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Abstract

In the past years, many dimensionality reduction methods have been

established which allow to visualize high dimensional data sets. Recently,

also formal evaluation schemes have been proposed for data visualization,

which allow a quantitative evaluation along general principles. Most tech-

niques provide a mapping of a priorly given finite set of points only, requir-

ing additional steps for out-of-sample extensions. We propose a general

view on dimensionality reduction based on the concept of cost functions,

and, based on this general principle, extend dimensionality reduction to

explicit mappings of the data manifold. This offers the possibility of sim-

ple out-of-sample extensions. Further, it opens a way towards a theory

of data visualization taking the perspective of its generalization ability

to new data points. We demonstrate the approach based in a simple

example.

1 Introduction

The amount of electronic data available today doubles approximately every 20
months. At the same time, its complexity and dimensionality increases dramat-
ically due to improved sensor technology, dedicated data formats, and rapidly
increasing capabilities to digitally capture different data modalities. As a conse-
quence, data can no longer be inspected manually, rather, automated methods
which help humans to quickly scan through massive data volumes are needed.
Data visualization relies on the astonishing cognitive capabilities of humans for
structure detection in visual images. In this context, the available information
and structural characteristics or specifics can be captured almost instantly by
humans despite the given number of data points which are represented in the vi-
sualization. As a consequence, data visualization and dimensionality reduction
play a key role in modern data mining techniques.
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A plethora of methods for linear and nonlinear dimensionality reduction has
been proposed in the past years, see e.g. [10, 20, 18, 8, 21] for recent overviews.
In general, the task is to substitute data points in a high dimensional data
manifold by much lower dimensions (ideally two dimensions to obtain a visu-
alization), such that as much information as possible is preserved. Since this
problem formulation is ill-posed, a variety of methods can be derived by im-
posing additional constraints on the visualization task. Spectral dimensionality
reduction techniques such as LLE [13], Isomap [16], or Laplacian eigenmaps
[2] rely on the spectrum of the neighborhood graph of the data and preserve
important properties of this graph. In general, they allow a unique algebraic
solution of the corresponding mathematical objective which formalizes the vi-
sualization task. Thereby, many methods rely on very simple affinity functions
such as Gaussians such that their results are flawed when it comes to effects such
as boundaries or different separated manifolds. Using more complex affinities
such as present in Isomap [16] or maximum variance unfolding [22] can partially
avoid this problem, but at the prize of higher computational costs. Nonlinear
methods which do not rely on the spectrum often have the drawback that local
optima can easily occur. However, their results can be more appropriate as
demonstrated e.g. for SNE [7], t-SNE [18], or elastic embedding [6].

All of these methods, however, map the given data points only and their
extension towards novel data points requires additional effort. Essentially, two
different ways for out of sample extensions can be found in the literature: either
an interpolation takes place, e.g. by fitting a neural network to the data which
interpolates the projection mapping. This has the drawback that the mapping
is not optimized for the projection task, rather, it interpolates the given (prob-
ably faulty) coordinates. Alternatively, novel points can be directly mapped to
a position in the projection space which minimizes the underlying cost function
of the visualization method, where the coordinates of the priorly given data and
their projections are kept fixed. In some cases, an explicit algebraic expres-
sion is possible, for complex cost functions, numerical optimization is necessary.
Usually, however, the novel coordinates depend on all given data by means of
the cost function, which often yields to quadratic effort corresponding to the
pairwise affinities of data points captured in the cost function.

In this contribution we take a different point of view and propose a gen-
eral principle how dimensionality reduction mappings which are optimized for
the visualization task can be obtained based on the dimensionality reduction
principles as proposed in the literature. For this purpose, a specific form and
complexity of the dimensionality reduction mapping is fixed, such as a function
stemming from a class which allows universal approximation, e.g. locally linear
functions, or a particularly simple function to allow easy interpretability such as
a global linear function. Instead of the coordinates of the projected data points,
the function parameters are optimized in a second step. A similar mechanism
has been proposed in specific settingsL in the contribution [13], LLE is extended
towards a locally linear embedding function, leading to locally linear coordina-
tion, in the approach [19] t-SNE is extended towards an embedding given by an
encoder networks. We argue that this principle can be generalized towards a
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general framework which allows to adapt embedding functions of different com-
plexity according to a given objective as mirrored by the various dimensionality
reduction technologies. We exemplarily demonstrate this procedure for a global
linear mapping and the visualization cost term of t-SNE.

