃ in GT such that c(P̃) < c(P). Then P̃ * A1 ∪ A′2 since otherwise c′(P̃) ≤
c(P̃) < c(P) = c′(P).

Because u ∈ V (A1) and v ∈ V (A1) ∪ ∂A1 there must be a first arc (w1, w2) ∈ P̃ , w1 ∈
∂A1, w2 /∈ ∂A1 and a first reentering arc (w′1, w′2) ∈ P̃ with w′1 /∈ ∂A1, w

′
2 ∈ ∂A1. By (S1)

there is a w1-w′2-path Q ⊆ A′2 with c′(Q) = c0(Q) ≤ c0(w1P̃w
′
2) ≤ c′(w1P̃w

′
2), where w1P̃w

′
2

denotes the subpath of P̃ connecting w1 and w′2, and therefore c′(uP̃w1Qw̄2P̃ v) ≤ c′(P).
Continuing like this exchanging all subpaths of P̃ not part of A′T we obtain a u-v-path
P̂ ⊆ A′T with c′(P) ≤ c′(P̂) ≤ c′(P̃) ≤ c(P̃) < c(P) = c′(P), a contradiction. J

Observation 3 gives a sufficient condition on the size of the subnet to solve a shortest
path problem in GT . If the shortest-path in the subnet contains at least one arc in A′2, the
subnet is not large enough and must be expanded by increasing A1 and then a new set A′2
has to be computed.

In order to be efficient, the computation of the arc set A′2 must be possible without using
the values of the cost functions on arcs currently not in memory. The construction below
requires the computation of some data structures a priori and is independent of the concrete
cost-function c.

For our construction we assume that there is a partition of the nodes V , the subset
containing u ∈ V being denoted by [u], which has the following properties:

(K1) u, v ∈ [w], u 6= v ⇒ (u, v) /∈ A,
(K2) (u, v) ∈ A⇒ [u]× [v] ⊆ A,
(K3) [u] = {u}, [u] = {u}.

ATMOS ’10

52 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

The nodes in some subset [u] may be interpreted as representing the same station for different
modes in which the train uses this station, e. g., the run-node and the stop-node at the same
station of a train-graph may form such a subset. For any subset W ⊆ V we denote by
[W] := {[u] : u ∈ W} the set of all subsets induced by W and, similarly, for E ⊆ A we
denote [E] := {([u], [v]) : (u, v) ∈ E}. If P = u1 . . . un is a path in G then [P] = [ui1] . . . [uik]
denotes the induced path where i1 = 1, un ∈ [uik], [uij−1] 6= [uij], j = 2, . . . , k and ul−1 /∈
[ul] ⇒ ∃ j ∈ {2, . . . , k} : ul−1 ∈ [uij−1], ul ∈ [uij] (i. e., [P] is the sequence of node subsets
[ui] without multiple copies of the same subset).

Next we assume that the cost function c0 satisfies the following condition:

(C1) Let P = (u1, t1) . . . (un, tn) ⊆ AT and P ′ = (u′1, t′1) . . . (u′m, t′m) ⊆ AT be two paths
with [P] = [P ′] and so that for all [ui][ui+1] = [u′j][u′j+1] with [ui] 6= [ui+1] there holds
ti ≤ t′j ∧ ti+1 ≤ t′j+1. Then c(P) ≤ c(P ′).

This property means that the costs of two paths along the same route can be compared
if one visits every moving arc earlier than the other.

In constructing the arc set A′2 we want to ensure that any ∂A1-path leaving A′2 can be
interrupted at some arc in A′2 so that it can be extended to a compatible path in A′2. For
this, we define the following sets
I Definition 4. Let u ∈ V be a node. Then

(i) for each ([u], [v]) ∈ [A], the minimal traversal time is

d(([u], [v])) := min{d((u′, v′)) : u′ ∈ [u], v′ ∈ [v]},

(ii) for all u ∈ V, [v] ∈ [V], (u, v) ∈ A, u 6= v, we choose

N(u, [v]) ∈ Argmin{min d((u, v′)) : v′ ∈ [v]},

the canonical successor of u in [v],
(iii) for all [v] ∈ [V],

N([v]) :={v′ ∈ [v] : ∃u ∈ V,N(u, [v]) = v′},

(iv) starting with V [u]
t := {(u, t)} we recursively construct generic anchor sets V [v]

t ⊂ [v]×T
for all t ∈ T large enough as follows: For all ([u], [v]) ∈ [A], denote d = d(([u], [v])),
and put

