
The Team Orienteering Problem: Formulations
and Branch-Cut and Price∗

Marcus Poggi1, Henrique Viana1, and Eduardo Uchoa2

1 Departamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro
Rio de Janeiro-RJ, Brasil
{poggi, fviana}@inf.puc-rio.br

2 Departamento de Engenharia de Produção, Universidade Federal Fluminense
Niterói-RJ, Brasil
uchoa@producao.uff.br

Abstract
The Team Orienteering Problem is a routing problem on a graph with durations associated to
the arcs and profits assigned to visiting the vertices. A fixed number of identical vehicles, with
a limited total duration for their routes, is given. The total profit gathered by all routes is to be
maximized. We devise an extended formulation where edges are indexed by the time they are
placed in the route. A new class of inequalities, min cut, and the triangle clique cuts of Pessoa
et. al., 2007 are added. The resulting formulation is solved by column generation. Branching is
done following the work of Boussier et al. 2007, to which the branch-cut-and-price algorithm here
proposed is compared. A few new upper bounds were obtained. Overall the presented approach
has shown to be very competitive.

1998 ACM Subject Classification G.1.6 Optimization, Integer Programming

Keywords and phrases Branch-Cut and Price, Team Orienteering Problem, Column Generation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.142

1 Introduction

Routing Problems are among the most studied problems in Combinatorial Optimization.
Routing problems consider a fleet of vehicles to visit a set of customers. In most versions of
this family of problems, all customers have to be visited exactly once. However, in many
applications of the real world, there are constraints that force us to choose which customers
to visit. The Team Orienteering Problem (TOP) models one of such situations. In the TOP,
each customer has an associated profit and the tours have a maximum duration. The choice
of customers is made balancing their profits and their contributions for the route duration.
Formally, we consider a complete undirected graph G(V,E) where V = {0, . . . , n+ 1} is the
set of vertices and E is the set of edges. Vertex 0 is the starting point and n + 1 is the
ending point of the routes. A nonnegative profit pi is associated to each vertex i and lij is
a symmetric travel time between vertices i and j. The fleet has m identical vehicles. The
objective is to maximize the total reward collected by all the routes, satisfying the time limit
L for each route. Not all customers have to be visited. When only one vehicle is considered,
we have the Orienteering Problem, OP , which has been shown to be strongly NP-Hard (see
Laporte and Martello(1990) [7]), therefore the TOP is also NP-Hard.

∗ This work was partially supported by CNPq.

© H. Viana , E. Uchoa and M. Poggi;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 142–155

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 143

The literature on the Team Orienteering Problem - TOP is quite recent. It has been
proposed by Butt and Cavalier(1994) [3] with the name Multiple Tour Maximum Collection
Problem. Two years later, the paper by Chao et al.(1996) [4] formally introduced the problem.
As noted above, the TOP is a version of the Orienteering Problem considering multiple
vehicles. Orienteering Problems consider that only one vehicle visit the clients. An exact
algorithm for the Orienteering Problem was proposed in Fischetti et al.(1998) [5]. The first
experimental work on the TOP is presented in Chao at al. [4], it generated the currently
most used benchmark instances set. Tang and Miller-Hooks [9] proposed a Tabu Search
combined with an adaptive memory procedure. Most of the best known solutions for these
TOP benchmark instances are found in Archetti et al.(2005) [1]. This last work proposed
two versions of Tabu Search and two metaheuristics implementations based on Variable
Neighborhood Search - VNS. Ke et al. (2008) [6] developed two ant colonies variations. This
approach has been able to get competitive results, reducing the overall computational time.
More recently, Vansteenwegen et al.(2009) [10] has presented a VNS which obtains results
almost as good as the results in [1], but with a reduced computational time. However, in
general, the quality of the solutions presented in [1] are still better. Finally, an exact column
generation algorithm, a branch-and-price, has been proposed by Boussier et al. [2]. We use
these last results as benchmark for comparison.

In this paper we first present integer programming compact formulations based on
arc indexed variables. The first formulation is then extended by considering variables
that contain information on the duration of the routes. Next, this latter formulation is
decomposed to derive an associated column generation formulation where variables represent
routes (elementary or not). Valid inequalities on the arc indexed extended variables are
recalled, and new valid inequalities on these variables are proposed. These are joined up in a
branch-cut-and-price scheme.

