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Abstract. Load balancing is an important requirement for the efficient execu-
tion of parallel numerical simulations. In particular when the simulation domain
changes over time, the mapping of computational tasks to processors needs to
be modified accordingly. State-of-the-art libraries for this problem are based
on graph repartitioning. They have a number of drawbacks, including the opti-
mized metric and the difficulty of parallelizing the popular repartitioning heuris-
tic Kernighan-Lin (KL).

Here we further explore the very promising diffusion-based graph partitioning
algorithm DIBAP (Meyerhenke et al., JPDC 69(9):750-761, 2009) by adapting
DIBAP to the related problem of load balancing. Experiments with graph se-
quences that imitate adaptive numerical simulations demonstrate the applicability
and high quality of DIBAP for load balancing by repartitioning. Compared to the
faster state-of-the-art repartitioners PARMETIS and parallel JOSTLE, DIBAP’s
solutions have partitions with significantly fewer external edges and boundary
nodes and the resulting average migration volume in the important maximum
norm is also the best in most cases.

We also prove that one of DIBAP’s key components optimizes a relaxed version
of the minimum edge cut problem. Moreover, we hint at a distributed algorithm
based on ideas used in DIBAP for clustering a virtual P2P supercomputer.

Keywords: Dynamic graph partitioning/clustering, disturbed diffusion, load bal-
ancing, relaxed cut optimization.

1 Introduction

Partitioning the vertices of a graph such that certain optimization criteria are met, oc-
curs in many applications in computer science, engineering, and related fields. The
most common formulation of the graph partitioning problem for an undirected (possi-
bly edge-weighted) graph G = (V,E) (or G = (V, E, ®)) asks for a division IT of V into k
pairwise disjoint subsets (parts) {7y, ..., m } of size at most [|V|/k| each, such that the
edge cut is minimized. The edge cut is defined as the total number (or total weight) of
edges having their incident nodes in different subsets. Among many others, the applica-
tions of this .4 4?-hard problem include load balancing in numerical simulations [37]
and image segmentation [18,39].

The related task of clustering refers to the combination of objects to groups (clus-
ters) such that objects of the same group are more similar to each other than to ob-
jects from other groups. Graph clustering searches for dense node subsets that are only
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sparsely connected to each other. These notions are intentionally vague [48], as they are
application-dependent and in general hard to formalize. In contrast to graph partition-
ing, the number of clusters is not always part of the input, and no explicit constraints on
the cluster sizes are given. In recent years the determination of clusters within graphs
has received considerable attention, e. g., for image segmentation [39], detection of pro-
tein families [ | 2], or the analysis of social networks [31].

Despite recent approximation algorithms for graph partitioning or related cluster-
ing tasks, simpler heuristics are preferred in practice, many of which can be found in
surveys on graph partitioning [37] and graph clustering [34]. Spectral algorithms have
been widely used [21]; they are global optimizers based on graph eigenvectors. For
computational efficiency or quality reasons, they have been mostly superseded by local
improvement algorithms in the area of graph partitioning. Integrated into a multilevel
framework, local optimizers such as Kernighan-Lin (KL) [23] can be found in several
popular partitioning libraries [7,22]. Unfortunately, theoretical quality guarantees are
not known for KL. Another class of improvement strategies comprises diffusion-based
methods [29,32]. While they are slower than KL, diffusive methods often yield a better
quality, also when repartitioning dynamic graphs [29,30].

Outline of the Paper. In Sections 2.1 and 2.2 we describe the general approach of par-
titioning and clustering graphs with diffusion (and in particular with disturbed diffusion
schemes). After that, we refer to related work in Section 2.3.

The technical part of the paper is divided into two parts. In the first one, we are con-
cerned with the repartitioning of dynamic graphs. Major applications for this problem
are parallel adaptive numerical simulations. More motivation is provided in Section 3.1.
After that, we describe our multilevel algorithm DIBAP and its components BUBBLE-
FOS/C and TRUNCCONS in Section 3.2. Later on, we investigate BUBBLE-FOS/C’s
optimization criterion (Section 3.3) and also describe DIBAP’s good experimental re-
sults when repartitioning dynamic graph sequences (Section 3.4).

The second major part deals with the clustering of a virtual peer-to-peer supercom-
puter. Such a clustering is used for load balancing in parallel computations submitted
by users to the system and for system management tasks. For this application area, lo-
cal clustering algorithms are of importance. That is why we employ the local process
diffusion in a suitable manner. After a more detailed problem motivation (Section 4.1)
and formulation (Section 4.2), we describe how to obtain a fully distributed diffusive
algorithm and report some experimental results in Sections 4.3 and 4.4, respectively.

2 Disturbed Diffusion for Graph Partitioning and Clustering

2.1 The Disturbed Diffusion Scheme FOS/C

Diffusion models many important transport phenomena such as heat flow. Generally
speaking, a diffusion problem in a graph consists of distributing splittable load enti-
ties from some given seed vertex (or vertices) into the whole graph by iterative load
exchanges between neighbor vertices. Typical diffusion schemes have the property to
result in a balanced load distribution, in which every node has the same amount of load.



This is one reason why diffusion has been studied extensively for load balancing [46].
In our previous work [30], we have developed algorithms based on diffusion for the op-
timization of partition shapes. Before that, repartitioning methods employed diffusion
mostly for computing how much load needs to be migrated between subdomains [36],
not which elements should be migrated.