Ṽ
[v]
t :=[v]× {t},

t
[u][v]
t := max{t′ + min d((u′, [v])) : u′ ∈ [u], (u′, t′) ∈ V [u]

t−d},

V
[u][v]
t :=N([v])×

{
t, . . . , t

[u][v]
t

}
,

V
[u][v]
t :=

{
(v′, tu + min d((u′, v′))) ∈ VT : u′ ∈ [u], v′ = N(u′, [v]),∃ tu ≤ t− d,

∃ ((u′, tu), (v′′, tv)) ∈ AT , tv > t
}
,

V
[u][v]
t :=Ṽ [v]

t ∪ V
[u][v]
t ∪ V [u][v]

t ,

V
[v]
t :=

⋃
{V [u][v]

t : (u, v) ∈ A, u 6= v}.

Note that the sets V [v]
t , v ∈ V, t ∈ T, can be computed a priori because the time-expanded

graph GT has the same structure for all t ∈ T . Now the aim is to select sets V [v]
t ⊆ V (A2)

for appropriate time steps t ∈ T such that the subset A′2 ⊆ A2 with V [v]
t ⊆ V (A′2) can be

easily constructed. For this we define the following sequences of time steps.

Frank Fischer and Christoph Helmberg 53

I Definition 5. Let t ∈ T and [w] ∈ [V]. Then T [w],t = (τ ([w],t)
[u])[u]�[w] is defined by

τ
([w],t)
[w] := t,

τ
([w],t)
[u] := min

{
τ

([w],t)
[v] − d(([u], [v])) : (u, v) ∈ A, u ≺ v � w

}
.

For each node w ∈ V we define

t[w] := min
{
t : ∀ v � w, V [v]

τ
([w],t)
[v]

⊆ V (A2) \ V (A1)
}
.

One can think of T ([w],t) as time steps such that the V [u]
τ

([w],t)
[u]

, u � w, contain the nodes of

the fastest paths from some v � w to w ending in V
[w]
t and t[w] is the smallest possible

time index such that all those paths are contained in A2. Again, these sequences can be
computed a priori because they do not depend on the concrete partition A1∪̇A2 and are
identically up to a shift of the last time-index t. The minimal possible time step t[w] has to
be computed for each concrete A2 which can be done efficiently with the sequences known
in advance. Note, the sequence T ([u],t) would be sufficient to construct a set A′2 but this set
can be quite large. In order to improve this, we combine several of the sequences above as
follows.

I Definition 6.

∆([u], [v]) :=
{
δ ∈ N : δ ≥ d(([u], [v])),∀ (u, tu) ∈ V [u]

t ,∃ ((u, tu), (v, tv)) ∈ AT ,[(
(v, tv) ∈ V [u][v]

t+δ

)
∨ ((v, v) ∈ A, tv ≤ t+ δ)

]
,∀ t ∈ T large enough

}
.

Note, by construction we have d(([u], [v])) = min ∆([u], [v]). Each δ ∈ ∆([u], [v]) is a shift
such that any path ending in V [u]

t for some t ∈ T can be extended to some node in V [u]
t+δ and

can also be computed in advance.
1. T [u] := {t[u]}.

2. T [u] :=
{

min
{
tw − δ : tw − δ ≥ t[u], δ ∈ ∆([u], [w]),∀ (u, tu) ∈ V [u]

tw−δ,∃ (v, tv) ∈ V [w]
tw ,

∃ (u, tu)(v, t′v) . . . (v, tv) ⊂ A2

}
: tw ∈ T [w], (u,w) ∈ A, u ≺ w

}
.

In particular, δ = d(([u], [v])) ∈ ∆([u], [v]) is feasible. Using these sets we define

Ṽ :=
⋃
u∈V

⋃
t∈T [u]

V
[u]
t and Ã := {((u, tu), (v, tv)) ∈ A2 : (u, tu), (v, tv) ∈ Ṽ }.

Once ∆([u], [v]) is available, it is not hard to compute the sets T [u], u ∈ V, and therefore Ṽ
and Ã. The set Ã is already large enough so that for any sequence [u1] . . . [un], ([ui], [ui+1]) ∈
[A]), i = 1, . . . , n− 1, there is a path P = v1 . . . vm such that V (P) ∩ [ui] 6= ∅. In a last step
we need to enlarge Ã by some further arcs.

