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Abstract
Calculating the worst-case execution time (WCET) of real-time tasks is still a tedious job. Pro-
grammers are required to provide additional information on the program flow, analyzing subtle,
context dependent loop bounds manually. In this paper, we propose to restrict written and gen-
erated code to the class of programs with input-data independent loop counters. The proposed
policy builds on the ideas of single-path code, but only requires partial input-data independence.
It is always possible to find precise loop bounds for these programs, using an efficient variant
of abstract execution. The systematic construction of tasks following the policy is facilitated
by embedding knowledge on input-data dependence in function interfaces and types. Several
algorithms and benchmarks are analyzed to show that this restriction is indeed a good candidate
for removing the need for manual annotations.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.77

1 Introduction

Worst-Case Execution Time (WCET) analysis is concerned with determining an upper
bound for the time needed to execute a task or procedure on a particular architecture. It
is a necessary prerequisite for verifying that a system meets its timing specification. A
widely used approach for WCET analysis is to analyze the set of execution paths and the
timing of instruction sequences separately. The latter also includes the analysis of hardware
components with global state, such as instruction and data caches or pipelines. Finally, the
results of both the high-level and low-level analysis are fed into a solver, which computes the
maximum execution time [12].

Flow facts are constraints that describe restrictions on the set of possible execution
sequences. The path analysis has to determine a set of finite execution sequences as an
overapproximation to all possible execution paths. As each considered execution path has to
be finite, it is necessary to bound loop iteration counts and recursion depths. Together with
information about the target of indirect jumps, these bounds are sufficient and necessary
to derive some WCET bound. Loop bounds are either detected using an automated loop
bound analysis, or are specified by the programmer through annotations.

WCET analysis is primarily concerned with the execution time of machine code on one
particular architecture. Therefore, knowledge about the execution paths of a task is only
useful if it can be mapped to machine code in a reliable way. Due to compiler optimizations,
source code annotations are difficult to map to machine code. Annotations on the assembler
level are difficult and tedious to write, and cannot be reused when the program is recompiled.

One solution to this dilemma is to have both a language that allows to integrate, test
and verify flow information, and compilers that are aware of these flow facts, and transform
them into flow facts on the machine code level [7, 3]. While highly desirable, flow-fact aware
compilers are still rare. More importantly, source code annotations tend to be error prone,
and often stay untested.
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Another potential solution to eliminate the need for machine code level annotations is
to derive all necessary flow facts automatically using an automated loop bound analysis. A
variety of dataflow techniques has been proposed and implemented (e.g. [8]), as well as more
expensive methods such as symbolic model checking. The problem with these techniques
is that it is hard to predict whether they will find all necessary flow facts. In the fields
of compiler optimization and testing, where most techniques were developed, a successful
analysis is useful, but not crucial for correctness. In the WCET analysis domain, however,
failing to derive loop bounds requires the user to resort to manual annotations.

We think that being unable to predict the success of loop bound analysis is a major
obstacle for building systems that do not depend on user annotations. While for arbitrary
code, there is little hope to find all necessary flow facts automatically, the situation is different
if the implementation has to follow certain rules. Single path code [9] is characterized by the
fact that there are no input-data dependent decisions and consequently only one possible
execution path. For single-path code, all flow facts can be obtained by simply executing
the program and recording the execution trace. Moreover, it is possible to transform all
programs with known loop bounds to single-path form [10]. However, the single path policy
is perceived to be too restrictive, as it does not allow any input-data dependent control flow
at all.

In this paper, we propose a formal code policy less restrictive than single path, which does
not ban the use of all input-data dependent control flow decisions. It e.g. allows to use state
machines, without the need to transform the corresponding dispatch table to non-branching
code, as required by the single-path concept. The policy is still sufficiently restrictive to
guarantee that a simple and efficient form of abstract execution [4] will find the flow facts
necessary for bounding the execution time.