We organized the text as follows. Section 2 addresses the compact and the column
generation formulations. Section 3 describes in detail the branch-cut-and-price scheme. The
following section 4 presents the experimental results obtained. They are compared with the
results in [2]. Finally, conclusions are drawn in section 5.

2 Mathematical Formulations

We now present three Integer Programming formulations for the TOP . The first one is
equivalent to the one in Vansteenwegen et al.(2009) [10] which uses variables indicating
whether a vehicle route uses or not an arc. Indexing on the vehicles is necessary to take care
of the duration of the routes. In the second formulation, these arc indexed variables are also
indexed on the instant it starts in the route. This allows to avoid indexing on the vehicles,
since no variable indicating an arc will finish after the maximum duration will be considered.
The first formulation is said to be compact because its number of variables is polynomial
and, although the number of constraints is exponential, they can be separated in polynomial
time (subtour elimination constraints). The second formulation has a pseudo-polynomial
number of variables and therefore is less compact than the first one. Finally, we present
a formulation with an exponential number of columns. Each column represents a possible
route and the formulation can be seen as a decomposition of the previous one.

The notation used in the formulations considers a directed complete graph with arc set A.
Vertex sets are V = {0, . . . , n+ 1} and V − = {1, . . . , n}, where the latter contains only the
customer vertices. The nonnegative profits are denoted by pv for v ∈ V −, arc travel times
are given by la for a = (i, j) ∈ A. The number of identical vehicles is given by m.

ATMOS ’10

144 The Team Orienteering Problem: Formulations and Branch-Cut and Price

2.1 Compact Formulation

This TOP formulation uses binary variables xka to indicate whether arc a is traversed or not
by the vehicle k. Binary variables yv are set to one to indicate the vertex v is visited and to
zero otherwise.

max
∑

v∈V −
pv · yv (1)

m∑
k=1

∑
a∈δ−(v)

xka − yv = 0 ∀v ∈ V − (2)

m∑
k=1

∑
a∈δ−(S)

xka − yv ≥ 0 S ⊂ V ∀v ∈ S (3)

m∑
k=1

xka ≤ 1 ∀a ∈ A (4)∑
a∈A

lax
k
a ≤ L k = 1, . . . ,m (5)∑

a∈δ+(v0)
xka = 1 k = 1, . . . ,m (6)∑

a∈δ−(vn+1)
xka = 1 k = 1, . . . ,m (7)

yv ∈ {0, 1} ∀v ∈ V − (8)
xka ∈ {0, 1} ∀a ∈ A ∀k = 1, . . . ,m (9)

The objective function (1) maximizes the sum of profits associated to the visited vertices.
Constraints (2) ensures that a customer is visited once at most by one vehicle. Connectivity
of the routes is guaranteed by constraints (3) that indirectly imposes subtour elimination of
optimal solutions. The constraint set (4) forbids the use of an arc by two or more routes.
The maximum duration of the routes imposed by constraints (5). Constraint sets (6) and (7)
force m vehicles to leave from the starting point and return to the ending point.

2.2 Less Compact Formulation

In this formulation, each arc has an extra index l. This index represents the departure time
of a vehicle using the arc. Variable xlka indicates that vehicle k passes through arc a starting
with l units of time consumed. Since each arc can only be used once, it can start at exactly
one single duration spent and we can write:

xka =
L∑
l=0

xlka (10)

In order to take into account the duration associated to the arcs, we modify the original
graph as follows. We create an intermediate vertex wa for each arc a ∈ A. These artificial
vertices have a demand associated to them equal to the travel time of arc a in the original
graph. For instance, let wij be an intermediate point on arc a = (i, j). The original arc
becomes two new arcs a1 = (i, wij) and a2 = (wij , j). The resulting modified graph has then
arc set A1

⋃
A2, where A1 = {(i, wij), (i, j) ∈ A} and A2 = {(wij , j), (i, j) ∈ A}. The vertex

set is given by V
⋃
A. Figure 1 shows the graph transformation. The intermediate vertex

(gray point) consumes a demand (time) that corresponds to the travel time of the original
arc (i, j). In this case, the travel time of arc (i, j) is 2.

