
Special tree-width and the verification of monadic
second-order graph properties
Bruno Courcelle1

1 Institut Universitaire de France
Bordeaux University and LaBRI (CNRS)
F-33405, Talence, France
courcell@labri.fr

Abstract
The model-checking problem formonadic second-order logic on graphs is fixed-parameter tractable
with respect to tree-width and clique-width. The proof constructs finite deterministic automata
from monadic second-order sentences, but this produces automata of hyper-exponential sizes, and
this computation is not avoidable. To overcome this difficulty, we propose to consider particular
monadic second-order graph properties that are nevertheless interesting for Graph Theory and
to interpret automata instead of trying to compile them (joint work with I. Durand).

For checking monadic second-order sentences written with edge set quantifications, the ap-
propriate parameter is tree-width. We introduce special tree-width, a graph complexity measure
between path-width and tree-width. The corresponding automata are easier to construct than
those for tree-width.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.13

1 Introduction

It is well-known from [9,12,14] that the model-checking problem for monadic second-order (MS)
logic on graphs is fixed-parameter tractable (FPT) with respect to tree-width and clique-width.
The proof uses two main notions. First tree-decompositions (for tree-width as parameter) and
k-expressions (for clique-width as parameter), and second, constructions of finite deterministic
automata from the MS sentences that express the properties to check. These constructions use
inductions on the structure of sentences. "Small" deterministic automata are built for atomic
formulas. Conjunction and disjunction are reflected by products of automata. Existential
quantification is easy but it introduces nondeterminism. Universal quantifications are replaced
by negations and existential quantifications. Negation is reflected by complementation hence is
easy on deterministic automata, but since existential quantifications produce nondeterminism,
determinization must be performed before each application a complementation and this is
the source of the hyper-exponential sizes of the constructed automata.

Two difficulties arise. Although the fact that a graph has tree-width at most k can
be checked in linear time, the corresponding algorithm (by Bodlaender, see [12]) is not
practically usable. The situation is even more difficult for clique-width (see [20] or Chapter
6 of [6]). One can argue that graphs are frequently given with decompositions witnessing
that their tree-width or clique-width is at most some fixed k, but another difficulty arises
: the automata to be constructed are extremely large and their computations run out of
memory space. This is actually unavoidable if one wants algorithms taking as input any
MS sentence (see, e.g., [15, 21, 22]). One possibility is to forget the idea of implementing
the general theorem, and to work only on particular problems, as in [16-19] but we do not
follow this direction: we present some techniques that can improve the situation in many
significant cases.

© Bruno Courcelle;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 13–29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.13
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14 Special tree-width

First, we limit our constructions to a fragment of MS logic whose sentences have limited
alternations of quantifiers but that has nevertheless an interesting expressive power. Using
Boolean set terms also helps to limit quantifier alternation and does not cost much in
terms of sizes of automata. Second, we define deterministic automata for some basic graph
properties and not only for the atomic formulas as is done usually in the proof of the general
construction. Third, we do not compile automata, but instead we recompute their transitions
whenever they are needed. Determinization is done "on the fly". These three ideas arise from
joint work with I.Durand ([8]). Together with the necessary background notions, they will
be presented in Sections 2 and 3 for graphs of bounded clique-width.

In Sections 4 to 6, we will explain how these constructions can be adapted, for graphs
of bounded tree-width, to the verification of MS properties expressed with edge set quan-
tifications. It appears that the corresponding automata, even for the basic property of
adjacency, have exponential size in the bound on tree-width. This exponential blow-up does
not occur if one uses path-decompositions instead of tree-decompositions. This observation
motivates the introduction of special tree-width, a graph complexity measure intermediate
between path-width and tree-width, and for which the basic automata are no more difficult
to construct (or to specify) than for graphs of bounded clique-width. We will present some
results that enlighten the differences between tree-width and special tree-width.

In this communication, we present the ideas and the main results. Technical details and
proofs can be found in Chapter 6 of [6] and in [7].

2 Clique-width

Graphs are finite and simple. Just to shorten the definitions, we consider loop-free graphs.
An undirected edge is handled as a pair of opposite directed edges. Each vertex has a label
in a set C that we first take equal to [k] := {1, ..., k} for some positive integer k. We denote
by π(G) the set of labels of the vertices of a graph G and by πG(x) the label of a vertex x.
The operations on graphs are ⊕, the union of disjoint graphs, the unary relabelling relabh
that changes every label a into h(a) (where h is a mapping from C to C) and the unary
edge-addition

−−→
adda,b that adds directed edges from every vertex labelled a to every vertex

labelled b where a 6= b. Since we wish to define simple graphs, parallel edges are fused (hence
−−→
adda,b(