Intuitively, the policy presented in this paper requires that all loops have at least one
exit condition independent of input data. We present a formal definition of input-data
dependence, and automatically classify input-data independent decisions. To this end, we
use a program analysis technique which is similar to the one given in [5], but provides a
more liberal definition of input-data dependence. Furthermore, the notion of input-data
independence can be included in the application programming interface (API), facilitating a
systematic construction of programs known to be analyzable.

As an example, compare the two implementations of binary search given in Listing 1a
and Listing 1b, assuming that the size of the array is known. Both implementations have a
similar performance, but different characteristics when it comes to loop bound analysis. The
classic implementation in Listing 1a requires a relatively complicated proof to establish the
loop bound. In contrast, it is easy to calculate the loop bound for the implementation in
Listing 1b. If the size of the array is input-data independent, the second implementation
agrees with the proposed policy. The single path implementation, which allows to calculate
the exact number of iterations for a given array size, is shown in Listing 1c.

The crucial question deciding the acceptance of this methodology is whether it is too
restrictive or not. To this end, we argue that many algorithms we believe to be useful in
typical hard real-time systems can indeed be designed to follow the policy in a natural way.
Furthermore, it is possible to transform manually annotated loops into loops with an input-
data independent exit condition. While this does not solve correctness and maintainability
problems of annotations, it shows that all tasks can be written in a way adhering to the
policy.
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int bsearch_std (int arr [], int N, int key)
{

int lb = 0;
int ub = N - 1;
while (lb <= ub)
{

int m = (lb + ub) >>> 1; /* unsigned shift */
if (arr[m] < key) lb = m+1;
else if (arr[m] > key) ub = m -1;
else return m;

}
return -1;

}

(a) Dependent loop counter

int bsearch_idi (int arr [], int N, int key)
{

int base = 0;

for (int lim = N; lim > 0; lim >>= 1)
{

int p = base + (lim >> 1);
if (key > arr[p]) base = p + (lim &1);
else if (key == arr[p]) return p;

}

return -1;
}

(b) Independent loop counter

int bsearch_sp (int arr [], int N, int key)
{

int base = 0;
int r = -1;

for (int lim = N; lim > 0; lim >>= 1)
{

int p = base + (lim >> 1);
if (key > arr[p]) base = p + (lim &1)
if (key == arr[p]) r = p;

}
return r;

}

(c) Single path

Listing 1 Different Implementations of Binary Search
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Outline

In Section 2, we discuss the notion of input-data dependence, and give a formal definition,
which is easy to check both manually and automatically. Section 3 defines the class of tasks
with input-data independent loop counters, and shows how to extend function interfaces and
the type system to capture the intended input-data independence of variables. In Section 4,
we propose a simple and efficient abstract execution framework to extract precise loop bounds.
In Section 5, examples of algorithms and real-time benchmarks are evaluated with respect to
the policy. Finally, Section 6 discusses future work and concludes the paper.

2 Input Data Independence

To analyze the WCET of a function, it is in general necessary to assume additional restrictions
on the initial state of variables. For example, the execution time of a function performing a
binary search depends at least on the size of the input array. The tasks scheduled in hard
real-time systems, however, must always have an absolute WCET bound, which is provided
as input to the scheduling algorithm. The policy presented in this paper requires certain
variables to be input-data independent with respect to real-time tasks.

An expression is input-data independent if its value at a specific instruction of one
execution trace does not depend on the environment. This includes dependencies on sensor
values, timers and other values obtained from outside the system, as well as dependencies on
other tasks or the runtime system, for example due to shared variables.

This would be the ideal notion of input-data independence, but it is intractable to check
automatically. For example, if an arbitrary function f(x) returns a constant independent
of its parameter x, then f(x) is input-data independent even if x is a value obtained from
the environment. But deciding automatically whether the result of some arbitrary function
has a dependency on one of its inputs is not possible in general. We do not want to be too
restrictive either: An expression should not be unconditionally classified as being input-data
dependent only because one decision on the path to the corresponding instruction was.

For these reasons, we define input data dependence in terms of dataflow equations, which
can be easily checked by machines and are still comprehensible by humans.