The fact that an explicit mapping is obtained instead of coordinates of single
points has several benefits: out-of-sample extensions are immediate and reduce
to (efficient) function evaluations, whereby the form and complexity of the func-
tion can be defined a priori. Approximate inverse mappings can be constructed
e.g. by a local linear approximation of the projection and the corresponding
pseudoinverse. This way, paths in the projection space can be traced back to
paths in the data manifold, shedding some light on the structure of the pro-
jection. Since the dimensionality reduction mapping is usually described by a
small number of parameters, few data points are sufficient to reliably determine
these parameters, i.e. training can be done using a small subset of the data only
instead of the full data set. This can dramatically reduce the complexity of
the computation since the cost functions often scale at least quadratically with
the number of training data. This generalization ability of dimensionality re-
duction mapping can formally be put into the framework of statistical learning
theory. Assuming that a loss function of the dimensionality reduction is fixed,
the empirical error of this loss function on a small data set is often already rep-
resentative for the full error assumed reasonable mappings and loss functions
are considered. We will discuss this fact in more detail within this contribution.
Further, we will also discuss, in how far this generalization ability of dimension-
ality reduction mappings can be used to show a formal concept of learnability
of dimensionality reduction e.g. based on the reconstruction error of the map.

2 Dimensionality reduction as cost optimization

First, we shortly review some of the most popular dimensionality reduction
methods as proposed in the literature. We assume that high dimensional points
X : {~xi ∈ IRD}ni=1 are given which should be projected to points Y : {~yi ∈
IRd}ni=1 with d < D, ideally d = 2 for visualization in the two-dimensional Eu-
clidean plane. Corresponding distances are denoted as dX (~xi, ~xj) for the original
manifold, and dE(~y

i, ~yj) for the projection space. Usually, dE is chosen as the
Euclidean distance, while dX (~xi, ~xj) can be picked arbitrarily (e.g according to
Euclidean or geodesic distances in the high dimensional space.)

Multidimensional scaling and extensions

Multidimensional scaling (MDS) [17] or metric MDS, to be more precise, con-
stitutes probably one of the most popular and oldest dimensionality reduction
methods. Its goal is to find projections such that the pairwise relations of data
are preserved as much as possible as measured in the least squares sense, i.e.

EMDS =
∑

ij

((~xi)⊤~xj − (~yi)⊤~yj)2
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is minimized where, for original MDS, the pairwise relation of data is measured
in terms of dot products in the original or projection space, respectively. This
formulation has the benefit that an analytical solution is possible in terms of
the eigenvectors of the Gram matrix. This objective has later been generalized
to explicitly preserve distances, i.e. the cost function becomes

EMDS =
1

c

∑

ij

wij(dX (~xi, ~xj)− dE(~y
i, ~yj))2

with Euclidean distances, where the weights wij can be chosen appropriately,
e.g. wij = 1, and c is a normalizing constant [10]. For the popular Sammon
mapping, the weights are picked as wij = 1/dX (~x

i, ~xj), this way putting most
emphasis on the preservation of small distances, and c denotes the sum over
these distances. In this case, optimization of the cost function usually takes
place by means of a gradient descent.

Isomap

Isomap [16] is based on the observation that the Euclidean distance is often not
appropriate to describe pairwise relations of data in the original space, rather,
the distance should be measured along the data manifold. Therefore, Isomap is
based on an approximation of the manifold distance by geodesic distances, i.e.
shortest paths lengths in the graph which results if every data point is connected
to its nearest neighbors (using either k-neighborhoods or ǫ-balls to define the
local neighborhood).

Locally linear embedding

Locally linear embedding (LLE) [13] first expresses local topologies by recon-
structing a data point by linear combinations of its local neighborhood (de-
noted by i → j) in the original space under the constraint that the coefficients
sum to one such that translation and rotation invariance is enforced: minimize∑

i(~x
i−
∑

i→j wij~x
j)2 with

∑
wij = 1. Afterwards, projections are determined

such that the local linear relationships are preserved as much as possible in a
least squares sense where, again, a normalization of the coefficients leads to a
unique optimum of the optimization problem: minimize

∑
i(~y

i −
∑

i→j wij~y
j)2

such that
∑

~yi = 0 and YtY = n, the latter referring to the corresponding
matrices.