I Definition 7.

V̂ [u] :=V [u]
t[u]

ATMOS ’10

54 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

and, for u ≺ u,

V̂ [u] :=
{

(u, t) ∈ V (A2) : ∃ (u′, t′) ∈
⋃

u′′∈[u]

Bu′′ ∪
⋃

t̄∈T [u]

V
[u]
t̄
, t ≤ t′

}
with

Bu :={(u, tu) : ∃ ((u, tu), (v, tv)) ∈ A2, (v, tv) ∈ V̂ [v], ((v, v) ∈ A ∨ (v, tv) ∈ ∂A1),

∃ t ∈ T [u],∃ (u′, t′u) ∈ V
[u]
t ,

@ (u′, t′u)(v, t′v) . . . (v, t′v + k) ⊂ A2, t
′
v + k = tv}

∪{(u, tu) : ∃ ((u, tu), (v, tv)) ∈ A2, (v, tv) ∈ V̂ [v],

∃ ((v, tv), (w, tw)) ∈ A2, v 6= w,∃ t ∈ T [u],∃ (u′, t′u) ∈ V
[u]
t ,

@ (u′, t′u)(v′, t′v) . . . (v′, t′v + k)(w, tw) ⊆ A2, v
′ ∈ [v], t′v + k ≤ tv},

and finally collecting all nodes together

V ′ :=
⋃
u∈V

V̂ [u],

A′2 := {((u, tu), (v, tv)) ∈ A2 : (u, tu), (v, tv) ∈ V ′}.

The sets V̂ [u], u ∈ V, and Bu, u ∈ V, can be computed efficiently, starting from u and then
going back along the partial ordering. The sets Bu ensure that we can reroute all paths
reentering into V ′.

I Theorem 8. The graph G′T = (V ′T , A′T) with A′T = A1∪̇A′2 and V ′T = V (A′2) is a valid
subnetwork of GT w.r.t. c0 satisfying (C1).

The proof of the theorem is technically involved and deferred to the appendix.
The train-graphs Gr, t ∈ R, have the structure required for the construction above. The

configuration graphs Ga, a ∈ AI , however, have not, but since their cost function is zero, it
is trivial to extend valid subnetworks.

3.3 Rounding Heuristic
In order to obtain integer solutions, we use rounding heuristics based on the approximated
relaxed solution generated by the bundle method. The main goal of the heuristic is to
preserve the main characteristics of the relaxed solution while generating integral train paths.
Therefore an incremental rounding is applied to generate integer flows for some trains as long
as these flows do not deviate too much from the fractional flow. If further rounding produces
solutions too far off the relaxation, we resolve the relaxation with partially fixed train paths.
In particular, we used the following general framework for our rounding heuristics.

First we identify some conflicts in the relaxed solution. Two trains r1, r2 ∈ R are
in conflict on some infrastructure arc a ∈ AI if their average flow-times are too close
to each other, i. e., |t̄(r2, a) − t̄(r1, a)| ≤ CH(r1, r2, a) where CH(r1, r2, a) is some con-
stant, which usually depends on the headway-times between r1, r2 on a. Let C = {C =
(r1, r2, a, t) : r1, r2 are in conflict on a at time t} be the set of conflicts. The heuristic chooses
some conflict C = (r1, r2, a, t) ∈ C and tries some variants of runs for r1, r2 up to a (keeping
the trains as close to the relaxed solution as possible) while no other train moves. The best
variant w.r.t. some value-function is then fixed. When a variant is fixed, all arcs that are
blocked by the fixed arcs due to some constraints are removed from the fractional solution.
This may lead to the case in which some train does not have any flow left in the relaxed
solution over some infrastructure arc. In this situation we mark this train as “killed” from
this arc on. The algorithm is outlined as follows.

Frank Fischer and Christoph Helmberg 55

1. Solve the relaxation, determine all conflicts C.
2. While C 6= ∅

a. get C = (r1, r2, a, t) ∈ C with t minimal, set C := C \ {C},
b. if r1 or r2 is killed before a, kill both trains and go to 2,
c. try several possible variants of running r1, r2 until C,
d. rate the variants and select the best one,
e. fix the variant, remove all blocked arcs from the relaxed solution, kill trains if neces-

sary,
f. go to 2,

3. if not all trains are finished go to 1.