There is already a close correspondence between data dependencies in static single
assignment (SSA) form [1] and input data dependencies. In SSA form, the dependencies
between the uses of a variable and its definition are made explicit by subscripting variables
with an index reflecting their definition site, and adding dedicated statements for merging
reaching definitions. Dependencies due to control flow decisions and due to the mutation of
fields or array elements are not captured by SSA though.

In Figure 1, the source language for the analysis is defined. The statement v := read
assigns v to a statically unknown value obtained from an interaction with the environment.
The language includes support for reading and writing elements of arrays and fields of
composite types. Variable definitions are in SSA form, i.e. each variable only appears once
on the left-hand side of an assignment, and definitions reaching an use site are explicitly
merged by so called φ functions.

We now define input data dependence in terms of an operator A, which maps each
statement to one or more dataflow equations. Following [5], the domain of the analysis is the
semilattice {ID, IDI}. A variable vi is input-data independent if there is a solution to the
data-flow equations listed in Figure 2 with vi = IDI, and input-data dependent otherwise.
If a variable depends on two or more other variables, it is input-data independent only if all
variables it depends on are. Therefore we define ID u IDI = IDI u ID = ID.
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v := c Assign v to an integer constant
v := read Assign v to a value obtained from the environment
v := v1 ◦ v2 Assign v to v1 ◦ v2, with ◦ ∈ {+,−, ∗, <,≤,=, AND, OR, XOR}
v := v1[v2] Assign v to the element at position v2 of the array v1

v[v1] := v2 Set element v1 of the array v to v2

v := v1.F v is assigned to the field F of of v1

v.F := v1 The field v.F is assigned to v1

v := φ(v1, . . . , vn) v is the reaching definition from the set {v1, . . . , vn}
bz v Conditional branch, following the “true” edge if v = 0

Figure 1 The input language for input-data dependence analysis

The equations dealing with constants, environment interaction and binary operators are
straightforward. Dependencies between control-flow decisions and φ functions are defined in
terms of decision branches. A decision branch of y := φ(x1, . . . , xn) is a conditional branch
bz vc, which has a direct influence which definition of x will reach the merge point defining
y. If bz vc has an influence which definition reaches y := φ(x1, . . . , xn), y not only depends
on {x1, . . . , xn}, but also on the condition variable vc.

Formally, bz vc is a decision branch if there are two paths p1 and p2 starting at bz vc
and a variable xi such that (a) p1 and p2 only have the first statement (bz vc) in common
(b) p1 includes the assignment to xi (c) p2 does not include the assignment to xi (d) the last
statement of p2 is the merge point y := φ(x1, . . . , xn). To ensure this definition is correct
in the presence of loops, we require all code to be in Loop-Closed SSA form. The set of all
decision branches of y := φ(x1, . . . , xn) is denoted by D(y). The resulting dependencies are
reflected in the equations for phi functions in Figure 2.

Dependencies due to the mutation of array elements or fields usually require an alias
analysis, determining which statements might influence which fields. A straight-forward
type-based alias analysis [2] is not suitable for arrays, as arrays with the same element type
may be used for both static and dynamic data. Store-based alias analyses distinguish data
based on the memory address or the allocation site. As they track the set of all memory
locations a variable may point to, the outcome of these analyses is difficult to predict for
humans.

Therefore, a type attribute IDI is introduced, that distinguishes input-data independent
and input-data dependent array types. This is similar to the const attribute in C. If v is
declared to be input-data independent, we write idtype(v) = IDI, otherwise idtype(v) = ID.
In an assignment v = v1[v2], v is input data independent if v1 and v2 are input-data
independent, and idtype(v1) = IDI. Assignments to arrays need to be type checked. It
is required that in an assignment v[v1] = v2 both v1 and v2 are input-data independent if
idtype(v) = IDI.

For fields of composite types, we need a more fine grained distinction than for arrays,
where either all or no elements are declared to be input-data independent. Consider e.g. a
datatype for resizable vectors, consisting of three fields, one for the data in the vector, one
for the vector’s size and one for its maximum capacity. While some algorithms may require
the maximum capacity to be input-data independent, clearly neither the size nor the internal
data field have to be.