Laplacian Eigenmaps

Laplacian eigenmaps [2], like LLE and Isomap, start with a local neighbor-
hood graph given by the k nearest neighbors or ǫ-neighborhood, respectively.
The connections are weighted with values wij , e.g. using the heat kernel. Then,
projection takes place by picking the eigendirections corresponding to the small-
est eigenvalues larger than 0 as computed in the generalized eigenvalue problem
given by the corresponding graph Laplacian and the degree matrix of the graph.
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This is equivalent to minimizing the embedding objective
∑

i→j wijdE(~y
i, ~yj)2

with Euclidean distance, under the constraint YtDY = 1 and YtD~1 = ~0, where
D is the degree matrix and Y refers to the matrix of coefficients, to remove scal-
ing factors and translation factors.

Maximum variance unfolding

Maximum variance unfolding (MVU) [22] also first determines a neighborhood
graph by taking the k nearest neighbors or ǫ neighborhoods. Afterwards, it
finds projections ~yi such that the variance of the projection is maximized,
i.e.

∑
ij dE(~y

i, ~yj)2 is maximum subject to a preservation of neighbors, i.e.

dE(~y
i, ~yj) = dX (~xi, ~xj) for all neighbored points ~xi and ~xj , and the normal-

ization
∑

~yi = 0. This can be reformulated as a convex problem by considering
the variables (~yi)⊤~y instead. Further, it is not clear that a solution exists due
to the constraints, such that possibly slack variables have to be introduced.

Stochastic neighbor embedding

Stochastic neighbor embedding (SNE) [7] defines probabilities

pj|i =
exp

(
−dX (~xi,~xj)2

2σi

)

∑
k 6=i exp

(
−dX (~xi,~xk)2

2σi

)

and

qj|i =
exp

(
−dE(~y

i, ~yj
)2

∑
k 6=i exp (−dE(~yi, ~yk)2)

with Euclidean distances as default. The goal is to optimize the Kullback-Leibler
divergence of these two distributions, i.e. the term ESNE = −

∑
ij pj|i log

pj|i

qj|i
,

where appropriate bandwidths σi are determined based on the so-called perplex-
ity which determines the effective number of neighbors of a given data point.
Typically, gradient descent is used for the optimization.

T-distributed stochastic neighbor embedding

t-distributed SNE (t-SNE) [18] modifies SNE towards a numerically easier cost
function and a distribution in the embedding space which prevents the crowding
problem by long tails, student-t. Its cost function is

Et−SNE =
∑

i

∑

j

pij log

(
pij
qij

)

where

pij =
pj|i + pi|j

2n
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symmetrizes the conditional probabilities, n denoting the number of data points,
and

qij =
(1 + dE(~y

i, ~yj)/ς)−
ς+1

2

∑
k 6=l(1 + dE(~yk, ~yl)/ς)−

ς+1

2

is given by student-t, and the parameter picked as ς = −1, for example. Again,
optimization takes place by means of a gradient method.

A general view

These methods obey one general principle: characteristics of the data ~x are
computed and projections ~y are determined such that the corresponding char-
acteristics of the projections are as close to the characteristics of ~x as possi-
ble, fulfilling possibly additional constraints or objectives to achieve uniqueness.
Thereby, the methods differ in the way how data characteristics are determined
and how exactly the similarity of the characteristics is defined and optimized.
Table 2 summarizes the properties of the optimization methods under this point
of view. Naturally, the methods severely differ with respect to the way in which
optimization takes place: in some cases, the characteristics can be directly com-
puted from the data (such as distances), in others, an optimization step is
required (such as local linear weights). In some cases, the optimization of the
error measure can be done in closed form (such as for Laplacian eigenmaps), in
other cases, numerical optimization is necessary (such as for t-SNE).

3 Dimensionality reduction mapping

All dimensionality reduction methods as introduced above give a mapping of
points only: ~xi 7→ ~yi. Extensions of the map to new data points ~x require a new
computation, often the respective coefficients which minimize the objective of
dimensionality reduction are determined, keeping all known coefficients fixed.
This method has the drawback that additional effort is required if new data
points are dealt with. Further, it is not easily possible to formalize and investi-
gate the generalization ability of these mappings, i.e. the question, whether the
method works well for future data from the same manifold assumed it works
well for the known training set.

These issues can be circumvented if a dimensionality reduction mapping

f : X → E , ~xi 7→ ~yi = f(~xi)

from the space X of original data X to the embedding space E of the projected
points Y is computed rather than single coefficients ~xi 7→ ~yi only.