Usually the relaxation is not solved on the complete interval but only until some time
horizon. The horizon is moved further in time as more and more time steps are fixed by the
heuristic. Because the step sizes by which the horizon is moved are not fixed a priori but
determined during the solution process, we call this approach dynamic rolling horizon.

3.4 Load Balancing Functions
A main flaw of approximated solutions obtained via Lagrange-relaxation is that they tend to
use too much capacity on arcs and nodes. Especially the configuration constraints xre = xae′
are often violated by the approximate solution since a single constraint with small fractional
flow on xre, say xre < 0.1, is regarded as “almost feasible”. These contribute only a small
value to the subgradient. Therefore the relaxed solution often splits the train-flows into
many small fractional paths violating configuration constraints by a tiny amount. High
precision solutions are required to counter this effect, these entail rather long computation
times for bundle methods.

This motivates the introduction of load balancing functions on arcs, which can be seen
as a soft variant of headway constraints. For each train arc e = ((u, b), (u′, b′)) ∈ Ar, u 6=
u′, corresponding to some infrastructure arc a = (u, u′) ∈ AI we assign a value βe > 0
representing the amount of capacity in time steps the usage of e would block. E. g., if all
headway-times of e would be two time-steps, then βe = 3 since the usage of e would not
only block the arc a at the time step of e but also one time step before and one after.

The usage-level of an arc a = (u, u′) ∈ AI in the interval [t0, t0 + ∆] may be represented
by a weighted sum of the form

∑
r∈R

∑
e=((u,b),(u′,b))∈

⋃
Ar

t+∆∑
t=t0

βex
r
(((u,b),t),((u′,b′),t′)).

The purpose of the load-balancing function is to distribute capacity consumption on an arc
equally over time. Therefore we introduce a convex function fa,tb : R+ → R+ with

0 ∈ Argmin{fa,tb (z) : z ∈ R+}, (6)

add −
∑
a∈AI

∑
t∈T f

a,t
b (za,t) to the objective function and add coupling constraints

∑
r∈R

∑
e=((u,b),(u′,b))∈

⋃
Ar

t+∆∑
t=t0

βex
r
(((u,b),t),((u′,b′),t′)) ≤ z

a,t, a = (u, u′) ∈ AI , u 6= u′. (7)

Note, condition (6) allows to formulate the constraint (7) as an inequality. With this the
global cost function satisfies c|A2

d
≥ c0|A2

d
during the execution of the bundle method which

ATMOS ’10

56 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

is required by the dynamic graph generation. In our implementation we choose piecewise
linear convex functions fa,tb that balance free minutes in a certain time-interval against
train-minutes.

4 Numerical Results

For our tests we considered real-world instances of the German railway network, one which
consists of the main long-distance and freight route along the river Rhine (a.k.a. Rhein-Main-
Schiene) and another one which comprises roughly Baden-Wuerttemberg, for a time-period
of about 6 hours with a discretisation of one minute. Table 1 shows the sizes of those
instances.

Instance nodes arcs ld1)

trains
sd1)

trains
freight
trains

1 445 744 25 30 82
2 1776 3852 116 2640 632

1) ld = long distance trains, sd = short distance trains.
Table 1 Instances

We tested the algorithm with and without load-balancing and different horizon step sizes
on both instances, the different configurations are listed in Table 2. The results can be seen
in Table 3, all computations have been done on an Intel Core i7 CPU with 2.67 GHz and
12GB RAM.

run 1 2 3 4 5 6 7 8 9 10
load-distribution yes yes yes yes no no no no yes no

horizon-size1) 30 30 60 30 30 30 60 30 60 60
look-ahead size2) 30 60 30 60 30 60 30 60 120 120

1) maximal number of minutes to be fixed in one iteration,
2) additional number of minutes after horizon-size, in which the relaxation and

heuristic solutions will be computed but not fixed before the next iteration.
Table 2 Test parameters

Table 3 indicates that the generated solutions have few delays and exhibit large savings
in time compared with the original timetable of the trains. The main short-coming of the
solutions is the violation of a few capacity constraints. The main motivation for introducing
load-balancing functions was to get a better distribution of the single train runs in the relaxed
solution. Because the rounding heuristic is guided by the relaxation, a good distribution
leaves more room for the rounding heuristic to find feasible integer routes. As Table 3
shows, the introduction of load-balancing functions reduced the number of conflicts as well
as the number and size of delayed passenger trains whereas the saved time for freight trains
decreases, as expected.