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 145

Figure 1 Graph transformation

The formulation on variables xlka is obtained by replacing variables xka for equation (10)
in the compact formulation 2.1. As mentioned above, constraints (5) can be removed, since
the route duration limit can be done by considering only appropriate l indexes. Furthermore,
we can impose that m arcs leave vertex 0 and return to vertex n+ 1. This uniquely identify
the vehicle routes and, consequently, allow to remove index k from variables xlka . The second
formulation is then written on variables xla, a ∈ A1

⋃
A2, l = 0, 1, . . . , L. In fact, it would be

more precise to use as largest value of l as L minus the travel time of the arc connecting the
arrival vertex to vertex n+ 1. We use L to simplify the notation.

max
∑

v∈V −
pv · yv (11)

L∑
l=0

∑
a∈δ−(v)

xla − yv = 0 ∀v ∈ V − (12)∑
a∈δ−(v)

xla −
∑

a∈δ+(v)
xla = 0 ∀l = 0, ..., L ∀v ∈ V − (13)

xl(i,wij) = x
(l−l(i,j))
(wij ,j) ∀l = 0, ..., L ∀(i, j) ∈ A (14)

L∑
l=0

∑
a∈δ+(0)

xla = m (15)∑
a∈δ−(n+1)

x0
a = m (16)

yv ∈ {0, 1} ∀v ∈ V − (17)
xla ∈ {0, 1} ∀a ∈ A1

⋃
A2 ∀l = 0, ..., L (18)

This formulation can be seen as a flow formulation. Flow conservation is assured by
constraints (13) on the original vertices, while constraints (14) do the same on the intermediate
vertices. They also impose that traversing an arc consumes time. Finally, constraints (15)
and (16) impose the number of routes.

2.3 Column Generation Formulation
As the (pseudo-polynomial) number of variables in the formulation just above may be huge,
we apply a Dantzig-wolfe decomposition. The master problem considers only the constraints
that keep track of the visited vertices and the one that guarantees the number of routes to be
m. The columns represent the routes, therefore assuring the flow conservation constraints are
satisfied. For integer solutions of the second formulation the columns are elementary routes.
On the other hand, when the linear relaxation is considered, the less compact formulation is
equivalent to this column generation formulation when the routes can also be non-elementary
or walks on the graph.

ATMOS ’10

146 The Team Orienteering Problem: Formulations and Branch-Cut and Price

All possible columns can be expressed in terms of its arcs indexed by their start instant
in the route, elementary or not. Coefficient glja indicates that arc a initiating at duration l
is used in route j. Let Q represent the set of all possible routes. Let also λj represent the
variable indicating whether route (or non-elementary route) j is chosen. We can write:

∑
j∈Q

glja · λj = xla ∀a ∈ A ∀l = 0, ..., L (19)

The column generation formulation is then obtained by replacing variable xla in constraints
(12) and (16) following the equation above. The formulation is given by:

max
∑

v∈V −
pv · yv (20)

∑
a∈δ−(v)

∑
j∈Q

L∑
l=0

glja · λj = yv ∀v ∈ V − (21)∑
a∈δ+(0)

∑
j∈Q

g0j
a · λj = m (22)

yv ∈ {0, 1} ∀v ∈ V − (23)
λj ∈ {0, 1} ∀j ∈ Q (24)

Constraints (21) guarantee that if a vertex is visited, some selected route must visit it.
The constraint (22) forces that m routes leave from the starting point.

3 Robust Branch-Cut-and-Price Algorithm

This section describes the proposed Branch-Cut-and-Price algorithm. We first present the
pricing subproblem to solve the linear relaxation of the second formulation above by column
generation. This implies allowing non-elementary routes to be obtained, but also to avoid
solving a strongly NP-Hard problem. The resulting pricing can be solved in pseudo-polynomial
time. We say that the Branch-Cut-and-Price is robust regarding its efficiency when this
complexity is kept for all pricing done in the algorithm. To preserve this property the cuts
presented in following subsections are defined over the variables of the second formulation.
Branching is also done keeping this property and is detailed at the end of this section.

3.1 Pricing Subproblem
The pricing subproblem corresponds to finding routes, elementary or not, with maximum
reduced cost and duration at most L. This can be done by dynamic programming using the
recursion given below (25).

rlc(j) = max{rlc(j), rc(i)l+l(i,j) + p(j)− π(i,j)} (25)

The maximum reduced cost at vertex j and route duration l is given by rlc(j). The value
π(i, j) is the dual cost of arc (i, j) and sums up all dual contributions from the current
restrcited master problem. In the root node of the branch-cut-and-price π(i, j) corresponds
to the dual variable associated to the jth constraint (21). As cuts are added and branching
is done other dual values will contribute to the value of π(i, j).