We call a diffusion scheme disturbed if it is modified such that its steady state does
not yield a balanced distribution. The similarity measure FOS/C (first order scheme
with constant drain) introduces a drain-based disturbance into the first order diffusion
scheme. With the disturbance, FOS/C reaches a steady state whose load vector w repre-
sents node similarities. These similarities reflect whether nodes are connected by many
paths of short length. In the field of graph-based image segmentation, similar arguments
based on the isoperimetric constant are used to find well-shaped segments [18].

Definition 1. (FOS/C) [30] Given a connected and undirected graph G = (V,E, ®) free
of self-loops, a set of source nodes O + S C V, initial load vector w0, and constants
0< o < (deg(G)+1)"" and § > 0." Let the drain vector d (which is responsible for
the disturbance) be defined as [d], = (6n/|S|) — 6 if v € S and [d], = —8 otherwise.
Then, the FOS/C iteration in time step t > 1 is defined as w) = Mw(=1 4 d, where
M = 1— «L is the doubly-stochastic diffusion matrix and L the Laplace matrix of G.

Lemma 1. [30] Foranyd 1 (1,....1)T (i.e., (d,(1,...,1)T) =0), the FOS/C iteration
reaches a steady state, which can be computed by solving and normalizing the linear
system Lw =d .

2.2 Partitioning/Clustering Graphs with Disturbed Diffusion

Since previous similarity measures related to diffusion

to compute well-shaped partitions [18,30] are rather
slow, Pellegrini has developed a faster bipartitioning 0-0=0-0-0-0-0-0-0-0-00
mechanism [32] with a simplified diffusion process. In
previous work we extended Pellegrini’s approach and !_!_! B BE-0-0-0-00
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basic idea is then to assign each node v to the cluster fgive clustering on a path
with the highest diffusion load on v. graph and k = 3.

Of course we need to compute meaningful load
values that yield a good clustering first. To achieve
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this, a diffusive algorithm — such as FOS/C — is executed k times (once for each of
the k clusters and their unique loads) to change the initial load distribution. The algo-
rithm distributes the load into the graph. By doing so, it identifies densely connected
regions by the intuition that random walks (and in a similar way also diffusion) are
likely to stay in dense regions for a long time. After the load has been distributed, each
node v is assigned to the cluster for which v has the highest load value.

Figure [ illustrates how this principle works for a path graph and k£ = 3. One per-
forms the following independently for each cluster 7.: First, the nodes of 7, (see the
input cluster assignment in the topmost row of Figure 1) receive an equal amount of
initial load n/|m,|, while the other nodes’ initial load is set to O (second row). Then, a
diffusive method is used to distribute this load (third row). To obtain meaningful clus-
ters, the diffusive method must result in an unbalanced load distribution, preferably with
peaks not far from the old cluster centers. Such a distribution can be obtained by intro-
ducing a suitable disturbance. The last row in Figure 1 shows the cluster assignment
according to the new maximum load values. This whole procedure can be repeated to
improve the solution quality. If necessary, additional operations such as balancing can
be integrated into the procedure.

Note that the most important ingredient of this generic iterative procedure is the
particular (disturbed) diffusion process to distribute the load. It decides the running
time and the quality of the whole method.

2.3 Other Related Work

The areas graph partitioning and graph clustering have grown very much in the last
15 years. Hence, in the description of related work, we concentrate on techniques that
are closely related and at least partially applicable in our scenarios.

To address the load balancing problem in parallel applications, distributed versions
of the partitioners METIS, JOSTLE, and SCOTCH [38,45,7] (and the parallel hyper-
graph partitioners ZOLTAN [6] and PARKWAY [41]) have been developed. An efficient
parallelization of the KL/FM heuristic that these tools use is very complex due to inher-
ently sequential parts in this heuristic. For example, one needs to ensure that during the
KL/FM improvement no two neighboring vertices change their partition simultaneously
and therefore destroy the consistency of the data structures.

There exist many graph clustering/partitioning techniques (see [34]) using random
walk [25] techniques. These techniques exploit that random walks are likely to stay a
long time in a dense graph region before leaving it via one of the few outgoing edges.
Many diffusive processes are described by stochastic matrices and are therefore related
to random walks [25].

Meila and Shi [26] connect random walks to spectral partitioning. Spectral methods
such as [39] solve relaxations of IPs that minimize the edge cut or the related ratio cut.
They build on Fiedler’s seminal work on spectral partitioning [ 3] and use eigenvectors
of Laplace or adjacency matrices for partitioning. A spectral relaxation to the geometric
k-means clustering problem is given by Zha et al. [47]. It is used by Dhillon et al. [10]
to develop a kernel-based graph clustering algorithm without using eigenvectors.

Further related to our localized diffusive methods for graph clustering is the al-
gorithm by Harel and Koren [19], which computes separator edges iteratively based



on the similarity of their incident vertices. This similarity is derived from the sum of
transition probabilities of random walks with few steps. The actual partitioning into
clusters requires a global statistical test to obtain suitable threshold values. The algo-
rithm MCL [12,43] bypasses the problem of choosing a suitable random walk length by
a nonlinear matrix operator, which strengthens the differences between all rows of the
matrix. The operator is combined with the traditional multiplication of the random walk
transition matrix. This combination leads to meaningful clusters. In the actual imple-
mentation (called mcl) of the algorithm, the problem of densely populated intermediate
matrices is avoided by pruning, i. e., setting small matrix entries to zero. Yet, the fill-in
can be significant.