−−→
adda,b(G)) =

−−→
adda,b(G)). A different interpretation of

−−→
adda,b can be given (cf. Section

5) so as to define graphs with multiple edges. For constructing undirected graphs, we use
−−→
adda,b ◦

−−→
addb,a that we abbreviate into adda,b. We will denote relabh by relaba→b if h(a) = b

and h(c) = c if c 6= a. The constant symbol a denotes one vertex (with no edge) labelled by
a ∈ C. We let Fk be the set of these operations and constant symbols. Every term t in T (Fk)
is called a k-expression and defines a graph G(t) with vertex set equal to the set occurences
of the constant symbols in t. A graph has clique-width at most k if it is isomorphic to G(t)
for some t in T (Fk).

Terms representing graphs and properties of their vertices

Let P (X1, ..., Xn) be a property of sets of vertices X1, ..., Xn of a graph G(t), denoted
by a term t in T (Fk). Here are some examples of properties: Link(X,Y ) : there is an edge
from some x in X to some y in Y ; Dom(X,Y ) : for every x in X, there is an edge from
some y in Y to x; Path(X,Y ) : X has two vertices linked by a path in und(G[Y ]) (G[Y ] is



B. Courcelle 15

the subgraph of G induced on Y and und(G[Y ]) is the corresponding undirected graph)
and Conn(X) : G[X] is connected.

We let F (n)
k be obtained from Fk by replacing each constant a by the constants (a, w)

where w ∈ {0, 1}n and we let pr : F (n)
k → Fk be the mapping that erases the sequences

w. It extends into pr : T (F (n)
k )→ T (Fk). A term t in T (F (n)

k ) defines the graph G(pr(t))
and the n-tuple of sets of vertices (A1, ..., An) such that Ai is the set of vertices which
are occurrences of constant symbols (a, w) such that the i-th component of w is 1. Then,
if P (X1, ..., Xn) is a property as above, we define LP (X1,...,Xn),k as the set of terms t in
T (F (n)

k ) such that P (A1, ..., An) is true in G(pr(t)), where (A1, ..., An ) is the n-tuple of sets
of vertices encoded by t.

3 Monadic second-order logic

Graph properties can be expressed by monadic second-order formulas (more generally by
formulas of any logical language) via two (main) representations of graphs by relational
structures. The first representation associates with every graph G the logical structure
bGc := 〈VG, edgG〉 where edgG is the binary relation on vertices such that (x, y) ∈ edgG if
and only if there is an edge from x to y; the relation edgG is symmetric if G is undirected.
The second representation will be discussed below in Section 4.

Monadic second-order formulas will be written with the set variables X1, ..., Xn, ... (with-
out first-order variables), with the atomic formulas Xi ⊆ Xj , Xi = ∅, Sgl(Xi) (to mean
that Xi denotes a singleton set) and edg(Xi, Xj) (to mean that Xi and Xj denote singleton
sets {x} and {y} such that (x, y) ∈ edgG), and without universal quantifications. These
synctactical constraints are not a loss of generality. A graph property P (X1, ..., Xn), where
X1, ..., Xn denote sets of vertices, is an MS graph property if there exists an MS formula
ϕ(X1, ..., Xn) such that, for every graph G and for all sets of vertices X1, ..., Xn of this graph,
we have:

bGc |= ϕ(X1, ..., Xn) if and only if P (X1, ..., Xn) is true in G.

For each MS property P (X1, ..., Xn), the set of terms LP (X1,...,Xn),k is regular, hence is
the set accepted by a finite automaton over the functional signature F (n)

k . However, the
corresponding automata are frequently much too large to be constructed. This is due partly
to the level of nesting of negations in the formulas but also to the number k: for example, the
number of states of the minimal automaton recognizing LConn(X1),k is a two-level exponential
in k. Instead of trying to construct automata for the most general sentences, we will restrict
our attention to particular but expressive ones (and we will address later the difficulty
concerning k).

Definition 1: ∃MS(P) sentences

We let P be a set of MS graph properties consisting of the properties defined by the
atomic formulas and of basic properties such as Link(X1, X2), Path(X1, X2), Conn(X1).
We let {X1, ..., Xn} be a set of set variables. A Boolean set term is a term written with
these variables, the operations ∩, ∪ and complementation. For example, S = X1 ∪X3. A
P-atomic formula is a formula of the form P (S1, ..., Sm) where S1, ..., Sm are Boolean set
terms and P belongs to P. An ∃MS(P) sentence is a sentence of the form ∃X1, ..., Xn.ϕ

where ϕ is a positive Boolean combination of P-atomic formulas. Note that this definition
depends on a set P that we leave "extensible", according to the needs.

