
Vertex Disjoint Paths for Dispatching in Railways∗

Holger Flier1, Matúš Mihalák1, Anita Schöbel2, Peter Widmayer1,
and Anna Zych1

1 ETH Zürich, Institute of Theoretical Computer Science, Switzerland
{firstname.lastname}@inf.ethz.ch

2 Georg-August Universität Göttingen, Germany
Institut für Numerische und Angewandte Mathematik
schoebel@math.uni-goettingen.de

Abstract
We study variants of the vertex disjoint paths problem in planar graphs where paths have to be
selected from a given set of paths. We study the problem as a decision, maximization, and routing-
in-rounds problem. Although all considered variants are NP-hard in planar graphs, restrictions
on the location of the terminals, motivated by railway applications, lead to polynomially solvable
cases for the decision and maximization versions of the problem, and to a p-approximation
algorithm for the routing-in-rounds problem, where p is the maximum number of alternative
paths for a terminal pair.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems—Routing and
layout, G.2.2 Graph Theory—Path and circuit problems, G.2.3 Applications

Keywords and phrases algorithms, approximation, complexity, graph theory, railways, routing,
transportation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.61

1 Introduction

We study variants of the vertex disjoint paths problem in planar graphs where for each
terminal pair a set of alternative paths is given. Our motivation to study these problems
arises from railway applications. During operations, railway dispatchers face the challenging
problem of rerouting and rescheduling trains in the presence of delays. Once a train is
delayed, it might be in conflict with other trains that are planned to use the same track
resources. The dispatcher then has to find a new feasible plan in a very short amount of time.
Interestingly enough, these complicated decisions are carried out mostly by humans today,
with only basic computer support such as graphical monitoring tools. Nevertheless, the
dispatching decisions have a considerable impact on reliability and punctuality as experienced
by passengers. Motivated by the importance of the problem and by the lack of methods that
can cope with both practical problem sizes and the real-time setting, we study special vertex
disjoint paths problems which are abstractions of the dispatching problem.

Typically, a railway station is modeled as a graph with nodes representing points on the
tracks, and edges representing track segments that connect such points. We study the case
where the resulting graphs are planar, which is the case for many junctions and stations.
Considering only the aspect of routing, two trains are in conflict if their routes share a point

∗ This work was partially funded by the Swiss National Science Foundation (SNF grant no. 200021-
125033/1).

© Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer and Anna Zych;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 61–73

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

62 Vertex Disjoint Paths for Dispatching in Railways

on the tracks. Hence, conflict free routes correspond to vertex disjoint paths. Not every
route which is physically feasible is desirable in practice, though. Therefore, railway planners
allow for each train only a small set of alternative paths for each train. This leads us to
various vertex disjoint paths problems where for each terminal pair, corresponding to a train
with a given start and target in the railway network, a path has to be chosen from a given
set of paths, i.e., the possible set of routes for the train.

1.1 Related Work
We give a brief overview both over literature related to dispatching and results on disjoint
paths problems. For a recent survey on railway track allocation problems, see [17]. As noted
therein, most of the approaches known so far are impractical in a real time environment.

One line of research aiming at real-time solutions is based on the alternative graph
formulation [19], originally used to model job shop variants. The formulation allows to model
many constraints, e.g. scheduled stops, rolling stock connections and passenger connections,
but does not allow for alternative routes or train speed adaptation [3]. A branch-and-bound
algorithm for finding a conflict-free train schedule, minimizing the largest delay, is developed
in [4]. In order to solve the compound problem of train sequencing and train routing, where a
set of possible routes is given as input, a tabu search is suggested in [2]. For given routes and
fixed train speeds, the branch and bound algorithm of [4] is used as a sub-procedure to solve
the train sequencing problem. A procedure for handling train speed dynamics that respect
signal aspects is presented in [3]. Assuming fixed routes, the coordination of train speeds is
performed by iteratively solving the scheduling problem with fixed speeds and updating the
train speed profiles if these are not physically realizable.

A complexity study on routing trains through railway stations is given in [15]. There,
trains are given a fixed set of inbound and outbound routes to choose from. For each route,
all track sections are reserved at once but released section-wise. The problem of deciding
whether a feasible schedule exists in which all trains can be scheduled is NP-complete already
for 3 possible routes per train, but reduces to 2-SAT for at most 2 possible routes per train.
For a fixed number of track sections, a fixed parameter algorithm is provided.

Finally, we give a few pointers to literature on vertex disjoint paths problems where the
paths can be chosen arbitrarily. The problem of finding k vertex disjoint paths between k
pairs of terminals is NP-complete already for k = 2 in directed non-planar graphs [8], and if
k is not fixed, even in planar graphs [18]. The vertex disjoint paths problem is solvable in
polynomial time in undirected graphs for any fixed k [21], and in directed planar graphs for
any fixed k [22]. Shortest disjoint paths are treated in [13]. Practically efficient algorithms
for special cases of the disjoint paths problem are surveyed in [20].