Recent clustering algorithms for dynamic graphs include the one by Gorke et
al. [17]. It uses minimum-cut trees to compute a clustering and a method to update this
data structure efficiently when the graph changes. Computing the initial tree, however,
is a global and expensive operation. A recent algorithm with a running time that de-
pends only weakly on the graph size is given by Andersen and Peres [2]. It extends and
improves previous theoretical research on local clustering algorithms and uses Markov
chain arguments to find local cuts with small conductance, a cut measure. We are not
aware of any implementations of this algorithm for a practical scenario. Another mostly
local algorithm has been presented by Delling et al. [9]. The algorithm works without
an explicit optimization criterion. Its key component recursively identifies small dense
regions and contracts them into single vertices. The identification of small dense regions
is a local process, but the contraction order is governed by a global priority queue.

3 Graph (Re-)Partitioning with the Algorithms BUBBLE-FOS/C
and DIBAP

3.1 Motivation

Numerical simulations are very important tools in science and engineering for the anal-
ysis of physical processes modeled by partial differential equations (PDEs) [14]. To
make the PDEs solvable, they are discretized within the simulation domain, e. g., by
the finite element method (FEM). Such a discretization yields a mesh, which can be
regarded as a graph with geometric (and possibly other) information.

The solutions of discretized PDEs are usually computed by iterative numerical
solvers, which have become classical applications for massively parallel computers. To
utilize all available processors in an efficient manner, the computational tasks, repre-
sented by the mesh elements, must be distributed onto the processors evenly. Moreover,
the computational tasks of an iterative numerical solver depend on each other. Neigh-
boring elements of the mesh need to exchange their values in every iteration to update
their own value. Since inter-processor communication is much more expensive than lo-
cal computation, neighboring mesh elements should reside on the same processor. A
good initial assignment of subdomains to processors can be found by solving the graph
partitioning problem (GPP) [37].

In many numerical simulations some areas of the mesh are of higher interest than
others. For instance, during the simulation of the interaction of a gas bubble with a



surrounding liquid, one is interested in the conditions close to the boundary of the fluids.
To obtain an accurate solution, a high resolution of the mesh is required in the areas of
interest. A uniformly high resolution is often not feasible due to limited main memory.
That is why one has to work with different resolutions in different areas. Moreover, the
areas of interest may change during the simulation, which requires adaptations in the
mesh and may result in undesirable load imbalances. Hence, after the mesh has been
adapted, its elements need to be redistributed such that every processor has a similar
computational effort again. While this can be done by solving the GPP for the new
mesh, the repartitioning process not only needs to find new partitions of high quality.
Also as few nodes as possible should be moved to other processors since this migration
causes high communication costs and changes in the local mesh data structure.

The most popular graph partitioning and repartitioning libraries use local node-
exchanging heuristics like Kernighan-Lin (KL) [23] within a multilevel improvement
process to compute good solutions very quickly. Yet, their deployment can have certain
drawbacks. First of all, minimizing the edge-cut with these tools does not necessarily
mean to minimize the total running time of parallel numerical simulations [44]. The
number of boundary vertices (vertices that have a neighbor in a different partition), for
instance, models the communication volume between processors often more accurately
than the edge-cut [20]. While the total number of boundary vertices can be minimized
by hypergraph partitioning [5], synchronous parallel applications need to wait for the
processor computing longest. Hence, the maximum norm (i. e., the worst partition) of
the load balancing costs and the simulation’s communication costs is of higher impor-
tance. Moreover, for some applications, the shape of the subdomains plays a significant
role. It can be assessed by various measures such as aspect ratio [1 1], maximum diam-
eter [32], connectedness, or smooth boundaries. Finally, due to their sequential nature,
the most popular repartitioning heuristics are difficult to parallelize — although signifi-
cant progress has been made.

Outline. Our previously developed partitioning algorithm DIBAP aims at computing
well-shaped partitions and uses disturbed diffusive schemes to decide not only how
many nodes move to other partitions, but also which ones. It is described in some detail
in Section 3.2. That DIBAP’s key ingredient BUBBLE-FOS/C is in fact a relaxed edge
cut optimizer, is stated in Section 3.3. Moreover, DIBAP is inherently parallel and over-
comes many of the above mentioned difficulties, as could be shown experimentally for
static graph partitioning [29]. While it is much slower than state-of-the-art partitioners,
it often obtains better results. We report on experimental results from dynamic reparti-
tioning scenarios in Section 3.4. These results confirm DIBAP’s high solution quality,
but also its high running time compared to established parallel KL-based repartitioners
such as PARMETIS.

3.2 BUBBLE-FOS/C + TRUNCCONS + Multilevel = DIBAP

DIBAP is a hybrid multilevel combination of the two (re-)partitioning methods
BUBBLE-FOS/C and TRUNCCONS, which are both based on disturbed diffusion [29].
As noted before, disturbed diffusion schemes can be helpful to determine if two graph



nodes or regions are densely connected to each other. This property is due to the simi-
larity of diffusion to random walks and the notion that a random walk stays in a dense
region for a long time before leaving it via one of the few external edges. Before we
explain the multilevel scheme DIBAP, we describe its two main (re-)partitioning com-
ponents in more detail.