FSTTCS 2010



16 Special tree-width

Examples 2: We now give some examples of properties of simple undirected graphs
expressible by ∃MS(P) sentences.

(1) The property of p-vertex colorability is expressed by the sentence :

∃X1, ..., Xp .(Part(X1, ..., Xp) ∧ St(X1) ∧ ... ∧ St(Xp))

where Part(X1, ..., Xp) expresses that X1, ..., Xp define a partition of the vertex set and
St(Xi) expresses that Xi is stable, i.e., that the induced graph G[Xi] has no edge. A p-vertex
coloring defined by X1, ..., Xp is acyclic if furthermore, each induced graph G[Xi ∪Xj ] is
acyclic (i.e., is a forest). The existence of an acyclic p-coloring for G (we will say that G is
p-AC-colorable) is expressed by:

∃X1, ..., Xp .(Part(X1, ..., Xp) ∧ St(X1)∧
... ∧ St(Xp) ∧ ... ∧NoCycle(Xi ∪Xj) ∧ ...)

with one formula NoCycle(Xi ∪Xj) for all i, j with 1 ≤ i < j ≤ p.

(2) Minor inclusion. Let H be a simple, loop-free and undirected graph with vertex set
{v1, ..., vp}. A graph G contains H as a minor if and only if it satisfies the sentence :

∃X1, ..., Xp .(Disjoint(X1, ..., Xp) ∧ Conn(X1) ∧ ...
∧Conn(Xp) ∧ ... ∧ Link(Xi, Xj) ∧ ...)

where Disjoint(X1, ..., Xp) expresses that X1, ..., Xp are pairwise disjoint; there is one
formula Link(Xi, Xj) for every edge of H that links vi and vj .

(3) Perfect graphs. A (simple, loop-free and undirected) graph G is perfect if the chromatic
number of each induced subgraph H is equal to the maximum size of a clique in H. This
definition is not monadic second-order expressible (because the fact that two sets have equal
cardinalities is not) but the characterization established by Chudnovsky et al. [3] in terms of
excluded holes and antiholes is. A hole is an induced cycle of odd length at least 5 and an
antihole is the edge-complement of a hole. A graph has a hole if and only if it satisfies the
following sentence:

∃X,Y, Z, U, V.(Disjoint(X,Y, Z, U, V ) ∧ edg(Z,U) ∧ edg(U, V )∧
¬edg(Z, V ) ∧ deg2(X,Z ∪ Y ) ∧ deg0(X,U ∪ V )∧

deg2(Y,X ∪ V ) ∧ deg0(Y, U ∪ Z) ∧ deg2(V,U ∪ Y ) ∧ deg2(Z,U ∪X))

where deg0(X,Y ) means that X ∩ Y = ∅, X is stable and not empty and there is no
edge between X and Y ; the property deg2(X,Y ) means that X ∩ Y = ∅, X is stable and
not empty and every vertex in X has exactly 2 neighbours in Y . For every term t ∈ T (Fk),
one can construct (easily) a term t ∈ T (F2k) that defines the edge complement of the graph
G(t) ([10]). We obtain that G(t) is perfect if and only if the F2k-automaton for holes rejects
both t and t. The algorithm of [2] can test if a graph is perfect in time O(n9) (n is the
number of vertices). From the above logical expression of holes, we get a fixed-parameter
cubic algorithm for testing perfectness (with clique-width or even tree-width as parameter).

(4) Constrained domination and other problems. Let P (X1) ∈ P. The sentence
∃X.(P (X) ∧Dom(X,X)) expresses that there exists a set X satisfying property P that



B. Courcelle 17

dominates all other vertices. Many vertex partitionning problems considered in [23] can be
expressed by ∃MS(P) sentences in similar ways.

From ∃MS(P) sentences to automata

We review the main steps of the inductive construction of an automaton associated with
a sentence of ∃MS(P). (See [4] for automata on terms). We first consider the P-atomic
formulas. We assume that for each property P (X1, ..., Xm) of P and each k, we have
constructed a finite automaton AP (X1,...,Xm),k that accepts the set of terms LP (X1,...,Xm),k.

Actually, these automata depend on k in a uniform way (see the end of this section for the
use of this observation).

Claim 3 : For set terms S1, ..., Sm over {X1, ..., Xn}, the set of terms LP (S1,...,Sm),(X1,...,

Xn),k is h−1(LP (X1,...,Xm),k) where h is an alphabetic homomorphism: T (F (n)
k )→ T (F (m)

k )
that replaces each constant symbol (a, w) for w ∈ {0, 1}n by (a, w′) for some w′ ∈ {0, 1}m
and does not modify the nonnullary function symbols.