The route, elementary or not, with largest reduced cost is found, regardless of the values
of π(i, j), in O(nL). It is possible to eliminate 2-cycles in the routes ((i, j) and (j, i) in
sequence) without changing this complexity.

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 147

3.2 Families of Cuts
Two families of cuts are used in the proposed branch-cut-and price algorithm. The Min
Cut inequalities next described is, to the best of our knowledge, new. The second one is
an adaptation of the Triangle Clique cuts in Pessoa et al. (2007) [8]. Both are described
on variables xla and yv from the second formulation, the original variables of the column
generation formulation. However, the resulting constraints are written in terms of λj variables,
via equation (19), and added to the column generation formulation.

3.2.1 Min Cut Inequalities
This family of cuts relies on the intuition that fractional solutions for the second formulation
will go in and out of a vertex several times, while integer solutions will at most have one
value of xl(i,j) for all i and all l, greater than zero, and equal to one. In a certain sense, it
works as a sub-cycle elimination constraint, although it considers all routes with non-negative
value in the current solution at once.

Figure 2 Fractional solution violating a min-cut inequality

Figure 2 presents one such situation where a fractional can be cut off. First observe that
exactly one unit of flow enters vertex V1, satisfying constraints (12), but violating integrality.
Now, verify that the minimum cut from the departing vertex V0 to all copies of V1 (or to the
converging vertex on the top of the figure) is 0.5. This cut is given by the set of all vertices
in gray and the minimum value for it is one (or the current value of variable y1).

Let S be the set of vertices associated to one such minimum cut regarding vertex v. The
corresponding inequality is given by:

∑
a,l|a∈δ−(S)

xla ≥ yv (26)

Identifying a violated min-cut inequality amounts, therefore, to solve a minimum s-t
cut problem. Consider the graph with vertex set {0, n+ 1}

⋃
{(i, l)|i ∈ V −, l = 0, . . . , L}

and arc set {(il, jl−li,j)|xl(i,j) > 0}, where the capacity of the arcs are given by the values of
variables xl(i,j) in the current fractional solution. To this graph, add a sink vertex and arcs

ATMOS ’10

148 The Team Orienteering Problem: Formulations and Branch-Cut and Price

from all copies of a vertex v, vl for l = 0, . . . , L, and assign an infinity capacity. To obtain
minimum s-t cuts, we solve max-flow problems on this graph with vertex 0 as source and the
required artificial vertex as sink.

The resulting inequality (26) is defined only on variables from the second formulation.
Therefore, the associated dual variable will allow assigning its value to the arcs dual costs
and the pricing problem will remain unchanged.

3.2.2 Triangle Clique Cuts
Let S ∈ V − be a set of exactly three vertices. Consider now all arcs in A1

⋃
A2 that has as

extreme point on a vertex in S, and their multiplicities on l. Two such arcs are compatible
when there exists a route that contains both.

Figure 3 Compatible arcs

Figure 3 illustrate the compatible arcs idea. There are black and gray vertices. The black
ones are the vertices of S. The gray ones are the intermediate ones. The index l represents
the departure time for each arc. The demand d value on the gray vertices correspond to the
travel time of the original arc associated to this intermediate vertex. It can be observed that
the arcs in bold describe a possible part of a route and therefore are compatible. It worths
mentioning that a5 and a6 are not compatible with the arcs in bold because if there were a
flow returning to vertex i, the arrival time at i would not be equal to 10.

The triangle clique cuts simply states that the sum of the variables associated to arcs
(and their multiplicities) in a set where every pair is not compatible can be at most one.
This can be view as a clique in an incompatibility graph where there is an edge uniting every
pair of incompatible arcs. Another way to look at this same structure is to consider stable
sets in a compatibility graph which, in this case, is much less dense.

Let G′ = (V ′, E′) be the compatibility graph where each vertex of V ′ is a time-indexed
arc al = (i, j)l for a ∈ A1

⋃
A2 and l = 0, . . . , L. In this case, an edge e = (al11 , a

l2
2) belongs

to E′ if, and only if al11 and al22 are compatible. Let S = {i, j, k}. There are four cases:
Case 1: if e = ((i, wij)l1, (i, wik)l2), then e /∈ E′

Case 2: if e = ((i, wij)l1, (k,wkj)l2), then e /∈ E′

Case 3: if e = ((i, wij)l1, (wij , k)l2), and l1 6= l2 − l(wij), then e /∈ E′

Case 4: if e = ((i, wij)l1, (wij , k)l2), and l1 = l2 − l(wij), then e ∈ E′

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 149

For any stable set I ⊂ V ′, the following inequality is valid:
∑
al∈I

xla ≤ 1

The separation routine for the triangle clique cuts finds the stable set I ⊂ V ′ in G′ that
maximizes

∑
al∈I x

l
a, where xla denotes the current LP optimal solution. Despite of the

problem of finding the maximum-weighted stable set being strongly NP-Hard, we can explore
the specific structure of G′ and find a maximum weighted independent set in linear time.