In order to demonstrate the benefits of dynamic graph generation, Table 4 compares the
number of all arcs in the train-networks with and without dynamic graph generation (for
the dynamic case, the numbers are taken at the end of the relaxation).

Note that this table does only count the arcs of the train-graphs not the arcs of the con-
figuration networks. This is because configuration networks grow very fast: A configuration

Frank Fischer and Christoph Helmberg 57

instance run late
ld1)

avg.
delay2)

ld

max.
delay3)

ld

late
sd

avg.
delay

sd

max.
delay

sd

avg.
sav.

freight4)

#conf.5) solu-
tion
time

1 1 0 0 0 3 334 552 3904 8 784s
1 2 0 0 78 4 723 1482 3992 13 1242s
1 3 2 882 1386 6 571 1212 3950 13 841s
1 4 2 342 486 4 768 864 4150 4 1076s
1 5 0 0 78 5 828 2262 4594 12 516s
1 6 1 378 378 6 513 1386 4524 19 867s
1 7 3 578 1038 4 595 798 4297 20 569s
1 8 2 312 366 5 420 852 4232 14 778s
2 9 4 358 798 309 532 2700 972 44 7.5h
2 10 6 526 618 334 503 5196 1045 85 3h
2 4 3 353 912 307 476 1644 942 70 4.3h
2 8 8 692 1254 336 492 2400 1056 75 1.5h

1) number of trains with ≥ 3 minutes delay w.r.t. predefined timetable,
2) average maximal delay in seconds of trains with ≥ 3 minutes delay w.r.t. predefined

timetable,
3) maximal delay in seconds of late trains w.r.t. predefined timetable, original timetable,
4) average savings of freight trains in seconds compared with the original timetable,
5) number of unresolved capacity conflicts.

Table 3 Solution quality

inst. maximal
number of
time-steps

static dynamic inst. maximal
number of
time-steps

static dynamic

1 3600s 876162 275265 2 3600s 3654905 579152
1 7200s 1777667 312326 2 7200s 9476644 830430
1 10800s 3008239 476651 2 10800s 17573262 1195572

Table 4 Arc count for static and dynamic graphs

network on an arc with five trains where each train has all 4 possible running behaviours
contains for a period of 60 time steps about

60 · (4 · 5 · 4 · (5− 1)︸ ︷︷ ︸
headway arcs

+ 2 · 4 · 5︸ ︷︷ ︸
holdover and configuration arcs

) ≥ 20000

arcs. Because each infrastructure arc has a corresponding configuration network and there
are several hundred arcs in the infrastructure network, this leads to a huge number of
variables which cannot be handled without dynamic generation, especially since most arcs
carry more than only five trains per hour.

A Proofs

I Observation 9. Assume t ∈ T and (v, tv) ∈ V [u][v]
t . Then tv ≤ t

[u][v]
t .

Proof. For (v, tv) ∈ Ṽ [v]
t or (v, tv) ∈ V

[u][v]
t the assertion is clear. If (v, tv) ∈ V [u][v]

t there
must be a (u, tu) ∈ VT with tu = tv − min d((u, v)) ≤ t − d and v = N(u, [v]). Because

ATMOS ’10

58 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

(u, t− d) ∈ V [u]
t−d we have t[u][v]

t ≥ t− d+ min d((u, v)) ≥ tu + min d((u, v)) = tv. J

I Observation 10. Let ((u, tu), (v, tv)) ∈ AT be an arc, u ≺ v and let t ∈ T with tv ≥ t > d

where d := d(([u], [v])).

(i) If tu ≤ t−d then there is an arc ((u, tu), (v′, t′v)) ∈ AT with t′v ≤ tv and (v′, t′v) ∈ V
[u][v]
t .

(ii) If ∃ ṽ ∈ [v], (ṽ, tv) ∈ V [u][v]
t , then there is an arc ((u, tu), (v′, t′v)) ∈ AT with t′v ≤ tv

and (v′, t′v) ∈ V
[u][v]
t ⊆ V [v]

t .

Proof.