We only give an example: consider a property P (X1), n = 3 and S = X1 ∪X3. Then
LP (S),(X1,X2,X3),k = h−1(LP (X1),k) where, for every x = 0, 1:

h(1x0) = h(1x1) = h(0x0) = 1 and h(0x1) = 0,

i.e., h(x1, x2, x3) = x1 ∨ ¬x3, hence h encodes the set term S in a natural way. The
subscript (X1, X2, X3) in LP (S),(X1,X2,X3),k indicates that, although P (S) depends only on
X1 and X3, the set of terms is defined as if P (S) depended on X1, X2 and X3.

From an automaton AP (X1,...,Xm),k that accepts LP (X1,...,Xm),k one gets an automaton
AP (S1,...,Sm),(X1,...,Xn),k with same number of states (but more transitions in many cases)
that accepts LP (S1,...,Sm),(X1,...,Xn),k. If AP (X1,...,Xm),k is deterministic, then the automaton
AP (S1,...,Sm),(X1,...,Xn),k is also deterministic. This claim can also be used if the terms
S1, ..., Sm are just variables, say Xi1 ,..., Xim , hence for handling a substitution of variables.

Claim 4 : If ϕ is a positive Boolean combination of P-atomic formulas α1, ..., αd for which
we have constructed complete non-deterministic (resp. deterministic) automata A1, ...,Ad
with respectively N1, ..., Nd states, one can construct a complete product non-deterministic
(resp. deterministic) automaton for ϕ with N1 × ...×Nd states (or less after deletion of
useless states).

Claim 5 : If θ is the sentence ∃X1, ..., Xn.ϕ, and we have constructed an automaton
A recognizing Lϕ(X1,...,Xn),k, we can obtain one recognizing Lθ,k, with the same number of
states by applying the mapping pr that deletes the sequences of Booleans from the constant
symbols of F (n)

k . The automaton for θ is not deterministic in general, even if A is. If A is
deterministic, this construction defines an automaton with 2n transitions associated with
each constant symbol a. Hence, the values of n should not be too large.

By these claims, one can construct for every k and every sentence ϕ in ∃MS(P) a
nondeterministic automaton Aϕ,k that accepts the regular set of terms LP,k = Lϕ,k where
P is the property expressed by ϕ, provided the automata for the atomic formulas and the
properties of P are known.

FSTTCS 2010



18 Special tree-width

Automata for the atomic and basic formulas.

We cannot detail all constructions, but we consider as an example the automaton
A := Aedg(X1,X2),k. Its set of states is S consisting of Ok,Error, 0, a(1), a(2), ab for all
a, b ∈ [k], a 6= b. It has k2 + k + 3 states. Their meanings are described in Table 1. This
table shows for each state s the property Ps that it encodes: s is the state reached by
the automaton after reading a term t in T (F (2)

k ) if and only if Ps holds for this term. In its
description, (V1, V2) is the pair of sets of vertices of the graph G(pr(t)) (that we denote more
simply by G(t)) encoded by the Boolean components of the constants occurring in t. Table 2
specifies the transitions. All transitions not listed go to Error. Ok is the accepting state.

State s Property Ps

0 V1 = V2 = ∅
a(1) V1 = {v}, V2 = ∅, πG(t)(v) = a

a(2) V1 = ∅, V2 = {v}, πG(t)(v) = a

Ok V1 = {v1}, V2 = {v2}, (v1, v2) ∈ edgG(t)

ab V1 = {v1}, V2 = {v2}, v1 6= v2, πG(t)(v1) = a,

πG(t)(v2) = b and (v1, v2) /∈ edgG(t)

Error All other cases
Table 1 Meanings of the states of A.

Transition rules Conditions
(a, 00)→ 0
(a, 10)→ a(1)
(a, 01)→ a(2)
(a, 11)→ Error

relabh[s]→ s s ∈ {0, Ok}
relabh[a(i)]→ h(a)(i) i ∈ {1, 2}
relabh[ab]→ cd c = h(a), d = h(b), c 6= d
−−→adda,b[s]→ s s 6= ab
−−→adda,b[ab]→ Ok
⊕[a(1), b(2)]→ ab a 6= b

⊕[b(2), a(1)]→ ab

⊕[a(2), b(1)]→ ba

⊕[b(1), a(2)]→ ba

⊕[s, 0]→ s s ∈ S
⊕[0, s]→ s

Table 2 The transition rules of A.

We have one automaton for each k, but all these automata have a same concise description.
(If we let C be the set of positive integers, we can consider that Table 2 specifies a unique
automaton with infinitely many states. We will use this observation when discussing below
fly-automata.)