1.2 Problem Definition
Throughout the paper we study a variety of optimization problems. They share a common
input, but differ in objectives and additional assumptions on the input. In what follows, first
we define the input, and then we categorize the studied problems.

An input instance for the problems we study is a triple (G,T,P), defined as follows:
G = (V,E) is an undirected plane graph, i.e., a planar embedding of a planar graph G. T ⊆ V
is a set of k terminal pairs {si, ti}, i = 1, 2, . . . , k. Vertices in T are called terminals. A path
from si to ti is called an si-ti-path. P = {Pi}i=1...k is a collection of sets of paths, where Pi
is a set of si-ti-paths for every i = 1, . . . , k. We denote by p the maximum cardinality of a
set in P, so p := max1≤i≤k |Pi|. We denote by

⋃
P the union of all sets of the collection,

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 63

thus
⋃
P :=

⋃
i=1...k Pi is the set of all given paths. The plane embedding of G separates

the plane into distinct regions, called faces, bordered by graph edges. The unbounded region
outside the graph’s embedding is called the outer face. We study the following algorithmic
problems:

Decision Problem: Decide whether there are k vertex disjoint paths P1, P2, . . . , Pk, where
for each i = 1, 2, . . . , k path Pi is from Pi.

Maximization Problem: Find a maximum number of vertex disjoint paths Pi1 , Pi2 , . . . , Pim
where every Pij , j = 1, . . . ,m, is from Pij

Routing-in-Rounds Problem: Find a labeled set of paths S = {Pi}i=1...k, Pi ∈ Pi, where
each path Pi is assigned a label (often called round) ri ∈ N, such that for any Pi, Pj ∈ S
if Pi ∩ Pj 6= ∅ then ri 6= rj . The objective is to minimize the number of different labels
(rounds) that were assigned.

Clearly, the decision problem can be seen both as the maximization problem, where we
are to decide whether m equals k, and as the routing-in-rounds problem, where we are to
decide whether one round suffices.

We study the problem for the following special cases of the positions of the terminals in
input graph G. Besides the general case where the terminals can be any nodes of G, we also
study the case where the terminals lie on the outer face of G. For the latter case, we also
consider two special sub-cases.

First, we consider the case where the terminals appear in a counterclockwise traversal on
the boundary as a sequence s1, s2, . . . , sk, tπ(1), tπ(2), . . . , tπ(k) for some permutation π. We
say that such an instance has a separating cut, or that the terminals can be separated. See
Figure 3 for an example.

Second, we consider a special case of a separating cut, where the terminals appear on the
boundary of the outer face in the order s1, s2, . . . , sk, tk, tk−1, . . . , t2, t1, in which case we say
that the terminals are sorted.

Depending on the considered optimization goal and assumptions made about the terminals,
we obtain a particular computational problem which we refer to as Goal-VDP-Terminals
using the following naming convention: Goal is D, M or R if the problem is a decision
problem (D), maximization problem (M), or routing-in-rounds problem (R), respectively;
VDP stands for vertex disjoint paths (and appears in every name); Terminals is either
Any, Out, Sep, or Sort, if we assume nothing about the positions of the terminals (Any),
the terminals appear on the outer face (Out), the terminals can be separated (Sep), or the
terminals are sorted (Sor) respectively. Thus, for example, M-VDP-Out is a computational
problem which asks, for a given plane graph G with terminals on the outer face of G, to find
a maximum number of vertex disjoint paths.

1.3 Overview of the paper
This paper is structured as follows: We discuss variants of the decision problem in Section 2,
of the maximization problem in Section 3, and of the routing-in-rounds problem in Section 4.
An overview of our most important complexity results is given in Table 1.

2 D-VDP: Decision Problems

In this section we consider the problem of deciding whether all trains can be dispatched
in the same round. An input instance is a triple (G,T,P), where G is a plane graph, T is
a set of k terminal pairs {si, ti}, i = 1, 2, · · · , k, and P = {Pi}i=1...k, where Pi is a set of

ATMOS ’10

64 Vertex Disjoint Paths for Dispatching in Railways

D-VDP M-VDP R-VDP

Any NP-complete for p ≥ 3 NP-hard for p ≥ 1
APX-hard

Out open, trivial for p = 1 open

Sep
polynomial

p-approximable,
APX-complete for p ≥ 2,
polynomial for p = 1Sort

Table 1 Summary of complexity results

si-ti-paths. The problem is to decide whether there are k vertex disjoint si-ti-paths Pi ∈ Pi,
i = 1, 2, · · · , k.

We show that for planar graphs the general problem D-VDP-Any is NP-complete
whenever p ≥ 3, and solvable in polynomial time otherwise. The special case D-VDP-Sep,
where the terminals can be separated, can be solved in polynomial time by reduction to
M-VDP-Sep, for which we give a polynomial time algorithm in Section 3.3.