Previous work

In the literature, a few dimensionality reduction technologies provide an ex-
plicit mapping of the data: linear methods such as PCA provide an explicit
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linear function which optimizes the information loss while projecting [3]. Exten-
sions to nonlinear functions are given by autoencoder networks, which provide
a function given by a multilayer feedforward network in such a way that the
reconstruction error is minimized when back projecting with another feedfor-
ward network [20]. Typically, training takes place by standard back propagation
directly minimizing the reconstruction error. Manifold charting starts from lo-
cally linear embeddings given by local PCAs and glues these pieces together
by minimizing the error on the overlaps [5, 14]. This way, a global embedding
mapping is obtained. Topographic maps such as the self-organizing map or
generative topographic mapping characterize data in terms of prototypes which
are visualized in low dimensions [4, 9]. Due to the clustering, new data can
directly be visualized by mapping these data to their closest prototype or its
visualization, respectively.

A few dimensionality reduction mappings which give coordinates per default
as introduced above have been extended to global dimensionality reduction map-
pings. Locally linear coordination (LLC) extends LLE in the following way [15]:
it is assumed that local linear dimensionality reduction methods are available,
such as local PCAs. These are glued together adding affine transformations.
These additional parameters are optimized by inserting the resulting points in
the LLE cost function and corresponding optimization. Parameterized t-SNE
[19] extends t-SNE towards an embedding given by a multilayer neural network.
The network parameters are determined using back propagation, where, instead
of the mean squared error, the t-SNE cost function is taken as objective.

A general principle

Considering dimensionality reduction as optimization task as formulated in Ta-
ble 2 allows to simultaneously extend all methods to dimensionality reduction
mappings a general way. In a first step, the principled form and complexity of
the dimensionality reduction mapping is fixed: a parameterized function

fW : X → E

is chosen with parameters W which have to be determined such that the pro-
jections are satisfactory. The form of this function can be given by a linear
function, a locally linear function, a feedforward neural network, etc. Then, in-
stead of coefficients ~yi, the images of the map fW (~xi) are considered and instead
of the single coefficients, the map parameters W are optimized. For this pur-
pose characteristics of the data ~xi can be computed as before. Characteristics
of the projected points depend on the parameterized quantities fW (~xi) instead
of the coefficients. These terms can be plugged into the corresponding error
measure and the parameters W can be determined via optimization taking the
same constraints into account as before (or relaxations thereof).

This principle leads to a well defined mathematical objective for the map-
ping parameters W for every dimensionality reduction method as summarized
above, although the way in which optimization takes place is possibly different
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as compared to the original method: while numerical methods such as gradient
descent can still be used, it is probably no longer possible to find closed form
solutions for spectral methods. However, numerical optimization can be used
as a default in all cases.

We exemplarily derive formulas for a specific case: a global linear mapping
combined with the t-SNE cost function. The suitability of the general principle
for different dimensionality reduction cost functions and different parameteriza-
tions of the projection mapping will be the subject of future work.

Linear t-SNE Mapping

We derive the formulation in case of a linear hypothesis for the mapping of the
high-dimensional data points ~xl and the t-SNE cost function. The mapping fW
becomes

fW : ~xl → ~yl = A · ~xl .

The rectangular matrix A defines a linear mapping from IRD → IRd. This
matrix can be optimized using a stochastic gradient descent procedure using
following gradient of the t-SNE cost function:

∂Et−SNE

∂A
=
∑

i

∑

j

∂Et−SNE

∂qij
·

∂qij
∂dE(~yi, ~yj)2

·
∂dE(~y

i, ~yj)2

∂A

=
ς + 1

2ς

∑

i

∑

j

(pij − qji)·

(1 + dE(~y
i, ~yj)/ς)−1 ·

∂dE(~y
i, ~yj)2

∂A

with Euclidean distance dE(~y
i, ~yj) = ||A~xi −A~xj || follows:

∂dE(~y
i, ~yj)2

∂A
= 2(A~xi −A~xj)(~xi − ~xj)

Hence

∂Et−SNE

∂A
=
ς + 1

ς

∑

i

∑

j

(A~xi −A~xj)(~xi − ~xj)·

(pij − qji)
1

1 + ||A~xi −A~xj ||2/ς
.