Theorem 6 : Let P be a set of basic graph properties. For each P (Y1, ..., Ym) ∈ P
and for each k, let a deterministic automaton AP (Y1,...,Ym),k with N(P, k) states be already



B. Courcelle 19

specified. For every sentence θ of the form ∃X1, ..., Xn.ϕ where ϕ is a Boolean combination
of P-atomic formulas α1, ..., αd, a nondeterministic automaton Aθ,k (over the signature Fk
because θ has no free variables) having at most N := N1× ...×Nd states can be constructed
where Ni := N(Pi, k) and Pi is the property used to define αi. �

A complete and deterministic automaton over Fk (where we use only the elementary
relabellings relaba→b) with N states, has k + 2k(k − 1).N +N2 transitions. The automaton
Aθ,k has thus k.2n + 2k(k− 1).N +N2 transitions. Its nondeterministic transitions are only
associated with the constant symbols. In the following theorem, we let m be an upper-bound
to the time necessary to determine the output state of a deterministic transition or the i-th
output state of a nondeterministic one. With these hypotheses and notation:

Theorem 7 : For every term t in T (Fk), one can decide in time m.(2n +N2). | t | if the
graph G(t) satisfies θ.

Proof : We use a bottom-up computation on t to determine at each node u of its
syntactic tree the set of states that can occur at u. For the q occurrences of constant symbols,
this takes total time at most m.2n.q. For the occurrences of unary and binary symbols, this
takes total time at most m.N2.(| t | −q).�

Note that we do not determinize the automaton Aθ,k. We only compute the transitions
of det(Aθ,k), the determinized automaton of Aθ,k, that are needed for checking a given term.

Some basic graph properties and their automata.

We classify the atomic formulas and some "basic" graph properties (to be included in P)
in terms of the numbers of states N(k) of deterministic Fk-automata that check them.

Polynomial-sized automata: The automata for X1 ⊆ X2, X1 = ∅, Part(X1, ..., Xp) and
Disjoint(X1, ..., Xp) have 2 states, the one for Sgl(X1) has 3 states. For edg(X1, X2),
we have defined above an Fk-automaton with k2 + k + 3 states. The Fk-automaton for the
property that X1 has at most p elements has p+ 2 states.

Single-exponential sized automata: The Fk-automaton for St(X1) has 2k + 1 states.
Those for Link(X1, X2) and Dom(X1, X2) have 22k + 1 states.

For Path(X1, X2), we can constructed a (non-minimal) Fk-automaton with less than
2k2+2 states. For the property maximum degree at most p, we can construct an Fk-automaton
with 2k2p log(p) states.

Double-exponential sized automata: For connectedness, we can build an Fk-automata
with about 22k states and the unique minimal Fk-automaton has more than 22k/2 states.
However, if we have a upperbound p to the degree of the graphs to be checked, then an
Fk-automaton with 2p.k2 states suffices. For the property of being a forest, we can construct
an Fk-automaton with 22O(k) states but we have no lower bound showing that a double
exponential is necessary.

Fly-automata

A fly-automaton is an automaton (possibly not deterministic) whose transition rules are
not listed in a table but are defined by finitely many clauses that we can call transition
meta-rules. Table 2 shows such rules. It shows actually the meta-rules of a fly-automaton

FSTTCS 2010



20 Special tree-width

with infinitely many states (where we replace [k] by the set of positive integers). Each time
a transition is needed it is computed from the specifications of Table 2. On input t in T (Fk),
this infinite automaton only uses the rules concerning the states of the set S defined above
(see Table 1).

The finite Fk-automata described by Table 2 have O(k4) transitions, which makes difficult
to compile their rules in a table unless k is small. This is even impossible for automata like
the ones for connectedness that have 22Θ(k) states. Their tables cannot be constructed, even
for small values of k. Hence, using fly-automata is necessary in such cases.

The automata currently used in compilation are "small" (typically, they have to recognize
the key words of a programming language) whereas the input words (programs) are much
larger. In the present case, the situation is the opposite: the automata are huge and the input
terms are "small" (typically, terms of size 200 to define graphs with 50 vertices). But since
these automata have concise descriptions, instead of trying to compile them, we propose to
interpret them, that is to compute only their transitions that are needed for particular input
terms.

It is clear that the constructions of Claims 3 and 4 can be used for fly-automata. For
example, the meta-rules for two automata A and B can be combined to form those of their
product. The algorithm of Theorem 7 that checks if a term is accepted by a nondeterministic
automaton without determinizing it is applicable to a nondeterministic fly-automaton such
that finitely many transitions are possible at each node.