A set I is a maximum-weight stable set for a set of chains if, and only if, it is the union of
maximum-weight stable set for each single chain. We find in linear time the maximum-weight
stable set for each chain H, using a dynamic programming procedure. Let alii be the ith
vertex in the chain H, numbered from 1 to |H| from one extreme to the other of the chain.
Let us define I∗(i, 1) as the maximum stable set for the subchain containing the first i vertices
of H than t does use the ith vertex. Finally, let c(I) =

∑
al∈I x

l
a. We have the following

recurrence:

c(I∗(i, 1)) = xliai + c(I∗(i− 1, 0))
c(I∗(i, 0)) = max(c(I∗(i− 1, 0)), c(I∗(i− 1, 1)))

It is worth mentioning that these cuts are also a way to eliminate cycles of fixed size in the
solution of the restricted master problem.

3.3 Details of the Branch-and-Bound

The branch-cut-and-price algorithm starts with a column generation phase. Once an optimal
LP solution is found either cuts are separated or branching is performed. In both cases, the
pricing problem must be solved again until another optimal LP solution is obtained.

We branch on the vertices, as in Boussier et al. (2007) [2], deciding whether they are served
or not. It is a robust branching scheme because it does not affect the pricing subproblem.
Bounding is done using the values of the feasible solutions found in [2].

The master formulation used is a linear relaxation from formulation presented in 2.3.
Whenever we fix any variable yv = 1, in a node of branch-and-bound tree, there must be a
route that visits v. When this is not the case, the problem becomes infeasible. Therefore, to
branch on the yv variables, it is necessary to add artificial slack variables f+, f− and q, with
large costs, to the constraints in order to guarantee the feasibility of the current restricted
master problem. Its modified formulation can be written:

max
∑

v∈V −
pv · yv −

∑
v∈V −

M · f+
v −

∑
v∈V −

M · f−v −M · q (27)

∑
a∈δ−(v)

∑
j∈Q

L∑
l=0

glja · λj + f+
v − f−v = yv ∀v ∈ V − (28)∑

a∈δ(0)+

∑
j∈Q

g0j
a · λj + q = m (29)

Infeasibility is detected when an artificial slack variable has positive value when LP optimality
is reached.

Branching only on the yv variables may end up with a fractional solution. In this case,
we may proceed branching on the xla variables until an integer optimal solution is reached.
No results with second branching is presented and when there is still a fractional solution
the corresponding upper bound is reported. We choose the yv variable with value closer to
0.5 to branch on.

ATMOS ’10

150 The Team Orienteering Problem: Formulations and Branch-Cut and Price

4 Computational Experiments

We have tested our algorithm using the instances from Chao et al. (1996) [4]. There are seven
datasets where the number of vertices ranges from 21 to 102. For a given number of vertices,
instances only differ on the values of L and m. All experiments were performed on a notebook
with processor Intel Core Duo (but using a single core) with a clock of 1.66GHz and 2GB of
RAM. Results are presented in Tables 1 to 4. All tables have the following columns. Instance
is the name of the instance file; m is the number of vehicles; L is the maximum duration for
the routes; LB is the best lower bound, i.e. the value of the best known solution for the TOP
instance; CG contains the linear relaxation value for the column generation formulation;
ROOT UB presents the LP upper bound in the root node when both families of cuts are
separated; Our UB is the value of the best upper bound found by our branch-cut-and-price
algorithm; Boussier UB is the upper bound presented in Boussier et al.(2007) [2]; columns
CGT, CT and OT present the CPU time spent in the pricing problem, in the cut separation
procedures and in solving the linear programming problems with CPLEX 11.2, respectively;
NN indicates the number of nodes explored in the branch-cut-and-price; finally, the IS the
value of the best integer solution our algorithm found whenever this was the case.