As it is usually possible to define different composite data types for different purposes,
fields of a composite datatype are explicitly declared as being input data independent. In
Figure 2, we write idtype(v.F ) = IDI to denote that field F of variable v is declared to
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A[v := c] ≡ v = IDI

A[v := read] ≡ v = ID

A[v := v1 ◦ v2] ≡ v = v1 u v2

A[v := v1[v2]] ≡ v = v1 u v2 if idtype(v1) = IDI

v = ID otherwise
A[v := v1.F ] ≡ v = v1 if idtype(v1.F ) = IDI

v = ID otherwise
A[v := φ(v1, . . . , vn)] ≡ v =

d
v1, . . . , vn u

d
bz ci∈D(v) ci

Figure 2 Dataflow equations for input-data dependence analysis (without type checking)

be input-data independent. Similar to arrays, a type checker has to ensure that v.F is not
declared being input data independent if the right hand side of the assignment v.F = v1 is
not.

The example in Figure 3 illustrates the concepts presented in this section. It consists of
two loops with an input-data independent loop counter, and a conditional branch, whose
condition is input-data dependent. In this example, bz b2 is the only decision branch, deciding
whether r2 or r3 reaches r5 = φ(r2, r3). Therefore, r5 depends on the condition variable b2,
and is input-data dependent.

3 Input-data Independent Loop Counters

In this section, we will define the class of tasks with input-data independent loop counters.
We restrict ourselves to reducible loops [6], i.e., loops with a unique entry node, called the
loop header. A conditional branch within the loop is a decision branch for this loop, when
there is one outgoing edge that exits the loop.

I Definition 1. A task has input-data independent loop counters, if each loop has at least
one input-data independent decision branch, which will eventually terminate the loop. A
conditional branch bz v is input-data independent if its condition variable is classified as
IDI.

This definition captures those tasks whose loop iteration counts can still be determined
after removing all input-data dependent variables. The example in Figure 3 has two loop
decision branches, bz b1 for the outer loop, and bz b3 for the inner loop. As both are
input-data independent, dsum indeed has input-data independent loop counters.

One important goal driving the definition above is that it should be possible to sys-
tematically construct tasks with input-data independent loop counters. To this end, the
notion of input-data independence is included in the interface definition of functions. The
interface specification of a function includes the set of parameters that need to be input-data
independent. The caller of the function has to ensure that those parameters which need to
be input-data independent indeed are, every time the function is called. In the example,
the caller of dsum has to ensure N is input-data independent. Using this assumption, the
analysis can prove that the function has input-data independent loop counters locally.

For composite data types and arrays, input-data independence is specified at the definition
site. For example, the library provider specifies that the capacity field of a resizable vector
always has to be input-data independent. The type system then has to check that no
input-data dependent values are assigned to that field.
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// @precondition : N = IDI
int dsum(int arr [], int N)
{

int r=0;
int i=0;
while(i < N) {

int c = read ();
if(c) {

int j = i;
while (j++ < N) {

r+= arr[i];
}

}
i=i+1;

}
return r;

}

Listing 1 Source Code for the Input-Data Dependence Analysis Example

(a) SSA Flow Graph

i1 = IDI
i2 = i1 ! i3
i3 = i2
j1 = i2
j2 = j1 ! j3
j3 = j2
N = IDI
t1 = idtype(arr)
b1 = i2 !N
b2 = ID
b3 = j2 !N
r1 = IDI
r2 = r1 ! r5

r3 = r2 ! r4

r4 = r2 ! t1
r5 = (r2 ! r3) ! b2

1

(b) DF Equations

i1 = IDI
i2 = IDI
i3 = IDI
j1 = IDI
j2 = IDI
j3 = IDI
N = IDI
t1 = idtype(arr)
b1 = IDI
b2 = ID
b3 = IDI
r1 = IDI
r2 = ID
r3 = ID
r4 = ID
r5 = ID

1

(c) Solution

Figure 3 Example of the Input-Data Dependence Analysis

WCET 2010
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4 Generating Flow Facts by Abstract Execution

In this section, we will demonstrate an efficient way to derive all necessary flow facts for
tasks with input-data independent loop counters.