Experiments have been conducted by I. Durand with her software Autowrite that im-
plements automata on terms [13]. Here are some results concerning colorability and acyclic
colorability. Grünbaum has given an example of a 3-colorable planar graph with 6 vertices
(the clique K6 minus the 3 edges of a perfect matching) that is not 4-AC-colorable but is
5-AC-colorable. These facts have been verified in a few seconds by using a term in T (F3)
of size 15 that defines this graph and in 94 minutes by using a term in T (F5) of size 21.
The Petersen graph (10 vertices, 15 edges) is 3-colorable, not 3-AC-colorable, but it is
4-AC-colorable. This last fact has been verified in 17 minutes on a term in T (F7) that defines
this graph. The corresponding automata are too large to be constructible.

4 Edge set quantifications

We will now consider graphs that can have multiple edges. Because of the chosen representa-
tion of graphs, the MS properties cannot take into account the multiplicity of edges: that a
pair of vertices (x, y) belongs to edgG does not tell us the exact number of edges from x to
y. We define another representation to remedy this drawback. The incidence graph of an
undirected graph G is the simple directed bipartite graph Inc(G) := 〈VG ∪EG, inG〉 where
inG is the set of pairs (e, x) such that e belongs to the set of edges EG and x is an end
vertex of e. We no longer use the convention that an undirected edge is a pair of opposite
directed edges, and we use the simpler notation inG instead of edgInc(G). If G is directed,
we define Inc(G) := 〈VG ∪ EG, in1G, in2G〉 where in1G (resp. in2G) is the set of pairs (e, x)
such that e ∈ EG and x is the tail vertex of e (resp. its head vertex). Hence, Inc(G) is
directed and bipartite with two types of edges. We will denote by dGe the graph Inc(G)
considered as a relational structure, either over {in} or over {in1, in2}.

A graph property P (X1, ..., Xn, Y1, ..., Ym), where X1, ..., Xn denote sets of vertices and
Y1, ..., Ym denote sets of edges, is an MS2 graph property if there exists an MS formula



B. Courcelle 21

ϕ(X1, ..., Xn, Y1, ..., Ym), such that, for every graph G, for all sets of vertices X1, ..., Xn and
for all sets of edges Y1, ..., Ym, we have:

dGe |= ϕ(X1, ..., Xn, Y1, ..., Ym)
if and only if P (X1, ..., Xn, Y1, ..., Ym) is true in G.

The property that a simple undirected graph has at least 3 vertices and a Hamiltonian
cycle is an MS2-property that is not MS (see [6], Chapter 5). Hence, using dGe instead of
bGc improves, also for simple graphs, the expressive power of monadic second-order logic.
The appropriate parameter in the FPT algorithms that check MS2 graph properties is not
clique-width but tree-width.

For each k, there is a finite set Hk of graph operations such that a graph has tree-width
at most k if and only if it is defined by a term over Hk. Linear time algorithms can convert
tree-decompositions (the well-known definition is recalled in the next section) into terms
and vice-versa. For every MS2 graph property expressed by an MS sentence ϕ and every
integer k, one can construct a finite automaton that recognizes the set of terms in T (Hk)
that define graphs G such that dGe |= ϕ, i.e., that satisfy that property. However, since
Hk uses the operation of parallel-composition (denoted by //) that combines graphs by
fusing vertices instead of the disjoint union ⊕, the corresponding automata are much more
complicated than those constructed above. This observation motivates the introduction of a
special type of tree-decomposition, hence of a variant of tree-width, that lacking of a better
term, we call special tree-width. The algebraic representation of the corresponding special
tree-decompositions need not use parallel-composition.

5 Special tree-width

In order to simplify the presentation, we will only consider undirected graphs. However,
the definitions and results extend easily to directed graphs. Our definition is based on the
operations that define clique-width. We will use the operations adda,b instead of the operations
−−→adda,b. In order to define graphs with multiple edges, we will change the interpretation of the
operation adda,b in the following way: if in a graph G there is already an edge between a
vertex x labelled by a and a vertex y labelled by b, then the operation adda,b applied to G
adds another edge between x and y. The corresponding notion of clique-width for graphs
with multiple edges is studied in [7]. However, we will use here this feature in a restricted
situation.

Definition 8: Special terms
We will use the graph operations that define clique-width (cf. Section 2). The labels of

vertices will be taken from the sets [k]⊥ := [k] ∪ {⊥} instead of [k] and the corresponding
sets of operations will be denoted by Fk,⊥. (The label ⊥ will be used as a default label.)
We (still) denote by π(G) the set of labels of the vertices of a graph G and by π1(G) the
subset of those that label a single vertex of G. If t ∈ T (Fk,⊥), then π(t) denotes π(G(t)) and
π1(t) denotes π1(G(t)).