BUBBLE-FOS/C In contrast to Lloyd’s related k-means algorithm [24], BUBBLE-
FOS/C partitions or clusters graphs instead of geometric inputs. Given a graph G =
(V,E) and k > 2, initial partition representatives (centers) are chosen in the first step
of the algorithm, one center for each of the k partitions. All remaining vertices are
assigned to their closest center vertex. While for k-means one usually uses Euclidean
distance, BUBBLE-FOS/C employs the disturbed diffusion scheme FOS/C as distance
measure (or, more precisely, as similarity measure). The similarity of a node v to a non-
empty node subset S is computed by solving the linear system Lw = d for w, where
L is the Laplacian matrix of the graph and d a suitably chosen vector that disturbs the
underlying diffusion system. After the assignment step, each partition computes its new
center for the next iteration — again using FOS/C, but with a different right-hand side
vector d. The two operations assigning vertices to partitions and computing new centers
are repeated alternately a fixed number of times or until a stable state is reached. Each
operation requires the solution of k linear systems, one for each partition.

It turns out that this iteration of two alternating operations yields very good parti-
tions. Apart from the distinction of dense and sparse regions, FOS/C tends to produce
similarity isolines with a circular shape. Thus, the final partitions are very compact
and have short boundaries. However, the repeated solution of linear systems makes
BUBBLE-FOS/C slow.

TRUNCCONS The algorithm TRUNCCONS (for truncated consolidations) is also an
iterative method for the diffusion-based local improvement of partitions, but it is much
faster than BUBBLE-FOS/C. Within each TRUNCCONS iteration the following is per-
formed independently for each partition 7.: First, the initial load vector w( is set.
Nodes of 7, receive an equal amount of initial load |V|/|7.|, while the other nodes’ ini-
tial load is set to 0. Then, this load is distributed within the graph by performing a small
number y of FOS (first order diffusion scheme) [8] iterations. The final load vector w
is computed as w = MYw(©), where M = I — aL denotes the diffusion matrix [8] of
G. A common choice for & is & := (1 +deg(G))~!. After the load vectors have been
computed this way independently for all k partitions, each node v is assigned to the par-
tition it has obtained the highest load from. This completes one TRUNCCONS iteration,
which can be repeated several times (the total number is denoted by A subsequently) to
facilitate sufficiently large movements of the partitions.

There are two reasons why TRUNCCONS is usually much faster than BUBBLE-
FOS/C. First, solving linear systems in BUBBLE-FOS/C is much costlier than a few
matrix-vector products in TRUNCCONS. Also, within TRUNCCONS a node with the
same amount of load as all its neighbors does not change its load in the next FOS
iteration. Due to the choice of initial loads, such an inactive node is a certain distance




away from the partition boundary. By avoiding load computations for inactive nodes,
we restrict the computational effort to areas close to the partition boundaries.

DIBAP The main components of DIBAP are depicted in Figure 2. To build a multilevel
hierarchy, the fine levels are coarsened (1) by approximate maximum weight match-
ings [33]. Once the graphs are sufficiently small, we switch the construction mechanism
(2) to the more expensive coarsening based on algebraic multigrid (AMG) [30]. This
is advantageous regarding running time because, after computing an initial partition-
ing (3), BUBBLE-FOS/C is used as local improvement algorithm on the coarse levels
(4). Since BUBBLE-FOS/C uses AMG as a linear solver, such a hierarchy needs to be
built anyway. Eventually, the partitionings on the fine levels are improved by the lo-
cal improvement scheme TRUNCCONS. DIBAP includes additional components, e. g.,
for balancing partition sizes and smoothing partition boundaries. Their description is

outside the scope of this paper and can be found in [35].
The rationale behind DIBAP can be

explained as follows. While BUBBLE-
FOS/C computes high-quality graph
partitions with good shapes, its sim-
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Fig. 2. Sketch of the combined multilevel
hierarchy and the corresponding reparti-
tioning algorithms used within DIBAP.

domain affiliation occur. Moreover, since
TRUNCCONS is also based on disturbed
diffusion, the good properties of the
partitions generated by BUBBLE-FOS/C
are mostly preserved.

3.3 BUBBLE-FOS/C is a Relaxed Cut Minimizer

It has been shown before [

, Thm. 10], that the iterative optimization performed by

the graph partitioning heuristic BUBBLE-FOS/C can be described by a potential func-
tion. This function F sums up the diffusion load of each vertex v € V in a single-source



FOS/C procedure in time step T with v’s closest center vertex z,, as source. In fact, the re-
sults computed by the operations AssignPartition and ComputeCenters each max-
imize F for their fixed input (centers or parts, respectively). However, it has been un-
clear until recently how these facts relate to the good experimental results of BUBBLE-
FOS/C with respect to metrics more specific to graph partitioning. This question is — at
least partially — addressed by the following theorem:

Theorem 1. [28] Let k > 2. Given a graph G = (V,E, ®) with n nodes (n/k € N) and
a set Z with one center vertex for each of the k parts. Then, the two consecutive oper-
ations AssignPartition and ScaleBalance with suitable B, (1 < p < k) together
compute the global minimum of an optimization problem which is a relaxed version
of a binary quadratic program BQP. If Z = {z\,_ z} is given such that z, € &, and
II ={m,...,m,} is an (unknown) optimal (with respect to the edge cut) partition, then
BQP computes an optimal partition.

The result above shows that — under mild conditions - BUBBLE-FOS/C solves a relaxed
edge cut minimization problem. This is slightly surprising: In previous experiments
with numerical simulation graphs [30], BUBBLE-FOS/C was compared to the popu-
lar partitioning libraries KMETIS and JOSTLE. The best improvements by BUBBLE-
FOS/C could be seen regarding the number of boundary nodes and the shape of the
parts. Yet, concerning the edge cut, the improvement over the other libraries was not as
clear, probably because KMETIS and JOSTLE focus chiefly on the edge cut.