(i) If tv = t we know (v, tv) ∈ Ṽ [v]
t ⊆ V

[u][v]
t . So assume tv > t. Then by definition we

have (N(u, [v]), tu + min d((u, [v]))) ∈ V [u][v]
t ⊆ V [u][v]

t .
(ii) If tu ≤ t − d we are in case (i), so assume tu > t − d. We set v′ := N(u, [v]) and

t′v := tu+min d((u, v)). On the one hand we have t′v > t−d+min d((u, v)) ≥ t and on
the other hand we know t′v ≤ tv ≤ t

[u][v]
t by assumption. It follows (v′, t′v) ∈ V

[u][v]
t ⊆

V
[u][v]
t .

J

I Proposition 11. The arc set Ã has the following properties.

(i) Let [u1] . . . [un] ⊆ [A] be a path. Then there are time-steps ti ∈ T [ui], i = 1, . . . , n,
such that ti + δi = ti+1, i = 1, . . . , n− 1, for some δi ∈ ∆([ui], [ui+1]).

(ii) Let [u1] . . . [um] ⊆ [A] be a path with ti ∈ T [ui], i = 1, . . . ,m, and δi ∈ ∆([ui], [ui+1]),
ti + δi = ti+1, i = 1, . . . ,m− 1. For any (v1, tv1) ∈ V

[v1]
t1 there is a path

P := (v1, tv1)(v2, t1v2
) . . . (v2, tn2

v2
)(v3, t1v3

) . . . (vm, tnmvm)

with [P] = [u1] . . . [um] and (vi, tnivi) ∈ V
[ui−1][ui]
ti , i = 2, . . . ,m.

(iii) Let P = (u1, tu1) . . . (un, tun) ⊆ A2 be a path and let ti ∈ T [ui], i = 1, . . . ,m, and
δi ∈ ∆([ui], [ui+1]), ti + δi = ti+1, i = 1, . . . ,m− 1, be defined as in (i) for [u1] . . . [un].
If tui ≤ ti for some i = 1, . . . , n and tui+1 > ti+1 then there is a (v, t) ∈ V [ui][ui+1]

ti+1
such

that t ≤ tui+1 and ((ui, tui), (v, t)) ∈ AT .

Proof.

(i) For n = 1 we know by definition there exists a t1 ∈ T [u1].
For n > 1 we know by induction there are time steps ti ∈ T [ui], i = 2, . . . , n, and
δi ∈ ∆([ui], [ui+1]), i = 2, . . . , n− 1, with ti + δi = ti+1, i = 2, . . . , n− 1. By definition
of T [u1] we have a δ1 ∈ ∆([u1], [u2]) such that t1 := t2 − δ1 ∈ T [v1].

(ii) Form = 1 the statement is clear. So letm > 1 and assume we have already constructed
the path (v1, t1v1

) . . . (vm−1, t
nm−1
vm−1). By definition of ∆([um−1], [um]) we know there

are a vm ∈ [um] and a t1vm ∈ T with ((vm−1, t
nm−1
vm−1), (vm, t1vm)) ∈ AT and (vm, t1vm) ∈

V
[um−1][um]
tm or ((vm, vm) ∈ A ∧ t1vm ≤ tm). In the first case we set nm := 1 and

the path (v1, t1v1
) . . . (vm−1, t

nm−1
vm−1)(vm, t1vm) has the desired property. Otherwise we

may insert wait-arcs (vm, t1vm)(vm, t1vm + 1) . . . (vm, tm) and appending those arcs is
sufficient because (vm, tm) ∈ Ṽ [um]

tm ⊆ V [um−1][um]
tm .

(iii) Because δi ≥ d := d(([ui][ui+1])) we know tui+1 > ti+1 = ti + δi ≥ ti + d and therefore
tui ≤ ti ≤ ti+1 − d. By Observation 10, (i) there is a (v, t) ∈ V

[ui][ui+1]
ti+1

such that
t ≤ tui+1 and ((ui, tui), (v, t)) ∈ AT .

J

Frank Fischer and Christoph Helmberg 59

I Proposition 12. Let P := (u, tu) . . . (v, tv) ⊆ A2 be a path with tu ≤ minT [u].