The complexity of D-VDP-Out remains open for p ≥ 3. We remark that a necessary
condition for the existence of k vertex disjoint paths is that they may not cross each other.
Therefore, to study the complexity of D-VDP-Out, it suffices to consider instances as
follows. We say that the terminals are nested, if for no two terminal pairs si, ti and sj , tj ,
i 6= j, the terminals occur in the sequence si, sj , ti, tj when traversing the boundary of the
graph in counterclockwise order. Note that if terminals occur in the sequence si, sj , ti, tj ,
any two paths Pi ∈ Pi and Pj ∈ Pj intersect.
I Remark. If there exists a solution for an instance of D-VDP-Out, then the terminals
must be nested.

Next, we prove NP-completeness of D-VDP-Any for p ≥ 3 by reduction from Pla-
nar3SAT, which is defined as follows. Let φ = (X,C) be an instance of 3SAT, with variable
set X = {x1, . . . xn} and clauses C = {C1 . . . Cm} such that each clause consists of exactly
3 literals. Define a formula graph Gφ = (V,E) with vertex set V = X ∪ C, and edges
E = {(xk, Ci) : xk ∈ Ci or xk ∈ Ci}. Planar3SAT is 3SAT restricted to instances φ for
which Gφ is planar, and was proved NP-complete in [16].

I Theorem 1. D-VDP-Any is NP-Complete for p ≥ 3.

Proof. Let φ be an instance of Planar3SAT. To construct an instance of a graph Gp =
(Vp, Ep) for D-VDP-Any, we start with Gφ = (V,E). We substitute each node Ci ∈ V
by a corresponding clause gadget, and each node xi by a corresponding variable gadget, as
described in the following.

A clause gadget as shown in Figure a is created for each clause Ci ∈ φ. It consists of
6 nodes. Let Ci = {li1, li2, li3}, where lij are the literals of Ci. Three nodes of the gadget
correspond to these literals. They are connected to a path (si,mi, ti) in a way that depends on
a plane drawing ofGφ. Let e1, e2, e3 be the edges in a counterclockwise order connecting vertex
Ci ∈ V in Gφ with vertices x1, x2, x3 ∈ V , where li1 ∈ {x1, x1}, li2 ∈ {x2, x2}, li3 ∈ {x3, x3}.
We add (li1, si), (li1,mi), (li2,mi), (li2, ti), (li3, si), (li3, ti) to Ep, as shown in Figure a. This
gadget is planar. Moreover, if we substitute node Ci ∈ Gφ with its clause gadget, literal
nodes of the gadget can be connected with corresponding variable nodes preserving the
planarity of Gφ. We set {si, ti} as a terminal pair in Gp. We let Pi be the following set of
fixed paths: {(si, li1,mi, ti), (si,mi, l

i
2, ti), (si, li3, ti)}.

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 65

x1

x2

x3

si ti
mi

Ci

x1 x2 x3

(a) Clause gadget with terminal pair.

sm+k tm+k

Ci

Cq

Cj

Cr

Cl

xk xk

xk xk xk

xk

(b) Variable gadget with terminal pair.

Figure 1 Transformation from Planar3SAT to D-VDP-Any.

Now we construct a gadget for each vertex xk ∈ Gφ. It consists of two terminal vertices
{sm+k, tm+k} and two fixed paths between them: Pm+k, Pm+k ∈ Pm+k. Path Pm+k contains
all the literals xk in the clause gadgets. We want to enforce, that if the solution contains
path Pm+k, then no other path containing literal xk can be chosen. Intuitively, choosing
Pm+k corresponds to setting xk to true, and choosing a path with xk on it for a terminal pair
of a clause gadget corresponds to satisfying the clause with literal xk. Similarly, path Pm+k
contains all the literals xk in the clause gadgets. In order to draw path Pm+k, we substitute
the edges that connect xk with clause gadgets containing xk by peaks on the path from sm+k
to tm+k. Thus, each peak reaches the corresponding clause gadget. We proceed analogically
to draw Pm+k. Obviously, Pm+k can intersect Pm+k, but in that case we add a vertex at the
spot of intersection to make Gp planar. The variable gadget is shown in Figure b.

We are asking for a choice of paths that would select one of the paths for each terminal
pair such that all selected paths are vertex disjoint. It remains to show that the initial
formula has a satisfying assignment if and only if such a choice exists.

Assume that m+ n disjoint paths, one for each terminal pair, can be chosen. To obtain a
satisfying assignment for φ, set xk to true if and only if Pm+k was chosen for terminal pair
{sm+k, tm+k}. To see that each clause Ci is satisfied by that assignment, let P ∈ Pi be the
path chosen for a terminal pair of the corresponding clause gadget, and let lij be a literal
of Ci lying on P . Assume w.l.o.g. that lij is a non-negated variable xj . In that case Pm+j
could not have been chosen, and therefore xj must have been set to true. Thus, clause Ci is
satisfied by xj .

Now assume there is a satisfying assignment for φ. For each xj , choose path Pm+j if xj
is set to true, and Pm+j otherwise. For each clause Ci, choose a path containing a literal
that is set to true. J

In the following, we prove that we can solve instances having at most two paths per train
in polynomial time by reduction to 2-SAT, which is solvable in polynomial time, see e.g. [9].