We test this procedure in comparison to simple PCA on a three dimensional
benchmark problem: three Gaussian clusters are stacked together as shown
in Fig. 1. Because of the comparably large variance in the direction of the
z-coordinate, a PCA mapping projects the data clouds onto each other. In
contrast, a linear mapping trained such that the t-SNE cost function of the pro-
jections is optimized leads to a much clearer separation of the cluster structure,
because it takes into account the preservation of local structures as measured
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Figure 1: Simulation Results for a globally linear map trained with PCA and
an optimization of the t-SNE costs, respectively. The latter leads to a better
separation due to its local nature, which can be formally evaluated referring to
the intrusions and extrusions of the mapping.

by the t-SNE cost function. Fig. 1 clearly shows the superiority of the mapping
obtained this way, referred to as DiReduct mapping. In addition, the projection
is formally evaluated using the error measure as proposed in [11, 12]. Roughly
speaking, these rely on the k-intrusions and k-extrusions in the projections, i.e.
k-nearest neighbors in the projection, but not the original space, and vice versa.
The quality measures refer to the quantities Q which measures the percentage
of data which is not k-intrusive or k-extrusive, and B which measures the per-
centage of k-intrusions minus the percentage of k-extrusions of the map, i.e. it
characterizes the behavior of the mapping. Obviously, DiReduct shows a supe-
rior quality in particular for small neighborhood ranges since it better preserves
local structures of the data. Further, unlike PCA which displays a trend towards
intrusions, it is rather neutral in the mapping character, being mildly extrusive
for medium sizes of k nearest neighbors.

Alternative more complex mappings such as e.g. locally linear functions as
well as an investigation which forms of the mapping and which dimensionality
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reduction objectives are suited for the task are the subject of ongoing work. In-
terestingly, it is possible to integrate additional aspects into the frameworks such
as e.g. auxiliary information, by biasing the dimensionality reduction mapping
towards the given auxiliary information.

4 Generalization ability

The extension towards dimensionality reduction mappings offers the possibility
to learn the mapping based on few randomly selected data points only, since
the mapping parameters are already determined by only few points. Depend-
ing on the size of the data, this can severely improve the performance of the
method, since it reduces the squared complexity to a constant effort. However,
an assumption underlying this procedure is that the dimensionality reduction
mapping generalizes from few data to new data stemming from the same un-
derlying distribution. That means we have to ensure that the quality measure
for all data is good assumed it is good for a given finite subsample used to
determine the mapping parameters.

Recently, some work on how dimensionality reduction can be formally eval-
uated has been proposed [12, 21]. As pointed out in [12], one objective of
dimensionality reduction is to preserve the available information as much as
possible. In consequence, the possibility to reconstruct the points ~xi from their
projections ~yi can act as valid evaluation measure. Assuming a dimensionality
reduction mapping f : X → E is given, this results in the reconstruction error

E(P ) :=

∫

X

‖~x− f−1(f(~x))‖2P (~x)d~x

where P defines the probability measure according to which the data ~x are
distributed in X and f−1 constitutes an approximate inverse mapping of f ,
an exact inverse in general not existing. Usually, the full data manifold is not
available, but a finite set of samples only. Then, the empirical error can be
computed

Ên(~x) :=
1

n

∑

i

‖~xi − f−1(f((~xi)))‖2

for given data ~xi. Note that some dimensionality reduction mappings such as
autoencoder networks explicitly optimize this empirical approximation of the
costs E(P ).

Most dimensionality reduction methods map the data points only, such that
neither f nor its approximate inverse are available. Therefore, evaluation mea-
sures as proposed in [12, 21] rely on k-neighborhoods in the original and the
projection space to approximately capture neighborhood preservation. If a di-
mensionality reduction mapping is learned, f and its approximate inverse f−1

are available. Thus, the evaluation measure Ên(~x) can be evaluated. Since the
form of f is fixed prior to training, we can specify a function class F with f ∈ F
independently of the given training set. Assuming representative vectors ~xi are
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chosen independently and identically distributed according to P the question
is whether this quantity allows to limit the real error E(P ) we are interested
in. As usual, bounds should hold simultaneously for all possible functions in F
to circumvent the problem that the function f is chosen according to the given
training data and, thus, the empirical error Ên(~x) is usually small.