(i) If (v, tv) /∈ V ′, then there is a path P ′ := (u, tu) . . . (v′, t′v) with (v′, t′v) ∈ V
[v]
t , t ∈ T [v],

c(P ′) ≤ c(P) and |A(P ′) \A′2| < |A(P) \A′2|.
(ii) If (v, tv) ∈ ∂A1 and |A(P) \ A′2| > 0 then there is a path P ′ := (u, tu) . . . (v, tv) with

c(P ′) ≤ c(P) and |A(P ′) \A′2| < |A(P) \A′2|.

Proof.
(i) Assume [P] = [u1] . . . [un] and let ti ∈ T [ui], i = 1, . . . , n, be the time-steps as defined

in Proposition 11. Because (v, tv) /∈ V ′ ⊇ V
[v]
tn we have tu ≤ t1 and tv > tn there

must be some arc ((x, tx), (y, ty)) ∈ P with x ∈ [ui] and y ∈ [uj] for some i, j ∈
{1, . . . , n} so that tx ≤ ti and ty > tj . By Proposition 11, (iii) there is some arc
((x, tx), (y′, t′y)) ∈ AT with (y′, t′y) ∈ V

[uj]
tj = V

[y]
tj and t′y ≤ ty. So we may choose a

latest arc ((x̂, tx̂), (ŷ, tŷ)) ∈ P, x̂ ∈ [uk], such that there is an arc ((x̂, tx̂), (ŷ′, t′ŷ)) ∈ AT ,
(ŷ′, t′ŷ) ∈ V

[ŷ]
tl

, tl ∈ T [y], and t′ŷ ≤ tŷ. By Proposition 11, (ii) we find arcs

P1 := (ŷ′, t′ŷ)(vl+1, t
1
vl+1

) . . . (vl+1, t
nl+1
vl+1

) . . . (vn, tnnvn)

with (vi, tnivi) ∈ V
[ui−1][ui]
ti , i = l+1, . . . , n, and by Observation 9 we get tnivi ≤ t

[ui−1][ui]
tj .

Furthermore we know by Observation 10, (ii) for each arc ((p, tp), (q, tq)) ∈ P, q ∈
[ui], i = l+ 1, . . . , n, that tq > t

[ui−1][ui]
ti since otherwise we had a contradiction to the

choice of (x̂, tx̂). By (C1) the path

P ′ := (u, tu) . . . (x̂, tx̂)(ŷ′, t′ŷ)(vl+1, t
1
vl+1

) . . . (vn, tnnvn)

fulfills c(P ′) ≤ c(P) and |A(P ′) \A′2| < |A(P) \A′2|.
(ii) Let (w, tw) ∈ V (P) \ V ′ be a node. By (i) there is a path P1 = (u, tu) . . . (w′, t′w)

with (w′, t′w) ∈ V
[w]
tj , tj ∈ T [w] and c(P1) ≤ c((u, tu) . . . (w, tw)) and |A(P1) \ A′2| <

|A((u, tu) . . . (w, tw)) \ A′2|. Choose the first ((x, tx), (y, ty)) ∈ P with (x, tx) /∈ V ′,
(y, ty) ∈ V ′, (w, tw) ≺ (y, ty). Using Proposition 11, (ii) we may extend P1 by a
path P2 = (w′, t′w) . . . (x′, t′x), x′ ∈ [x], which satisfies by choice of (x, tx) : c(P2) ≤
c((w, tw) . . . (x, tx)). Because (x, tx) /∈ Bx ⊆ V ′ we are in one of two cases:
1. If (y, y) ∈ A or (y, ty) ∈ ∂A1 then by definition of Bx there is a path P3 =

(x′, t′x) . . . (y, ty) ⊂ A′2 or
2. if (y, y) /∈ A and (y, ty) /∈ ∂A1, then by definition of Bx there is a ((y, ty), (z, tz)) ∈

P and a path P3 = (x′, t′x) . . . (z, tz) ⊂ A2 that is also in A′2 except possibly the
last arc if (z, tz) /∈ V ′.

Then the path P ′ = P1P2P3 . . . (v, tv) satisfies c(P ′) ≤ c(P) and |A(P ′) \ A′2| <
|A(P) \A′2|.

J

Proof. (of Theorem 8): The path P fulfills the conditions of Proposition 12 and by applying
this proposition repeatedly we get a path P ′ ⊆ A2 with c0(P ′) ≤ c0(P). J

References
1 Ralf Borndörfer and Thomas Schlechte. Models for railway track allocation. In Chris-

tian Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, ATMOS 2007, Dagstuhl,
Germany, 2007. IBFI, Schloss Dagstuhl, Germany.