For single-path code, all flow facts can be derived automatically by executing the task,
and recording the instruction trace. As there is only one trace, counting the number of times
a basic block is executed provides exact, absolute execution frequency counts.

The basic idea is similar for code with input-data independent loop counters. However,
we need to take nondeterministic control flow branches into account. Instead of absolute
execution frequencies, relative ones are recorded to obtain precise flow facts. The framework
of abstract execution [4] provides all necessary notions for this analysis.

However, in our setting abstract execution is extremely simplified by eliminating all
statements dealing with input-data dependent variables in a preprocessing step.

Generating bounds on relative loop iteration counts works by tracking and merging loop
counters. A scope is the set of basic blocks associated with a method or loop. For each scope,
loop counter and loop bound variables are introduced for every loop within the scope. The
loop bounds are reset at the task entry. Loop counters are reset when a scope is entered.
Each time the corresponding loop body is executed, the loop counter is increased. When
the scope is left, the loop counter is read, updating the loop bound for the scope/loop pair.
Additionally, one counter keeps track of the sum of innermost loops executed in a scope. In
this way, it is possible to obtain precise flow facts when there are two or more inner loops
with different dependencies on an outer loop counter.

Due to the removal of all input-data dependent assignments, it is not necessary to merge
the values of ordinary program variables at any point. Only the loop counters used to extract
relative loop bounds need to be merged. This observation significantly reduces the complexity
of the analysis.

Figure 4a shows the simplified control flow graph of the dsum example from Figure 3,
with all input-data dependent variables removed. Split points correspond to conditional
branches, where the condition variable has been identified as input-data dependent. Note
that control flow is split non-deterministically at these nodes, as the condition variable is no
longer available.

In Figure 4b, the control flow graph for the abstract execution computing the flow facts
for this example is shown. Note that although we used the same programming language for
the analyzed input and the generated program carrying out abstract execution, this is not
necessary in general. When only a low-level representation of the input is available, it might be
desirable to use a higher-level language to generate code for abstract execution. Moreover, for
languages with platform-dependent semantics, abstract execution has to faithfully interpret
the characteristics of the target platform.

We believe that this form of abstract execution will not have any scalability issues in
practice, though experiments with large programs have not been performed yet.

5 Examples and Evaluation

This section discusses important classes of algorithms and tasks with input-data independent
loop counters, and investigates the input-data independence of loop counters on a set of
selected benchmarks.
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(a) Reduced Flow Graph (b) Abstract Execution Flow Graph

Figure 4 Loop Bound Analysis of the dsum Example

Digital Signal Processing

Many algorithms used in digital signal processing do have natural single path implementations,
given fixed array, matrix and block sizes. Examples include matrix multiplication, the discrete
cosine transform (DCT), the discrete Fast Fourier Transform (FFT) and Finite Impulse
Response (FIR) filters. The symbolic loop bound for e.g. FFT is not trivial to find. Given
an input-data independent block size, the abstract execution technique from Section 4
determines precise loop bounds, taking non-rectangular loop nests into account. For single-
path algorithms, the complexity of calculating a loop bound is comparable to the complexity
of simply executing the program.

Search and Sort

Binary search has already served as an example in the introduction (Listing 1). Insertion
Sort and iterative Merge Sort are sorting algorithms which use input-data independent loop
counters if the size of the array to be sorted is input-data independent. Quick Sort does not,
but is unsuitable for hard real-time systems because of its poor worst-case performance.

State Machines

State machines, which perform different actions depending on the value of a state variable,
incur a higher overhead when transformed to single-path code. This is because the actions
of every state have to be carried out to conform to the single-path requirement. With our
new code policy, the loop counters in each action are input-data independent, state machines
need not be changed so that the task conforms to the policy.