I Lemma 2. D-VDP-Any can be solved in polynomial time if p ≤ 2.

Proof. For an instance I of D-VDP-Any we create a 2-SAT formula φ(I) which admits
a satisfying assignment if and only if I has a solution. For each set Pi = {P 1

i , P
2
i } ∈ P we

create variables x1
i , x

2
i , and add a clause {x1

i , x
2
i } to φ(I). In order to satisfy these clauses,

one of the paths for each terminal pair has to be chosen, i.e., the corresponding variable has
to be set to true. Whenever two paths P kj and P li intersect, we add a clause {xkj , xli}. These
clauses forbid to choose two intersecting paths, i.e., rule out any assignment in which both
corresponding variables are set to true. J

ATMOS ’10

66 Vertex Disjoint Paths for Dispatching in Railways

v1 v2

v5

v4

v3

Cv4

w1

w2

v{v4,v3}

(a) Planar independent set instance.

s1 t1
t2

s2

t4

s4

s3 t3

s5 t5

w1

w2

(b) Transformation to M-VDP-Any

Figure 2 Transformation from PlanarIndependentSet to M-VDP-Any. Every vertex vi is
transformed into a terminal pair {si, ti}, and every edge e into an additional vertex ve. For each
terminal pair {si, ti}, create an si-ti-path (using auxiliary vertices and edges) that traverses (besides
the auxiliary vertices) exactly every vertex ve corresponding to an edge e adjacent to vi. Part of
the transformation is depicted in gray. (a) The maximum independent set is {v1, v3, v5}. (b) The
corresponding vertex disjoint paths are shown in bold.

3 M-VDP: Maximization Problems

In this section we consider variants of the maximization problem. An input instance is a triple
(G,T,P), where G is a plane graph, T is a set of k terminal pairs {si, ti}, i = 1, 2, · · · , k,
and P = {Pi}i=1...k, where Pi is a set of si-ti-paths. An output solution is a set S ⊆

⋃
P of

maximum cardinality, such that the paths of S are vertex disjoint (thus S ∩ Pi ≤ 1 for all
i = 1, . . . , k).

We first show that M-VDP-Any is NP-complete. We leave the complexity of M-VDP-
Out open but show polynomial time solvability for the special case where p = 1 and paths
in
⋃
P have a certain monotonicity property. Finally, we consider M-VDP-Sep and show

that it can be solved in polynomial time.

3.1 M-VDP-Any: Terminals anywhere
We show that M-VDP-Any is NP-hard already for the case p = 1 (i.e., when there is one
fixed path per terminal pair) by a reduction from the NP-complete problem PlanarInde-
pendentSet which is the problem of deciding whether a given planar graph contains, for a
given `, an independent set of size ` [9, GT20, p.194].

I Theorem 3. M-VDP-Any is NP-hard already for p = 1.

Proof. The reduction is illustrated in Fig. 2. Consider an instance of PlanarIndepen-
dentSet given by a planar graph G and an integer `. For every node v of G we construct a
terminal pair {sv, tv}. We further create for every edge e = {u, v} in G a vertex ve. We now
construct an sv − tv-path Pv for every vertex v in G such that two nodes u and v from G

are adjacent if and only if the paths Pu and Pv intersect. Our construction will result into
a planar graph which shows that the decision variant of M-VDP-any is an NP-complete
problem (and thus M-VDP-any is NP-hard). To explain how the paths Pv, v ∈ V , look
like, consider a planar embedding of G. Thus, vertices of G are points of the plane, and

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 67

edges of G are lines connecting the corresponding points. Place sv and tv close to each
other on the position of v. Place vertex ve into the middle of the line corresponding to edge
e. Let d denote the degree of vertex v in G. Consider the neighbors of v in a cyclic order
induced naturally by the cyclic order of the lines connecting v with its neighbors (the lines
correspond to the edges in G). If vertex v is adjacent to vertices v1, · · · , vd (in that order)
we construct a path from sv to tv that goes via vertices ve1 , ve2 , · · · , ved , where ei = {v, vi},
i = 1, · · · , d. For vertex v we introduce auxiliary vertices w1, · · · , wd−1 and let the path Pv
be sv, ve1 , w1, ve2 , w2, · · · , wd−1, ved , tv, and we also create the necessary edges for the path
Pv. We note that there are no other edges in the construction than that from the paths
Pv, v ∈ V (G). It is easy to see that the resulting graph is planar (if G does not contain a
minor of K5 or K3,3, then neither our modified instance does). Figure 2 suggests a planar
embedding of our construction that resembles in shape the embedding of G. Consider a
small-enough circle Cv centered in v that intersects only the lines corresponding to edges
adjacent to v, and every such line exactly once. Place sv and tv inside Cv. We place the
vertices wi on the circle Cv (i.e., close enough to v) and between the intersections of Cv with
the two lines connecting v with vi and vi+1, and draw the two lines connecting wi, vei+1 and
wi+1 very closely to the original line between v and vei+1 . It is also easy to see that two
vertices u, v from G are adjacent if and only if the two paths Pu and Pv intersect (at vertex
ve, e = {u, v}). J

We note that PlanarIndependentSet admits a PTAS [1] and thus our reduction,
although approximation-preserving, does not show any hardness of approximation. This
remains an interesting open problem. We also note that in contrary to the maximization
problem, D-VDP-Any with p = 1 is trivial to solve.