A term t in T (Fk,⊥) is a special term if it satisfies the following conditions:

1) π(t′)−π1(t′) ⊆ {⊥} for every subterm t′ of t (we consider t as one of its subterms),
2) if t1 ⊕ t2 is a subterm of t, then π(t1) ∩ π(t2) ⊆ {⊥},
3) for every relabelling relabh occurring in t, we have h(⊥) = ⊥,
4) for every operation adda,b that occurs in t, we have a 6= ⊥ and b 6= ⊥,
5) the constant symbol ⊥ has no occurrence in t.

FSTTCS 2010



22 Special tree-width

We denote by SpT (Fk,⊥) the sets of special terms in T (Fk,⊥). The special tree-width of a
graph G, denoted by sptwd(G), is the least integer k such that G = G(t) for some term t in
SpT (Fk+1,⊥). The comparison with tree-width will justify the "+1" in the definition. The
special tree-width of a graph consisting of isolated vertices is 0. Since the sets π(t) and π1(t)
are computable inductively on the structure of a term t, the sets SpT (Fk+1,⊥) are regular.

A graph defined by a special term in SpT (Fk,⊥) has at most one vertex labelled by each
a in [k] and possibly several vertices labelled by ⊥. No new edge can be added between
vertices such that one of them is labelled by ⊥. These vertices are somehow "terminated".
Furthermore, each occurrence of an operation adda,b adds at most one edge (by Conditions
1) and 4)). It may add no edge if the argument graph has no vertex labelled by a or no vertex
labelled by b. We will say that such an occurrence is useful if it adds an edge. (Occurrences
that are not useful can be deleted, which gives a smaller reduced term defining the same
graph.) The graph G(t) defined by a special term t can be constructed with vertex set
Occ0(t), the set of occurrences of constant symbols in t, and edge set Occ1(t), the set of
useful occurrences of edge addition operations. This remark will be used in Section 6.

Example: Trees have special tree-width 1. An undirected tree with one distinguished
node called its root, is labelled as follows: the root is labelled by 1, all other nodes by ⊥. Let
T1, T2 be two such trees, defined by terms t1, t2 ∈ SpT (F2,⊥). Then, we let T := T1 n T2 be
defined by the term

t := relab2−→⊥ (add1,2(t1 ⊕ relab1−→2(t2))) ∈ SpT (F2,⊥).

This tree is built as the disjoint union of the trees T1 and T2 augmented with an undirected
edge between their roots, and the root of T is defined as that of T1. Every rooted and
undirected tree is generated by n from the trees reduced to isolated roots, that are defined
(up to isomorphism) by the constant symbol 1. Hence, every rooted and undirected tree
is defined by a term in SpT (F2,⊥). One can forget the root by applying the operation
relab1−→⊥.�

We now consider tree-decompositions. A rooted and directed tree T is directed from the
root towards the leaves.

Definition 9: A special tree-decomposition of a graph G is a pair (T, f) such that T is a
rooted and directed tree with set of nodes NT and f : NT −→ P(VG) is a mapping such that:

1) Every vertex of G belongs to f(u) for some u in NT .
2) Every edge has its ends in f(u) for some u in NT .
3) For each vertex x, the set f−1(x) := {u ∈ NT | x ∈ f(u)} is a directed path in T .

Condition 3) characterizes special tree-decompositions. The width of a decomposition
(T, f) is the the maximal cardinality minus 1 of a box, i.e. of a set f(u). A path-decomposition
is defined as a tree-decomposition such that T is a directed path (hence it is special). The
tree-width twd(G) (the path-width pwd(G)) of a graph G is the minimal width of a tree-
decomposition (a path-decomposition) of this graph. It is known from [5,10] that a set of
simple graphs, directed or not, that has bounded tree-width has bounded clique-width: if
G undirected has tree-width k, then it has clique-width at most 3.2k−1 and in some cases,
more that 2k/2. However, its clique-width is at most pwd(G) + 2.



B. Courcelle 23

Proposition 10: The special tree-width of a graph is the minimal width of a special
tree-decomposition of this graph. There are linear-time algorithms for converting a term t in
SpT (Fk+1,⊥) into a special tree-decomposition of width k of the graph G(t) and vice-versa.

Proposition 11: For every graph G we have:
(1) twd(G) ≤ sptwd(G) ≤ pwd(G),
(2) cwd(G) ≤ sptwd(G) + 2.

These facts are clear from Proposition 10 and the definitions. Note that clique-width
behaves with respect to special tree-width exactly as with respect to path-width, and without
the exponential increase. We will denote by STWD(≤ k) the class of undirected graphs of
special tree-width at most k.