Data structures with dynamic size

The loops of algorithms operating on data structures with a variable number of elements are
usually bounded by a function based on the number of elements, not their maximal capacity.
For these algorithms, different variants which are oriented towards the worst-case (size =
capacity), need to be used. As it is necessary to distinguish undefined and defined entries, a
certain overhead will be unavoidable here. It still remains to be evaluated whether this is an
acceptable strategy.

WCET 2010
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Qualitative Benchmark Evaluation

We manually analyzed the properties of three applications available for the Java Optimized
Processor (JOP) [11], and evaluated whether they conform with the policy. We found that
most loop bounds do have input-data independent counters, while for those that do not, the
dataflow analysis in JOP’s WCET tool failed to derive loop bounds as well.

Lift benchmark: The Lift benchmark is the control loop of a simple lift controller. The
task performs one out of a few different actions depending on its state and sensor values.
All loops in the Lift benchmark have input-data independent counters, with most of them
already being identified by the dataflow analysis integrated with JOP’s WCET tool. When
eliminating all input-data dependent assignments manually, 8 out of 13 methods are removed
from the code.

Kfl Benchmark: The Kfl application is the software for a node in a distributed mast
control application. All but two loops again had input-data independent counters. The
remaining ones need to be annotated manually. The annotations are based on the program-
mer’s knowledge that some global, static variable is always between 0 and 3. This is a
non-obvious information, unlikely to be found by an automated analysis. This suggests to
rewrite the offending code in order to avoid the annotation.

EjipCmp Benchmark: This benchmark is taken from an implementation of the UDP/IP
stack used in a multi-core version of JOP. Some of its loops depend on the number of bytes
a message contains. While there is a global limit to this bound, which depends on the size of
the array used for storing the message, the message length is not input-data independent. In
this case, the easiest way to conform to the policy is to add another exit condition based on
the global limit.

6 Discussion

6.1 Source Code versus Machine Code

The ideas presented in this paper work on two different levels: The construction of predictable
code applies to the source code level, while the flow fact generation for the compiled code
applies to an optimized representation in some lower level language. This may either be
low-level C, an internal representation of the compiler, or even machine code. For machine
code, the flow graph reconstruction is not easy to automate though.

For the source code level, we need to provide a methodology for building or generating
the code, and analysis tools to verify that the code meets the policy. The first goal is met
by introducing annotations specifying input data independence via function interfaces and
type annotations. To detect input-data dependencies, we perform a dataflow analysis on the
source code. It is the responsibility of the programmer to ensure that input-data dependent
branches terminate a loop eventually. If this is not the case, the program is considered to be
faulty, and abstract execution may not terminate.
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6.2 Functional Correctness vs. Timing Analysis
Proving the functional correctness is of course important too, so an interesting question is
whether implementations which fulfill the proposed policy are easier or more difficult to
prove correct. While we do not know an answer in general, the ability to detect loop bounds
by means of static analysis is also beneficial for other program analysis tools. In particular,
bounded model checkers, which are used to prove the absence of certain runtime errors (null
pointer dereference, out of bound array indices) need to know all loop iteration bounds.

7 Conclusion

In this paper, we have presented a formal definition for a code policy for hard real-time
systems. For tasks with input-data independent loop counters, it is guaranteed that all
loop bounds can be detected automatically. Furthermore, it is possible to check statically
that the policy is fulfilled, and to systematically construct tasks following this policy. We
have argued that this policy, which originates from the single-path paradigm, is suitable
for real-time systems, and indeed characterizes a large set of analyzable code. Finally, a
sketch of a static, efficient implementation of abstract execution to derive all loop bounds has
been presented. We have recently started the implementation of the input-data dependency
analysis. Future work includes implementation of the simplified abstract execution technique,
removing statements dealing with input-data dependent prior to the analysis. Furthermore,
we want to investigate suitable algorithms for dynamic data structures, and experiment with
the analysis of machine code on ARM targets, which have served as a platform for single-path
experiments in the past.
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