3.4 Experimental Repartitioning Results

We now turn our attention to experiments that require the repartitioning of graph se-
quences. Unlike the parallel versions of METIS and JOSTLE, the implementation of
our load balancer DIBAP is not prepared yet for a distributed-memory parallelization.”
That is why we concentrate in the following on the quality of the experiments and ne-
glect their running time. Comparing the latter is part of future work with an MPI parallel
version of DIBAP. Preliminary results suggest that the average slowdown factor for us-
ing DIBAP instead of PARMETIS (which is faster than parallel JOSTLE) depends very
much on the graph size and k and lies approximately between 30 and 60.

The experimental setup is described in more detail in [27], here we provide only
a summary. Our benchmark set comprises of two types of graph sequences. Twelve
sequences are made of 101 frames of small graphs (around 10,000 to 15,000 nodes
each), which are repartitioned into k = 12 subdomains. The second set consists of three
sequences of larger graphs (between 110,000 and 1,100,000 nodes each), which are
repartitioned into k = 16 subdomains. While the sequence bigtric has 101 frames, the
sequences bighubbles and bigtrace have only 46 frames.

All graphs of these 12+3 sequences have a two-dimensional geometry and are gen-
erated to resemble adaptive numerical simulations such as fluid dynamics. The graph
of frame i+ 1 in a given sequence is obtained from the graph of frame i by changes

2 We would like to point out that the algorithm DIBAP is very well suited for such a paral-
lelization approach. Only its corresponding implementation has not been finished yet. The
implementation used for this paper is based on POSIX threads instead.



restricted to local areas. As an example, some areas are coarsened, whereas others are
refined. These changes often result in unbalanced subdomain sizes.

Our results can be summarized as follows: The averaged graph partitioning metrics
show that DIBAP is able to compute the best partitions on average. DIBAP’s advance
is highest for the boundary nodes in the maximum norm, which can be considered a
more accurate measure for the communication costs of typical numerical solvers than
the edge-cut. With about 12-15% on parallel JOSTLE and about 23-30% on PARMETIS
these improvements are clearly higher than the approximately 7% for static partitioning
obtained in [29], which is due to the fact that parallel KL (re-)partitioners often compute
worse solutions than their serial counterparts for static partitioning.

DIBAP’s implicit optimization with the iterative algorithms BUBBLE-FOS/C and
TRUNCCONS focusses more on good partitions than on small migration costs. In some
special cases the latter objective should receive more attention. Concerning the migra-
tion volume, the results are not as clear. The ¢{-norm values are slightly in favor of
JOSTLE (eight times best) compared to DIBAP (six times best). Yet, in the /e-norm of
the migration volume, DIBAP is the clear winner again. The strategy of PARMETIS to
migrate either very few or very many nodes does not seem to pay off on average since
PARMETIS computes in most cases the worst solutions.

We would like to stress that a high repartitioning quality is often very important.
Usually, the most time consuming parts of numerical simulations are the numerical
solvers. Hence, a reduced communication volume provided by an excellent partitioning
can pay off unless the repartitioning time is extremely high.

4 Distributed Graph Clustering with DIDIC

Diffusion is in general a local process. Load entities are exchanged between neighbors
without any kind of central control. That is why disturbed diffusion is also very suit-
able in distributed environments. In the following we describe a heuristic algorithm for
clustering a virtual peer-to-peer (P2P) supercomputer.

4.1 Motivation

The main application we consider in this section is the management of a P2P based vir-
tual distributed supercomputer for parallel computations in the bulk-synchronous paral-
lel (BSP) [42] style. This virtual supercomputer is the Paderborn University BSP-based
Web Computing (PUB-Web) library [3], formerly known as PUBWCL. It was originally
designed as a hybrid P2P system: People can join the PUB-Web system by installing
the peer component software, which enables them to donate unused computing power
(the CPU’s idle time) and to run their own parallel programs. The execution of a par-
allel program is carried out in pure P2P fashion among the peers assigned to the job.
Administrative tasks such as scheduling and load balancing, however, are performed by
a server. To obtain a better scalability by making PUB-Web a pure peer-to-peer system,
a distributed load balancing algorithm has been developed [16].

The load balancer in [ 1 6] assigns the BSP processes to machines such that each BSP
process receives approximately the same amount of computing power, and it rebalances
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the process assignment accordingly upon changes in the machines’ availabilities. Once
a certain number of machines are handled by the load balancer, the results are quite good
and can only be slightly improved by adding more machines, while the overhead of
adding more machines starts to affect the load balancer’s performance. For this reason
and to consider the network speed in addition to the load of the machines, our goal is to
split a large network into clusters.

As the network speed appears to be a rather static parameter of a machine in contrast
to its processor’s idle time, we use the clustering approach presented in this paper to
determine subsets of machines among which the network speed is high. All processes
belonging to a BSP program will then be assigned to one cluster, and inside a cluster
the existing load balancer will schedule them according to the machines’ availabilities.
In our application the network speed is characterized by bandwidth and latency. Since
the importance of latency rapidly decreases with growing message sizes in the BSP
model [42], we focus on bandwidth. We model the machines in the PUB-Web network
as vertices in a graph and choose the bandwidth as our similarity measure (or the inverse
of the bandwidth as our distance measure), i. e., high edge weights correspond to high
bandwidths and vice versa.