3.2 M-VDP-Out: Terminals on the outer face
We do not know the complexity of M-VDP-Out in general, but point to a similar open
problem in graph theory, namely the complexity of finding a maximum independent set in
outerstring graphs, e.g., see [14]. It is easy to see that the class of outerstring graphs and
the class of graphs considered in M-VDP-Out with p = 1 are equivalent: strings can be
represented by paths and vice versa.

There is, however, a polynomially solvable special case of M-VDP-Out. Consider the
special case of M-VDP-Out with p = 1 where any two paths intersect in at most one vertex,
and if they intersect, they cross each other. We call such paths monotone.
I Remark. M-VDP-Out with monotone paths and p = 1 can be solved in polynomial time.

Proof. By reduction to maximum independent set in circle graphs, for which a polynomial
time algorithm is given in [10]. A circle graph is the intersection graph of a family of chords
in a circle. Considering that the paths of the instance of M-VDP-Out are monotone and
have their ends on the outer face of the graph, it is easy to see that there is a family of chords
in a circle where two chords cross iff their corresponding paths cross. Further, because p = 1,
a maximum independent set in the corresponding circle graph corresponds to an optimal
solution of the considered instance of M-VDP-Out. J

3.3 M-VDP-Sep: Separating cut
In this section we consider instances with a separating cut, i.e., where the terminals appear in a
counterclockwise traversal of the outer face in the sequence s1, s2, . . . , sk, tπ(1), tπ(2), . . . , tπ(k)
for some permutation π of the numbers 1, 2, . . . , k. See Figure 3 for an example.

ATMOS ’10

68 Vertex Disjoint Paths for Dispatching in Railways

s1

s2

s3

t2

t1

t3

(a)

s1

s2

t1

s3

t2

t3

above p
p below p

(b)

Figure 3 An instance of M-VDP-Sep, i.e., all terminals lie on the outer face of G and there is
a separating cut in G. (a) The outer face is depicted in bold. (b) An s3 − t3 path p (dashed bold
line), the part above p (dark shaded area), and the part below p (light shaded area).

The setting has the following important property. Every path P ∈ Pi separates the plane
embedding of the graph into two parts. The part above P is the set in the plane enclosed by
the curve formed by the boundary of the outer face between ti and si (in counterclockwise
order) and by path P (from si to ti). The part below P is the set in the plane enclosed by the
curve formed by the boundary of the outer face between si and ti (in counterclockwise order)
and by path P (from ti to si). In the following we say that a point/path/vertex/etc. lies
above P if it lies in the part above P . We similarly define to lie below P . Observe that both
sets are compact and closed. They share only path P and otherwise are disjoint. Therefore
any path P ′ that lies above P and is disjoint to P is also disjoint to any path P ′′ that lies
below P . Observe also that if for some j the terminal sj lies above P and terminal tj lies
below P then there is no sj − tj path in G disjoint to P .

In the following, we show that the problem for such instances can be solved in polynomial
time. Precisely, we present an algorithm based on dynamic programming, that computes an
optimum solution and runs in time in O(k2 · p2). Thus, if p is polynomial in k, our algorithm
is also polynomial in k. In any case our algorithm is polynomial in the input size (as the
input for the problem lists explicitly all si-ti-paths).

The algorithm computes a table T [i, P] for every i = 1, . . . , k and every P ∈ Pi. The
entry T [i, P] is the size of an optimum solution of the subproblem in which path P ∈ Pi is
chosen, and all other paths can only be chosen from sets P1, . . . ,Pi−1. Initially, T [1, P] = 1
for all P ∈ P1. We now show how to inductively compute the whole table. Assume that the
table has been filled for all values of i smaller than j. We now show how to compute the
table entry T [j, P] for any P ∈ Pj . We set

T [j, P] = 1 + max
1≤l<j

P ′∈Pl;P∩P ′=∅

T [l, P ′].

The actual solutions (sets of paths) can be found using standard bookkeeping techniques.
The algorithm outputs

max
1≤i≤k
P∈Pi

T [i, P]

as the maximum number of disjoint paths.

I Theorem 4. M-VDP-Sep is solvable in time in O(k2 · p2), where k is the number of
terminal pairs and p is maximum number of paths per terminal pair.

Proof. The number of entries in T that the algorithm has to fill is
∑k
i=1 |Pi|, which is at

most k · p, where p := max1≤i≤k |Pi|. Computing an entry T [i, P] requires time linear in

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 69

the number of existing (i.e., so far computed) entries, i.e., at most O(k · p). Thus, the total
running time of the algorithm is O(k2 · p2).