We concentrate our analysis on tables 1 and 2. This is so since the instances in tables 3
and 4 appear to be easy. In those tables, with instances with 64, 66 and 102 vertices, the
important remark is that when the column generation formulation did not find the optimal
solution value as upper bound, the cut separation lead to this. Moreover, the integer optimal
solution was found by our algorithm in 16 out of the 22 instances. Also, the total CPU
times where consistently below 2 minutes. This was also the case for the branch-and-price of
Boussier et. al. (2007).

Table 1 presents the results for instances with 33 vertices. In the case with 4 vehicles the
bounds where identical to the one of Boussier et. al. (2007), with only one instance with a
bound above the optimal solution value. In the cases with 2 and 3 vehicles our algorithm
compared favorably, obtaining better bounds in 7 out of 9 instances. Again the cut separation
improved significantly the bounds. Although a specific column in the tables with only the
Min Cut inequalities was not presented, we observed that these were the most effective cuts.
Finally, the results on the instances with 100 vertices presented in table 2 can be verified to
be similar. In the instances where a tie with the branch-and-price of Boussier et. al. (2007)
did not occur, our algorithm outperform theirs in 5 out 6 instances. This was specially true
for the most difficult instances p4.4.j and p4.4.k. Again, cut separation was crucial.

5 Conclusions

This work proposes a robust branch-cut-and-price algorithm for the TOP . The experimental
results showed that the CPU times were considerably small, even though the duration of the
routes were considered with a precision of two decimals, corresponding to large values. These
large values explain why solving the pricing subproblem were the most time consuming step.
The family of valid inequalities, Min Cut, appeared to be the main contribution of this work,
this is so since they can be adapted to a wide class of routing problems. Regarding the TOP ,
the effort is now on testing and polishing the code with branching on the arc variables. This
shall allow finding optimal solutions and to prove their optimality for many of the instances
from Chao et al.(1996). To conclude we believe that the ideas here presented allow improving
the state-of-the-art in solving instances of the TOP in the near future.

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 151

Ta
bl
e
1

R
es

ul
ts

fo
r

in
st

an
ce

s
w

ith
33

ve
rt

ic
es

In
st

an
ce

m
L

LB
C

G
R

O
O

T
U

B
O

ur
U

B
B

ou
ss

ie
r

U
B

C
G

T
C

T
O

T
N

N
IS

p3
.2

.h
2

25
41

0
43

0.
64

5
41

0
41

0
41

7.
5

26
.5

6s
18

.9
8s

0.
38

s
1

41
0

p3
.2

.k
2

32
.5

55
0

57
5.

08
8

55
0

55
0

56
6.

66
7

81
.2

4s
28

.1
4s

1.
17

s
1

-
p3

.3
.e

3
11

.7
20

0
21

3.
33

3
21

3.
33

3
21

0
20

0
2.

68
s

15
.4

9s
0.

32
s

4
-

p3
.3

.i
3

18
.3

33
0

35
5

33
5

33
0

33
6.

66
7

22
.0

0s
17

.9
5s

0.
64

s
3

33
0

p3
.3

.j
3

20
38

0
40

3.
33

3
38

0
38

0
39

0
15

.6
8s

21
.5

0s
0.

47
s

1
-

p3
.3

.k
3

21
.7

44
0

45
8.

63
6

44
0

44
0

45
0

11
.7

1s
6.

11
s

0.
32

s
1

44
0

p3
.3

.l
3

23
.3

48
0

50
3.

33
3

48
6.

66
7

48
6.

66
7

48
0

90
.1

7s
86

.4
3s

1.
63

s
4

-
p3

.3
.m

3
25

52
0

53
7.

5
52

0
52

0
52

6.
66

7
32

.1
0s

27
.7

4s
0.

47
s

1
-

p3
.2

.e
2

17
.5

26
0

27
6.

25
26

0
26

0
26

2
4.

96
s

0.
12

s
0.

14
s

1
26

0
p3

.4
.k

4
16

.2
35

0
35

0
35

0
35

0
35

0
2.

47
s

0.
00

s
0.

02
s

1
35

0
p3

.4
.l

4
17

.5
38

0
39

5
38

0
38

0
38

0
11

.8
9s

0.
41

s
0.

15
s

1
-

p3
.4

.m
4

18
.8

39
0

40
5

39
0

39
0

39
0

9.
51

s
0.

34
s

0.
06

s
1

-
p3

.4
.n

4
20

44
0

46
1.

66
7

44
6.

66
7

44
6.

66
7

44
6.

66
7

56
.5

9s
4.