The clusters do not have the same size for this application. Yet, they should prefer-
ably be connected because we cannot influence to which vertices in a cluster the load
balancer will assign the processes of a BSP program; in case they are spread over two
or more non-connected vertex subsets, the communication performance of the BSP
program will suffer. Moreover, the clustering should identify those vertices as clus-
ters which have very good network connections among each other. On the other hand,
the clusters should have a certain minimum size because the performance of the load
balancer is quite poor on very small instances. An important constraint is that the clus-
tering must be computed by a distributed algorithm executed on the peers. Moreover,
the algorithm must be able to start from an arbitrary initial configuration.

4.2 Problem Formulation

Let 4 = U,»TZO G; = (V,,E;, ;) be a dynamic undirected and edge-weighted graph,
i.e., a collection of static graphs G; with vertex set V;, edge set E;, and correspond-
ing edge weight set @;. The graph G;;; is constructed from G; by inserting and
deleting certain vertices and/or edges. A k-way clustering of a graph is a function
IT; . V; — {1,...,k}. Such a clustering divides the vertex set V; into k disjoint subsets
Vi=m Um0, .. .Um;,. Edges connecting vertices of two different clusters belong to
the so-called cut of IT,.

For an undirected, edge-weighted graph G = (V, E, @) with n vertices and its k-way
clustering IT (as from now we omit the index i for ease of presentation), let deg(v) :=
Ye—{.vick @(e) be the weighted degree of vertex v and N(v) := {u | {u,v} € E} its
neighborhood. Let intra-weight(7.) := Yo—(, 1 ep:uven, @(e) and cut-weight(r,) :=
Ye—{upteE;uen, ven, @(e) be the weight of intra-cluster and cut edges of 7., respec-
tively. Finally, denote the total edge weight of G by ew(G) := Y g @(e). Then, the
popular clustering quality measure modularity [31] is defined as

intra-wei - ver. deg(v 2
Mod(IT) := gl;:l( () _ (Log b)) ) 0
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The above version of the modularity definition is derived from Brandes et al. [4], who
consider the unweighted case. They point out that maximizing modularity involves a
trade-off between producing many intra-cluster edges (first part of the main sum) and
producing a large number of clusters with small degree (second part), yielding more
cut-cluster edges. A probabilistic interpretation of modularity states that it measures
the fraction of intra-cluster edges minus the expected value of the same quantity in a
graph with the same clustering but random connections between the nodes [31]. It is
AN P-hard to optimize modularity [4] and nearly all interesting clustering metrics [40]
for general graphs.

Each connected component of the subgraph induced by the vertices of cluster 7,
is called a cluster-connected component of 7. The set of all cluster-connected compo-
nents of 7, is denoted by CCC(n,). The nearly connected value (NCV) of 7, is then
defined as

maxseccc(n, N
NCV(m,) = 6‘7‘(”) )
C

As argued above, a good clustering for the PUB-Web application is preferably con-
nected and groups nodes with a high mutual bandwidth. Hence, our clusterings should
have a good cut-related measure (such as high modularity) and clusters with high NCV.
In case of dynamic graphs, a high-quality clustering should be obtained and maintained
from a certain time step on. Moreover, local changes in the graph structure should entail
also only local changes in the clustering.

4.3 Distributed Diffusive Clustering

In this section we describe our distributed diffusive clustering algorithm DIDIC. While
its general idea of clustering by distributing k different kinds of load with a diffusive
method is based on the BUBBLE framework described before, additional techniques
have to be introduced to make the algorithm work in a distributed setting, where we
assume that data used by node v is either stored at v or at v’s neighbors.

There are two main occurrences of global knowledge in our (re-)partitioning al-
gorithms TRUNCCONS and BUBBLE-FOS/C [29,30]. The first one is the initial as-
signment of vertices to clusters, which is important for these algorithms to compute
high-quality solutions quickly. Here we replace it by default random initialization. The
second occurrence is the drain concept responsible for the disturbance that results in
meaningful unbalanced load distributions. Here we realize the disturbing drain concept
by a second diffusion system. That is why each node stores two load vectors w and / of
length &, the number of clusters.

Subsequently we denote by w, the primary load vector of node v € V and by w,(,t> (c)
the load of v in the diffusion system c at time step ¢. If the index v in w,, is omitted,
we refer to the vector of all load values w;(c), 1 <i < n, within a particular diffusion
system c¢. A missing (*) means a vector belonging to no fixed time step. The notation for
the secondary load vector / is analogous.
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Setting the Initial Situation If the initial cluster affiliation of a node is undefined
(which we assume to be the default case), the only information a node has in our dis-
tributed scenario (besides its neighborhood structure and the loop durations) is the max-
imum number of clusters k. Thus, a vertex’s initial affiliation is chosen as a random
number between 1 and k. Afterwards each node v sets its entries of the initial load vec-
tors WSO) (¢), c=1,...,k, to 0 with one exception. The load value corresponding to the
own cluster is set to a high constant value, e. g., 100. The load vectors [ of the secondary
diffusion system, whose purpose is explained in the following sections, are initialized
in the same way.