To finish the proof of the theorem, we are left to prove that: (∗) the value stored in
T [i, P] indeed represents the size of an optimum solution of the subproblem in which path
P ∈ Pi is chosen, and all other paths can only be chosen from sets P1, . . . ,Pi−1. Once we
have this, it is then easy to see that the algorithm returns the maximum number of disjoint
paths.

To prove (∗) we proceed inductively on i. Trivially, the claim holds for all entries T [1, P],
P ∈ P1. Assume now that the claim holds for i < j. Let P ∈ Pj . We show that the
claim holds for T [j, P]. Let OPT be an optimum solution for the subproblem in which
path P ∈ Pj is chosen, and all other paths can only be chosen from sets P1, . . . ,Pj−1.
Consider the set OPT ′ := OPT \ {P}. Let a be the largest index such that there is a path
Pa from Pa in OPT ′. Thus, in OPT ′ there are only paths from P1, . . . ,Pa. By induction
hypothesis, T [a, Pa] ≥ |OPT ′|. Clearly, P and Pa are disjoint. Let us denote the set of
paths corresponding to T [a, P] by P (T [a, P]). In order to see that P is also disjoint to every
path in P (T [a, Pa]), consider the fact that every path P ′ ∈ P (T [a, Pa]) different from Pa
lies above Pa, and the path P lies below Pa. Thus the paths P (T [a, Pa]) plus the path P
are disjoint and we have |{P} ∪ P (T [a, Pa]) | = 1 + T [a, Pa] ≥ 1 + |OPT ′| = |OPT |, which
shows the claim. J

4 R-VDP : Routing in rounds

In this section we consider variants of the routing-in-rounds problem. An input instance is a
triple (G,T,P), where G is a plane graph, T is a set of k terminal pairs {si, ti}, i = 1, 2, · · · , k,
and P = {Pi}i=1...k, where Pi is a set of si-ti-paths. The solution S is a labeled set of paths
S = {Pi}i=1...k, Pi ∈ Pi. Each path Pi ∈ S is assigned a label ri ∈ N, such that for any
Pi, Pj ∈ S if Pi ∩ Pj 6= ∅ then ri 6= rj . Intuitively, the labels correspond to rounds, which
represent a rudimentary notion of time. If paths Pi and Pj are disjoint, the corresponding
trains can run at the same time (in the same round). Otherwise, to avoid collisions, we
need to schedule them in different rounds. We show that already R-VDP-Sor (terminals
sorted on the outer face) is APX-complete for any p ≥ 2. Further we show that R-VDP-Sep
(there is a separating cut) with p = 1 can be solved efficiently, and present a p-approximation
algorithm for the case of p ≥ 2.

4.1 R-VDP-Sor: Terminals sorted on the outer face
I Theorem 5. R-VDP-Sor for any p ≥ 2 is APX-complete.

Proof. By reduction from SetCover, which defined as follows. Given a collection C of
subsets of a ground set U , the SetCover problem asks for a collection C′ ⊆ C, such that
each ui ∈ U belong to at least one member of C′ and |C′| is minimized, see [9, SP5].

In the reduction, as illustrated in Figure 4, we transform any instance of SetCover
as follows. Every element ui ∈ U corresponds to one terminal pair {si, ti}. We let these
terminal pairs be drawn one below another in the plane graph we construct, the order is
arbitrary. Each occurrence of ui in a set Cj ∈ C corresponds to one si-ti-path. An si-ti-path
follows a straight line from si to ti, however contains one peak up. The position of the
peak denotes the set Cj in which ui occurs for that particular occurrence. For two different
occurrences in the same set ui, uj ∈ Cl, we let the corresponding paths be non-intersecting,
by aligning their peaks together in Cl position. If two elements occur in two different sets,

ATMOS ’10

70 Vertex Disjoint Paths for Dispatching in Railways

s1

s2

s3

s4

t1

t2

t3

t4

{1, 2} {1, 3} {1, 4} {2, 3, 4}

Figure 4 Reduction from set cover. Every element ai ∈ S is transformed into a terminal
pair {si, ti}. Each occurrence of an element ai in a subset Cj ∈ C is transformed into an si-ti-path,
such that two paths are disjoint if and only if they represent elements of the same set. Example
with S = {1, 2, 3, 4}, and C = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}. The chosen paths are drawn bold and
correspond to sets {1, 2} and {2, 3, 4}. Note that the terminal pair {s2, t2} is covered twice.

the corresponding paths intersect because their peaks are not aligned. The peaks follow the
shape shown in Figure 4. By this construction, two paths of different terminal pairs can be
scheduled in the same round if and only if the corresponding elements belong to the same
set in C. The minimum number of rounds needed to schedule all terminal pairs equals |C ′|.