70
s

0.
54

s
4

-
p3

.4
.o

4
21

.2
50

0
51

1.
11

1
50

0
50

0
50

0
14

.8
5s

0.
60

s
0.

13
s

1
-

p3
.4

.p
4

22
.5

56
0

56
6.

66
7

56
0

56
0

56
0

18
.0

9s
0.

58
s

0.
14

s
1

56
0

ATMOS ’10

152 The Team Orienteering Problem: Formulations and Branch-Cut and Price

Ta
bl
e
2

R
es

ul
ts

fo
r

in
st

an
ce

s
w

ith
10

0
ve

rt
ic

es

In
st

an
ce

m
L

LB
C

G
R

O
O

T
U

B
O

ur
U

B
B

ou
ss

ie
r

U
B

C
G

T
C

T
O

T
N

N
IS

p4
.2

.a
2

25
20

6
20

6
20

6
20

6
20

6
7.

47
s

0.
00

s
0.

17
s

1
20

6
p4

.2
.b

2
30

34
1

34
4

34
4

34
4

34
1

24
.7

0s
2.

06
s

0.
20

s
1

-
p4

.3
.a

3
16

.7
0

0
0

0
0

0.
15

s
0.

00
s

0.
02

s
1

-
p4

.3
.b

3
20

38
38

38
38

38
0.

13
s

0.
00

s
0.

03
s

1
38

p4
.3

.d
3

26
.7

33
5

34
2

34
2

33
6.

85
7

33
9

13
6.

68
s

16
4.

57
s

1.
95

s
12

-
p4

.3
.e

3
30

46
8

47
0.

09
1

46
9.

5
46

8.
33

3
46

8.
75

32
9.

04
s

57
.5

2s
2.

12
s

8
-

p4
.3

.f
3

33
.3

57
9

59
1

58
0.

33
3

58
0

58
4.

5
10

20
.0

8s
24

4.
82

s
4.

36
s

8
-

p4
.4

.d
4

20
38

38
38

38
38

0.
12

s
0.

00
s

0.
04

s
1

38
p4

.4
.e

4
22

.5
18

3
18

3
18

3
18

3
18

3
0.

62
s

0.
00

s
0.

09
s

1
-

p4
.4

.f
4

25
32

4
32

4
32

4
32

4
32

4
3.

68
s

0.
00

s
0.

17
s

1
32

4
p4

.4
.j

4
35

73
2

74
9.

41
73

4.
79

7
73

3.
38

74
1.

47
2

13
13

.6
0s

23
2.

69
s

7.
22

s
6

-
p4

.4
.k

4
37

.5
82

1
84

1.
79

9
82

1.
46

2
82

1.
46

2
83

1.
94

5
19

37
.0

8s
14

3.
58

s
12

.2
9s

4
-

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 153

Ta
bl
e
3

R
es

ul
ts

fo
r

in
st

an
ce

s
w

ith
66

ve
rt

ic
es

In
st

an
ce

m
L

LB
C

G
R

O
O

T
U

B
O

ur
U

B
B

ou
ss

ie
r

U
B

C
G

T
C

T
O

T
N

N
IS

p5
.2

.b
2

5
20

20
20

20
20

0.
20

s
0.

00
s

0.
65

s
1

20
p5

.2
.c

2
7.

5
50

50
50

50
50

0.
26

s
0.

00
s

2.
32

s
1

50
p5

.2
.d

2
10

80
80

80
80

80
0.

34
s

0.
00

s
0.

31
s

1
80

p5
.2

.e
2

12
.5

18
0

18
0

18
0

18
0

18
0

1.
38

s
0.

00
s

0.
14

s
1

18
0

p5
.2

.f
2

15
24

0
24

0
24

0
24

0
24

0
3.

79
s

0.
00

s
0.

19
s

1
24

0
p5

.2
.g

2
17

.5
32

0
32

0
32

0
32

0
32

0
9.

88
s

0.
00

s
0.

23
s

1
32

0
p5

.3
.m

3
21

.7
65

0
65

0
65

0
65

0
65

0
24

.4
6s

0.
00

s
0.

23
s

1
65

0
p5

.3
.n

3
23

.3
75

5
75

5
75

5
75

5
75

5
39

.9
0s

0.
00

s
0.

24
s

1
-

p5
.3

.o
3

25
87

0
87

0
87

0
87

0
87

0
62

.9
7s

0.
00

s
0.