Eliminating Global Knowledge with Suitable Diffusive Processes Recall that FOS/C
uses a drain concept to disturb the process and obtain unbalanced load distributions that
are meaningful for clustering. In each iteration a small amount of load (the drain) is
subtracted from all nodes. It is reinserted into the system by adding the total drain
equally divided onto a specified set of source vertices S C V. In our case S would be the
cluster corresponding to the diffusion system. This equal division requires knowledge
on the size of V and S. In particular |S] is not accessible in our distributed scenario. Also,
we have to cope with the fact that in our case the initial clustering is random. Hence,
the fast forming of cluster-connected vertex sets should be facilitated. We address these
issues by using not only one diffusion system per cluster, but two, each representing the
same load color. The purpose of the secondary system, explained in more detail later,
is to send load of system i very quickly to nodes belonging to cluster i. It thus takes
over the role of the drain sent to the nodes of S and also accelerates the forming of large
cluster-connected components.

The task of the primary diffusion system is to exploit the property of diffusion and
random walks to identify dense graph regions. The primary load values are computed
by using a small number y of FOS iterations — instead of iterating until all vertices have
the same amount of load. The difference to a TRUNCCONS phase is the addition of the
secondary load values in vector /.

When starting with a random initial clustering, it is advisable to form large cluster-
connected regions quickly. This is the task of the secondary diffusion system. By using
node weights (which we call benefits to express their purpose: a node of the correspond-
ing cluster benefits from the secondary system), the secondary system directs load of
system i quickly to nodes of the ith cluster. We call this method first order diffusion
scheme disturbed by vertex benefits (FOS/B). Its calculations are shown in Algorithm 1.
The benefit values b,(c) and b,(c) in the denominators of the load exchange formula
ensure that nodes not in cluster 7 send most of their load in / to their neighbors in cluster
i (if they have any). Once load of color i is accumulated in a larger cluster-connected
region, it will be used within the primary diffusion system to flood adjacent areas.

How the diffusive schemes are actually intertwined, can be seen in Algorithm 1.
More details can also be found in [15].

Discussion of the Algorithm Our distributed diffusive clustering algorithm, abbrevi-
ated DIDIC, is shown as Algorithm . It is executed in a distributed way, parametrized
by the respective node v € V. Note that it is possible to assign an initial cluster number
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Algorithm 1 Distributed Diffusive Clustering Algorithm

DiDiC(v, N(v), m. k., T, v, p) —==x
if (m is undefined)

m := RandomValue (1. k):
wy, := SetlnitialLoad(x);: L i=w,:
for time step t := 1 to T do
for each cluster system c do
for s = 1 to y do (% FOS/T %)
wule) =wy(c):
for r := 1 to p do (x FOS/B x)
L(c) =hic);
for each ueN(v) (x e={uv}cE =)

I(e) :=Iy(e) —au(e) - ofe) - (j‘(’} L j;;‘;(‘_g) :
for cach ueN() (+ e={uv}eE *)
wy(c) i=wy(c) —ale) - @(e)- (_1"1‘(1') —wu(c)):
wyp(e) i=wu(e)+1y(c): Lile):=1L(e):
o=argmax,._;  gwy(c):
N(v) := adaptToGraphChanges(v. N(v)):

to v by specifying it in the parameter 7. However, while the possibility exists, we as-
sume that in our scenario it is usually not used and 7 is undefined until it is initialized
randomly. Recall from the introduction that the algorithm is expected to work with ar-
bitrary initial clusterings. Even with the simple strategy of random initialization DIDIC
performs well in our experiments (if the number of time steps T is reasonably large).
After the clustering has been initialized, the diffusion load vectors are set accord-
ingly. Then the actual diffusive clustering process is started by the outermost loop,
which runs for T time steps. At the end of each time step, the new cluster affiliation of
each vertex v can be chosen generically as argmax,_; _ wy(c). Additional adaptations
to accelerate the clustering process are possible [15]. After that the graph may be mod-
ified by local changes. Such changes include the addition or deletion of nodes and/or
edges. In case of the deletion of a node v, the execution of the algorithm on v is stopped
and its current load is distributed evenly among its neighbors. This simple strategy is
why our diffusive method works well on dynamic graphs. Local changes in the graph
affect the distribution of the diffusion loads only slightly. Thus our algorithm recovers
quickly from small alterations of G and adapts the former clustering accordingly.
Within each time step the clustering is performed by calculating diffusion systems
for each cluster, more precisely by an outer FOS/T loop, into which an inner FOS/B
loop is embedded. A straightforward upper bound for the resulting time complexity per
time step for each node v is &'(k- y - p - deg(v)). Taking all nodes into account, a non-
distributed version of the algorithm would require & (k- v - p -maxNeigh - n) operations
per time step. Reasonable values for the parameters appearing in this expression and
other details can be found in [15]. Note that we assume the input graph to change
continuously. Thus, the clustering needs to be adapted continuously as well and we can
forgo a solution-aware termination mechanism. Moreover, it is important to point out
that DIDIC is not designed to deliver good clusterings from early time steps on. Instead,
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the random initial clustering needs to be refined from time step to time step. How long
it takes to obtain reasonably good results, will be discussed during the presentation of
our experiments.