It is easy to notice that the above reduction is approximation preserving. The SetCover
problem is APX-complete when the number of occurrences of an element in sets of C is
bounded by any constant b ≥ 2 [6]. Hence, the claim of the theorem follows. J

4.2 R-VDP-Sep: Separating cut
In this section we consider instances with a separating cut, i.e., where the terminals appear in a
counterclockwise traversal of the outer face in the sequence s1, s2, . . . , sk, tπ(1), tπ(2), . . . , tπ(k)
for some permutation π. The separating cut imposes an order structure on the set of all
fixed paths

⋃
P =

⋃
i=1...k Pi. For any two paths Pi ∈ Pi, Pj ∈ Pj we say that Pi < Pj

if Pi does not intersect with Pj and i < j. Let us denote this order by (
⋃
P, <⋃P). It is

easy to see that <⋃P is transitive due to the separating cut, and that (
⋃
P, <⋃P) is a

partially ordered set, in short poset. We define the compatibility graph H for an instance of
R-VDP-Sep as follows. There is a vertex in H for each path P ∈

⋃
P and an edge between

two vertices if and only if the corresponding paths are disjoint.

I Theorem 6. The compatibility graph H of any instance of R-VDP-Sep is a comparability
graph.

Proof. Since the edges of H correspond to the order relation of the poset (
⋃
P, <⋃P), H is

a comparability graph. J

It is well known that comparability graphs and their complements, called co-comparability
graphs, are perfect graphs. Many NP-hard problems are polynomial for perfect graphs,
among others the coloring problem and the problem of finding a clique of maximum weight in
a graph with weights on nodes, see e.g. [11]. Also, for a perfect graph, the size of a maximum
clique is equal to the chromatic number of the graph.

A consequence of Theorem 6 is that once a path is selected for each terminal pair, the
assignment of paths to a minimum number of rounds is solvable in polynomial time, as the

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 71

problem is equivalent to the coloring problem of the co-comparability graph H. It follows
that R-VDP-Sep with p = 1 is solvable in polynomial time (as in this setting there is no
choice for selecting a path for each terminal). Alternatively, we can see R-VDP-Sep with
p = 1 as the problem of covering a poset with a minimum number of chains, for which
efficient polynomial time algorithms are known. A chain of a poset (

⋃
P, <⋃P) is a subset

of
⋃
P of totally ordered elements. A chain cover of the poset is a set of chains such that

every element of
⋃
P is in (at least) one chain. Thus, a chain of the poset (

⋃
P, <⋃P)

corresponds to paths that can be scheduled in the same round. Since p = 1, all paths need to
be scheduled, and a chain cover of minimum cardinality corresponds to routing of the paths
in minimum number of rounds. The problem of covering a poset with a minimum number of
chains has been well studied (see for example the characterization of solutions known as the
Dilworth’s theorem [5]), and can be solved in polynomial time by computing a maximum
matching in a related bipartite graph [7].

I Corollary 7. R-VDP-Sep with p = 1 can be solved in polynomial time.

4.3 R-VDP-Sep: Separating cut, p ≥ 2
Since R-VDP-Sep is APX-complete, the question arises how well one can approximate
variants of the routing-in-rounds problem. SetCover cannot be approximated within
O(1 − ε) ln |S|, see [6]. There is, however, a B-approximation algorithm for SetCover
if each element is covered by at most B ≥ 2 sets, see [12]. In the following, we give a
p-approximation algorithm for R-VDP-Sep. Let H be the compatibility graph of an input
instance of R-VDP-Sep as defined in Section 4.2. Let H be the complement graph of H.
Theorem 6 implies that H is a co-comparability graph, and thus a perfect graph. Consider
the following integer program to calculate the minimum number of rounds r needed to
schedule all terminal pairs of R-VDP-Sep instance:

(IP) min r (1a)
s.t. ∑

Pj∈Pi

xij = 1 ∀ {si, ti} ∈ T (1b)

∑
xij∈C

xij ≤ r ∀ clique C ∈ H (1c)

xij ∈ {0, 1} (1d)

The binary variables xij denote whether the j’th path from set Pi is selected. Con-
straints (1b) require that for each terminal pair {si, ti}, i = 1, . . . , k, exactly one path in the
corresponding set Pi is chosen. Further, there are exponentially many Constraints (1c) that
require that no more than r paths from each (maximal) clique C in H are chosen.

I Lemma 8. The value r∗ of an optimal solution to (IP) equals the minimum number of
rounds R needed to schedule a corresponding instance of R-VDP-Sep.

Proof. Consider an optimal solution of (IP). Variables xij represent the choice of paths.
Consider the subgraph I of H induced by the nodes corresponding to the chosen paths.
Graph I is a conflict graph for an instance, where there is just one path given per terminal
pair (the chosen path). Recall, that when there is just one path per terminal pair, assigning
the minimum number of rounds is equivalent to coloring I with minimum number of colors.