2 Ralf Borndörfer and Thomas Schlechte. A suitable model for a bi-criteria optimization
approach to railway track allocation. ZIB-Report 08-22, ZIB, 2008.

ATMOS ’10

60 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

3 U. Brännlund, P. O. Lindberg, A. Nou, and J. E. Nilsson. Railway timetabling using
lagrangian relaxation. Transportation Science, 32(4):358–369, 1998.

4 Valentina Cacchiani, Alberto Caprara, and Paolo Toth. A column generation approach
to train timetabling on a corridor. 4OR: A Quarterly Journal of Operations Research,
6(2):125–142, June 2008.

5 Gabrio Curzio Caimi, Martin Fuchsberger, Marco Laumanns, and Kaspar Schüpbach. 09.
periodic railway timetabling with event flexibility. In Christian Liebchen, Ravindra K.
Ahuja, and Juan A. Mesa, editors, ATMOS 2007, Dagstuhl, Germany, 2007. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

6 Gabrio Curzio Caimi, Martin Fuchsberger, Marco Laumanns, Kaspar Schüpbach, and Ste-
fan Wörner. The periodic service intention as a conceptual framework for generating timeta-
bles with partial periodicity. In ISROR Proceedings, 2009, 2009.

7 A. Caprara, M. Fischetti, P. Guida, M. Monaci, G. Sacco, and P. Toth. Solution of real-
world train timetabling problems. In HICSS ’01: Proceedings of the 34th Annual Hawaii
International Conference on System Sciences (HICSS-34)-Volume 3, page 3030, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

8 Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and solving the train
timetabling problem. Oper. Res., 50(5):851–861, 2002.

9 Alberto Caprara, Michele Monaci, Paolo Toth, and Pier Luigi Guida. A lagrangian heuristic
algorithm for a real-world train timetabling problem. Discrete Appl. Math., 154(5):738–753,
2006.

10 Daniel Delling and Giacomo Nannicini. Core routing on dynamic time-
dependent road-networks. Technical report, Ecole Polytechnique, 2008.
http://www.optimization-online.org/DB_HTML/2008/12/2164.html.

11 Frank Fischer, Christoph Helmberg, Jürgen Janßen, and Boris Krostitz. Towards solving
very large scale train timetabling problems by lagrangian relaxation. In Matteo Fischetti
and Peter Widmayer, editors, ATMOS 2008, Dagstuhl, Germany, 2008. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

12 Christoph Helmberg. ConicBundle 0.3.6. Fakultät für Mathematik, Technische Universität
Chemnitz, 2010. http://www.tu-chemnitz.de/∼helmberg/ConicBundle.

13 Christian Liebchen. Periodic Timetable Optimization in Public Transport. PhD thesis,
Technical University Berlin, 2006.

14 Giacomo Nannicini, Philippe Baptiste, Gilles Barbier, Daniel Krob, and Leo Liberti. Fast
paths in large-scale dynamic road networks. Comput. Optim. Appl., 45(1):143–158, 2010.

15 Peter Sanders and Dominik Schultes. Engineering highway hierarchies. In ESA’06: Pro-
ceedings of the 14th conference on Annual European Symposium, pages 804–816, London,
UK, 2006. Springer-Verlag.

16 Michael Schachtebeck and Anita Schöbel. IP-based techniques for delay management with
priority decisions. In Matteo Fischetti and Peter Widmayer, editors, ATMOS, volume 08002
of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.

17 Anita Schöbel. Integer programming approaches for solving the delay management prob-
lem. In Frank Geraets, Leo G. Kroon, Anita Schöbel, Dorothea Wagner, and Christos D.
Zaroliagis, editors, ATMOS, volume 4359 of Lecture Notes in Computer Science, pages
145–170. Springer, 2004.

18 Dominik Schultes and Peter Sanders. Dynamic highway-node routing. InWEA’07: Proceed-
ings of the 6th international conference on Experimental algorithms, pages 66–79, Berlin,
Heidelberg, 2007. Springer-Verlag.

19 P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM
J. Discret. Math., 2(4):550–581, 1989.

	Introduction
	The train timetabling problem
	Problem description
	Model

	Solution Methods
	Bundle Method
	Dynamic Graph Generation
	Rounding Heuristic
	Load Balancing Functions

	Numerical Results
	Proofs