27
s

1
87

0
p5

.3
.p

3
26

.7
99

0
99

0
99

0
99

0
99

0
61

.6
1s

0.
00

s
0.

29
s

1
99

0
p5

.4
.t

4
25

11
60

11
60

11
60

11
60

11
60

58
.0

8s
0.

00
s

0.
29

s
1

11
60

p5
.4

.u
4

26
.2

13
00

13
00

13
00

13
00

13
00

60
.3

4s
0.

00
s

0.
28

s
1

13
00

p5
.4

.v
4

27
.5

13
20

13
20

13
20

13
20

13
20

91
.8

5s
0.

00
s

0.
40

s
1

-

ATMOS ’10

154 The Team Orienteering Problem: Formulations and Branch-Cut and Price

Ta
bl
e
4

R
es

ul
ts

fo
r

in
st

an
ce

s
w

ith
64

an
d

10
2

ve
rt

ic
es

In
st

an
ce

m
L

LB
C

G
R

O
O

T
U

B
O

ur
U

B
B

ou
ss

ie
r

U
B

C
G

T
C

T
O

T
N

N
IS

p6
.2

.f
2

20
58

8
58

8
58

8
58

8
58

8
8.

38
s

0.
00

s
0.

25
s

1
58

8
p6

.2
.g

2
22

.5
66

0
66

0
66

0
66

0
66

0
19

.3
4s

0.
00

s
0.

13
s

1
66

0
p6

.4
.j

4
15

36
6

36
6

36
6

36
6

36
6

0.
75

s
0.

00
s

0.
02

s
1

-
p6

.4
.k

4
16

.2
52

8
52

8
52

8
52

8
52

8
1.

52
s

0.
00

s
0.

01
s

1
-

p6
.4

.n
4

20
10

68
10

68
10

68
10

68
10

68
26

.0
3s

0.
00

s
0.

05
s

1
10

68
p7

.3
.f

3
40

24
7

24
7

24
7

24
7

24
7

8.
43

s
0.

00
s

0.
08

s
1

-
p7

.3
.g

3
46

.7
34

4
34

9
34

4
34

4
34

4
30

.3
0s

0.
14

s
0.

05
s

1
34

4
p7

.4
.i

4
45

36
6

36
9

36
6

36
6

36
6

22
.3

8s
0.

17
s

0.
05

s
1

36
6

p7
.4

.j
4

50
46

2
47

6.
19

2
46

2
46

2
46

2
50

.1
6s

0.
34

s
0.

06
s

1
-

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 155

References
1 C Archetti, A Hertz, and M G Speranza. Metaheuristics for the team orienteering problem.

Journal of Heuristics, 13:49–76, 2005.
2 S Boussier, D Feillet, and M Gendreau. An exact algorithm for team orienteering problems.

4OR, 5(3):211–230, 2007.
3 S E Butt and T M Cavalier. A heuristic for the multiple tour maximum collection problem.

Computers and Operations Research, 21:101–111, 1994.
4 I M Chao, B Golden, and E A Wasil. The team orienteering problem. European Journal

of Operational Research, 88:474–474, 1996.
5 M Fischetti, J Salazar, and P Toth. Solving orienteering problem through branch-and-cut.

INFORMS Journal on Computing, 10:133–148, 1998.
6 L Ke, C Archetti, and Z Feng. Ants can solve the team orienteering problem. Computers

and Industrial Engeneering, 54:648–665, 2008.
7 G Laporte and S Martello. The selective traveling salesman problem. Discrete Appl Math,

26:193–207, 1990.
8 A Pessoa, M Poggi, and E Uchoa. A robust branch-cut-and-price algorithm for the hetero-

geneous fleet vehicle routing problem. Networks, 54:167–177, 2009.
9 H. Tang and E. Miller-Hooks. A tabu search heuristic for the team orienteering problem.

Computers and Operations Research, 32:1379–1407, 2005.
10 P Vansteenwegen, W Souffriou, G Vanden Berghe, and D Van Oudheusden. A guided local

search metaheuristic for the team orienteering problem. European Journal of Operational
Research, 196(1):118–127, 2009.

ATMOS ’10

	Introduction
	Mathematical Formulations
	Compact Formulation
	Less Compact Formulation
	Column Generation Formulation

	Robust Branch-Cut-and-Price Algorithm
	Pricing Subproblem
	Families of Cuts
	Min Cut Inequalities
	Triangle Clique Cuts

	Details of the Branch-and-Bound

	Computational Experiments
	Conclusions