ATMOS ’10

72 Vertex Disjoint Paths for Dispatching in Railways

The minimum number of colors needed to color I is in turn equal to the size of maximum
clique in I, because I is a perfect graph (as it is a subgraph of a perfect graph and in perfect
graphs the chromatic number is equal to the clique number). In an optimal solution of (IP),
the paths are chosen in a way such that the clique number r∗ in I is minimal. Thus, the
minimal number of rounds needed in I is equal to R = r∗. Hence, the lemma follows. J

We note that I in the proof above corresponds to an instance of R-VDP-Sep with p = 1,
so the actual labels ri for each chosen path Pi ∈ Pi can be found in polynomial time by
Corollary 7.

Denote by (LP) the linear relaxation of (IP), and by (LP’) the linear program (1a)-(1b).
Note that constraints (1c) can be separated in polynomial time. That is, given a feasible
solution to (LP’), we can find a violated constraint of (1c), if there is one, by finding a
maximum weighted clique in H, with node weights given by the values of the variables xij .
If this clique does not violate (1c), no other clique does. By the polynomial equivalence of
optimization and separation, see [11], (LP) can be solved in polynomial time. We obtain the
desired approximation by rounding any fractional values of the xij . For each {si, ti} pair,
we choose an xij with maximum value, denoted by xi, and round it to 1. We round the
remaining xik, k 6= i to 0.

I Theorem 9. R-VDP-Sep with at most p fixed paths per terminal pair can be approximated
within a factor of p.

Proof. Let x∗ be an optimal solution to (LP) with objective value r∗. Denote by R the value
of an optimal solution to R-VDP-Sep. Clearly, R ≥ r∗. The rounded values are feasible
with respect to equations (1b). Given that there are at most p paths per terminal pair, we
have xi ≥ 1/p for all terminal pairs {si, ti} ∈ T . Hence, each xij is rounded up by a factor
at most p. Therefore, equations (1c) are satisfied for a right hand side of r∗ · p. Hence, the
objective value of the returned solution is at most p ·R. J

References
1 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.

Journal of the ACM, 41(1):153–180, 1994.
2 Francesco Corman, Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A tabu search

algorithm for rerouting trains during rail operations. Transportation Research Part B:
Methodological, 44(1):175–192, 2010.

3 Andrea D’Ariano. Improving Real-Time Dispatching: Models, Algorithms and Applications.
PhD thesis, TRAIL Research School, The Netherlands, 2008.

4 Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A branch and bound algorithm
for scheduling trains in a railway network. European Journal of Operational Research,
183(2):643–657, 2007.

5 Robert P. Dilworth. A decomposition theorem for partially ordered sets. The Annals of
Mathematics, 51(1):161–166, 1950.

6 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
7 Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton Univ. Press,

Princeton, N.J., 1962.
8 Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomor-

phism problem. Theor. Comput. Sci., 10:111–121, 1980.
9 Michael R. Garey and David S.Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 73

10 Fanica Gavril. Algorithms for a maximum clique and a maximum independent set of a
circle graph. Networks, 3(3):261–273, 1973.

11 Martin Grötschel, László Lovász, and Alexander Schrĳver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1993.

12 Dorit S. Hochbaum. Approximation algorithms for the set covering and vertex cover prob-
lems. SIAM Journal on Computing, 11(3):555–556, 1982.

13 Yusuke Kobayashi and Christian Sommer. On shortest disjoint paths in planar graphs.
Discrete Optimization, 7:234–245, 2010. Announced at ISAAC 2009.

14 Jan Kratochvíl. String graphs. II. Recognizing string graphs is NP-hard. Journal of Com-
binatorial Theory, Series B, 52(1):67–78, 1991.

15 Leo G. Kroon, H. Edwin Romeĳn, and Peter J. Zwaneveld. Routing trains through railway
stations: complexity issues. European Journal of Operational Research, 98(3):485–498,
1997.

16 David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
11(2):329–343, 1982.

17 Richard Lusby, Jesper Larsen, Matthias Ehrgott, and David Ryan. Railway track allocation:
models and methods. OR Spectrum. To appear.

18 James F. Lynch. The equivalence of theorem proving and the interconnection problem.
SIGDA Newsl., 5(3):31–36, 1975.

19 Alessandro Mascis and Dario Pacciarelli. Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research, 143(3):498–517, December 2002.

20 Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. Combinatorial optimiza-
tion : papers from the DIMACS Special Year, volume 20 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, chapter Efficient Algorithms for Disjoint
Paths in Planar Graphs, pages 295–354. 1995.

21 Neil Robertson and Paul D. Seymour. Graph minors XIII. The disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995.

22 Alexander Schrĳver. Finding k disjoint paths in a directed planar graph. SIAM Journal
on Computing, 23(4):780–788, 1994.

ATMOS ’10

	Introduction
	Related Work
	Problem Definition
	Overview of the paper

	D-VDP: Decision Problems
	M-VDP: Maximization Problems
	M-VDP-Any: Terminals anywhere
	M-VDP-Out: Terminals on the outer face
	M-VDP-Sep: Separating cut

	R-VDP : Routing in rounds
	R-VDP-Sor: Terminals sorted on the outer face
	R-VDP-Sep: Separating cut
	R-VDP-Sep: Separating cut, p2