4.4 Experimental Results

In this section we discuss some of
our experimental results with em-
phasis on a scenario that resembles a
P2P environment occurring in PUB-
Web. All experiments are carried out
within a simulator written in C/C++.
Except for the running time, the sim-
ulator computes the same results as
if a real distributed system were ex-
ecuting DIDIC (under the assump-
tion of precise floating point calcula-
tions). For generating the test graphs,
the vertices are embedded into the
two-dimensional unit square with
wrap-around boundaries (hence, it is
actually a torus, but we use the word Fig.3. The DIDIC clustering of a generated
square to avoid confusion with torus PUB-Web P2P graph after time step 55 with
graphs). Such an embedding with 800 nodes. Note that the unit-square has wrap-
the assignment to coordinates is not around boundaries. Cut edges are shown in grey.
strictly necessary, but the generation Parameters: n = 800, k = 20, maxNeigh = 16,
of graphs with certain properties is rad = 0.33, w =11, p = 11, B =10, x = 10,
simplified. Moreover, vertex coordi- dynamics: 2%.

nates do not affect the clustering re-

sults since the algorithm does not use

the coordinates. To create edges, we employ a slight variation of the disc graph model
(e.g., [1]). It uses a uniform communication radius rad for all vertices. A vertex is con-
nected to up to maxNeigh nearest neighbors within its communication radius, where
maxNeigh is a user-defined parameter.

To resemble the real PUB-Web network closely, we have built the following test
scenario: Well connected subnets in companies, universities, etc. are represented by
circular dense areas of nodes. That the nodes equally spread over the circular region
do not have a pairwise equal distance to each other, is a realistic assumption because
big networks are usually organized hierarchically. Thus, computers connected to the
same switch can simultaneously communicate with each other at full speed, whereas
the bandwidth decreases when they have to share the same up- und downlinks while
communicating over several hops. The coordinates of the x dense areas are chosen uni-
formly at random within [0, 1]> and their radii range from 0.01 to 0.36 with an anti-
quadratic probability distribution (small radii have higher probability). In addition to
these dense areas, single vertices representing private home computers are randomly
spread over the unit-square. More details can be found in [15].
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Fig. 4. Aggregated results (x-axis: time step, y-axis: modularity, NCV) for the same
graph class as in Figure 3, but for a graph with 2400 (left) and 3200 (right) vertices.

We did extensive tests with varying parameters and dozens of graphs with e. g.,
1600, 2400, and 3200 vertices. In order to simulate the dynamics of a P2P network,
we randomly deleted and inserted 1%, 2% or 5% of the vertices each, every second,
or every fifth time step, respectively. We are aware that the real PUB-Web network
may be magnitudes larger than just a few thousands of nodes, but it is not appearing
out of a sudden with a random configuration. Rather, it will be dynamically growing
or shrinking over time. Thus, we are convinced that it is sufficient to perform tests for
initial instances with a few thousands of vertices.

Evaluation criteria are modularity and the NCV value (the latter is averaged over
all clusters). Note that empty clusters are seen as non-existing when computing these
measures. The clusterings computed by DIDIC are compared with those computed by
the graph clustering library mcl [43], which implements the algorithm MCL (see Sec-
tion 2.3). As MCL is not a distributed algorithm, it should not be seen as a competitor.
We use mcl only to validate DIDIC and it is not apparent that other algorithms are more
suitable for this purpose. The inflation parameter of mcl strongly affects the granularity
of clusters, which we set to 1.2. This choice avoids an extremely large number of small
clusters and allows for a better comparison. Figure 3 shows a clustering obtained by
DIDIC after 55 time steps for a graph with 800 vertices, 2% dynamics, and the diffu-
sion iteration counts Y and p set to 11. The modularity value obtained is 0.867 (mcl:
0.871). Smaller values of y and p make DIDIC faster, but often the quality worsens.
The plots in Figure 4 are based on aggregated data of two experiment series with six
graphs for each plot (y = p = 11) and show how modularity and NCV evolve over time
for graphs of the same class with 2400 and 3200 nodes, respectively. For validation pur-
poses, we ran mcl every 50-th time step on the dynamic graphs and added its modularity
and NCV values to the plots as single points in the same colors as the corresponding
lines. As one can see, once DIDIC’s clusterings stabilize after about 150 time steps,
they have a comparable or even sightly better modularity than mcl’s. Considering that
each node sends roughly 100-150 very small messages in its local neighborhood per
time step, a time step would take a couple of seconds to complete in a real world sce-
nario (the simulator requires roughly one second). Thus, the clustering would stabilize
after a few minutes.
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5 Conclusions

This paper shows that partitioning and clustering graphs by means of diffusive tech-
niques is a very promising approach. The disturbed diffusive (re-)partitioning algorithm
DIBAP is a clear alternative to traditional KL-based methods for balancing the load
in parallel adaptive numerical simulations. While DIBAP is still significantly slower
than the state-of-the-art, it usually computes considerably better solutions. In situations
where the quality of the load balancing phase is more important than its running time —
e. g., when the computation time between the load balancing phases is relatively high —
the use of DIBAP is expected to pay off.

In the second major part of this paper, we presented a distributed heuristic for clus-
tering graphs. The use of diffusion makes it suitable for the implicit optimization of
cut-related quality measures such as modularity. Although communication takes only
place between neighboring graph nodes, random initial configurations are transferred
into meaningful clusterings with a low memory footprint. With extensive experiment
series (only few of which have been presented here), we have shown that for our main
application the clustering results are comparable to (and partially even better than) those
of an established non-distributed algorithm.

Future work is mostly concerned with the acceleration of our algorithms and their
tuning for difficult instances. Deeper theoretical insights, in particular about guaran-
tees on the solution quality, are also of interest. For this, our result on the relaxed cut
optimization of BUBBLE-FOS/C might help as a starting point.
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