This setting can be captured in the classical framework of computational
learning theory, as specified e.g. in [1]. We can adapt Theorem 8 from [1] to our
setting: We consider a fixed function class

F : X → E

from which the dimensionality reduction mapping is taken. We assume without
loss of generality, that the norm of the input data and its reconstructions under
mappings f−1◦f , f−1 denoting the approximate inverse of f ∈ F , are restricted
(scaling the data priorly, if necessary), such that the reconstruction error is
induced by the squared error, which is a loss function with limited codomain

L : X × X → [0, 1], (~xi, ~xj) 7→ ‖~xi − ~xj‖2

Then, as reported in [1] (Theorem 8), assuming i.i.d. data according to P , for
any confidence δ ∈ (0, 1) and every f ∈ F the following holds

E(P ) ≤ Ên(~x) +Rn(LF ) +

√
8 ln(2/δ)

n

with probability at least 1− δ where

LF := {~x 7→ L(f−1(f(~x)), ~x) | f ∈ F}

and Rn refers to the so-called Rademacher complexity of the function class.
The Rademacher complexity constitutes a quantity which, similar to the Vap-
nik Chervonenkis dimension, estimates the capacity of a given function class.
Assume σi are independent identically distributed {±1}-valued random vari-
ables. The empirical Rademacher complexity of a real valued function class G
is

R̂n(G) := E

(
sup
f∈G

∣∣∣∣∣
2

n

∑

i

σif(~x
i)

∣∣∣∣∣ given ~x1, . . . , ~xn

)

where the expectation is taken over σi. It estimates the expected worst case
correlation of functions in F with random ±1-valued vectors. The Rademacher
complexity denotes the expectation over this quantity taking into account all
possible samples ~x.

This result implies that the generalization ability of dimensionality reduction
mappings is usually guaranteed since the Gaussian complexity of the class LF

can be limited for reasonable choices of the mapping function F . For linear
functions for example, bounds on the Rademacher complexity can be derived in
the same way as explained in [1].
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5 Conclusion

In this contribution, the question how a dimensionality reduction mapping can
be inferred rather than coordinates of separated points has been considered.
By formulating dimensionality reduction as an optimization problem between
structural characteristics, many classical dimensionality reduction techniques
can simultaneously be extended towards explicit mappings which depend on a
priorly chosen form of the mapping. We have demonstrated the feasibility of
this approach in one simple example.

This general view opens the way towards a plethora of alternative mapping
possibilities since, in principle, every cost function can be combined with every
possible choice of the mapping function. Even more interesting, the framework
allows us to consider the generalization ability of dimensionality reduction since
an explicit cost function is available in terms of the reconstruction error based on
a dimensionality reduction mapping and its approximate inverse. Interestingly,
bounds as derived in the context of computational learning theory can directly
be transferred to this setting.

The investigation of alternative dimensionality reduction mappings including
more global cost functions such as provided by Isomap, and locally non-linear
function approximations, as well as the derivative of explicit bounds on its
generalization ability will be the subject of future work.
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method characteristics of data characteristics of projections error measure

MDS Euclidean distance dX (~xi, ~xj) Euclidean distance dE(~y
i, ~yj) minimize weighted least squared error

Isomap Geodesic distance dgeodesic(~x
i, ~xj) Euclidean distance dE(~y

i, ~yj) minimize weighted least squared error
LLE reconstruction weights wij such that reconstruction weights w̃ij such that enforce identity wij = w̃ij∑

(~xi −
∑

i→j wij~x
j)2 is minimum

∑
(~yi −

∑
i→j w̃ij~y

j)2 is minimum

with constraints
∑

j wij = 1 with constraints
∑

~yi = 0, YtY = n

Laplacian negative heat kernel weights squared Euclidean distance maximize correlation
eigenmap −wij = exp(−dX (~xi, ~xj)2/t) for i → j dE(~y

i, ~yj)2 for i → j

with constraints YtDY = 1, YtD~1 = ~0
MVU Euclidean distance dX (~xi, ~xj) for i → j Euclidean distance dE(~y

i, ~yj) for i → j enforce identity
such that

∑
ij dE (~y

i, ~yj)2 is maximum (introducing slack variables if necessary)

and
∑

i ~y
i = 0.

SNE probabilities pj|i =
exp(−dX (~xi,~xj)2/2σi)∑
k 6=i

exp(−dX (~xi,~xk)2/2σi)
probabilities qj|i =

exp(−dE(~y
i,~yj)

2
)∑

k 6=i
exp(−dE(~yi,~yk)2)

minimize Kullback-Leibler divergences

t-SNE probabilities pij =
pj|i+pi|j

2n probabilities qij =
(1+dE(~y

i,~yj)/ς)−
ς+1

2∑
k 6=l

(1+dE(~yk,~yl)/ς)−
ς+1

2

minimize Kullback-Leibler divergence

Table 2: Many dimensionality reduction methods can be put into a general framework: characteristics of the data are extracted.
Projections lead to corresponding characteristics depending on the coefficients. These coefficients are determined such that an
error measure of the characteristics is minimized, fulfilling probably additional constraints.
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