Proposition 12: For each k, the class STWD(≤ k) is closed under the following
transformations:

1) Removal of vertices and edges,
2) addition of edges parallel to existing edges,
3) smoothing vertices of degree 2. �

Smoothing a vertex of degree 2 means contracting any one of its two incident edges.
For the case of directed graphs (see [7]), reversals of edge directions also preserve special
tree-width, whereas they do not preserve clique-width. It follows from items 1) and 3) of
Proposition 12 that the class STWD(≤ k) is closed under taking topological minors ([11]).
It is not closed under taking minors as we will see in Proposition 16. In the following
proposition, pwd(L) denotes the least upper bound of the path-widths of the graphs in a set
L and similarly for the other notions of width.

Proposition 13: The class of graphs of tree-width 2 has unbounded special tree-width.
For every set of graphs L:

pwd(L) <∞ =⇒ sptwd(L) <∞ =⇒ twd(L) <∞ and

sptwd(L) <∞ =⇒ cwd(L) <∞,

whereas the converse implications do not hold.�

Proof: We will use the following claim (where G⊗ ∗ is G augmented with a new vertex
∗ and edges between it and all vertices of G):

For every graph G, the special tree-width of G⊗ ∗ is equal to its path-width.

For proving the first assertion, we assume that every graph of tree-width 2 has special
tree-width at most k. If T is any tree, then T ⊗ ∗ has tree-width at most 2, hence special
tree-width at most k, and path-width at most k by the claim. It follows that T , since it is a
subgraph of T ⊗ ∗, has path-width at most k, but trees have unbounded path-width ([11]),
which gives a contradiction.

The implications follow from Proposition 11. Trees have special tree-width at most 1 and
unbounded path-width. Graphs of tree-width 2 have unbounded special tree-width, hence
the opposite implications are false. The converse of sptwd(L) <∞ =⇒ cwd(L) <∞ is false
if L the set of cliques because it is of maximal clique-width 2 and of unbounded tree-width
and special tree-width. �

FSTTCS 2010



24 Special tree-width

Definition 14: A tree-partition of a graph G is a pair (T, f) such that T is a rooted
tree with set of nodes NT and f : NT −→ P(VG) is a mapping such that:

1) Every vertex of G belongs to f(u) for a unique node u of T ,
2) Every edge has its two ends in some box or in two boxes f(u) and f(v) such that
v is the father of u.

The width of (T, f) is defined as the maximal cardinality of a box, (no −1 here !), and
the tree-partition-width (also called strong tree-width) of a graph G is the minimal width of
its tree-partitions. We denote it by tpwd(G). The wheels, i.e., the graphs Cn ⊗ ∗ where Cn
is the undirected cycle with n vertices (n ≥ 3) have path-width (and special tree-width) 3
but unbounded tree-partition width (see [1, 24]). MaxDeg(G) denotes the maximum degree
of a graph G. The proof of the following proposition uses results from [24].

Proposition 15: For every graph G :

1) sptwd(G) ≤ 2.tpwd(G)− 1,
2) sptwd(G) ≤ 20.(twd(G) + 1).MaxDeg(G).

A set of graphs of bounded degree has bounded special-tree-width if and only if it has
bounded tree-width.�

This result suggests a question:

Which conditions on a set of graphs, other than bounded degree, imply that it has
bounded tree-width if and only if it has bounded special tree-width?

Planarity does not since the graphs of tree-width at most 2 are planar but of unbounded
special tree-width. From this case, we can see that conditions like excluding a fixed graph as
minor or being uniformly k-sparse for some k do not either. All these conditions however,
imply that, for simple graphs, bounded tree-width is equivalent to bounded clique-width (see
[6], Chapter 2).

Proposition 16: Every graph of tree-width k is obtained by edge contractions from a
graph of special tree-width at most 2k + 1. The class of graphs of special tree-width at most
k is not closed under taking minors for any k ≥ 5.

Proposition 17: The special tree-width of a graph is the maximal special tree-width
of its connected components. It is at most one plus the maximal special tree-width of its
biconnected components. This upper bound is tight.

Open question 18: The parsing problem: Does there exist fixed functions f and g and
an approximation algorithm able to do the following in time O(ng(k)), where n is the number
of vertices of the given graph:

Given a simple graph G and an integer k, either it answers (correctly) that G has
special tree-width more than k, or it outputs a special term witnessing that its special
tree-width is at most f(k)?



B. Courcelle 25

Stronger requirements would be that f(k) = k, giving an exact algorithm and/or the
computation time O(g(k).nc) for some fixed c instead of O(ng(k)). Since by a result by
Bodlaender (presented in detail in [12]) such an algorithm exists for tree-width, with f(k) = k

and c = 1, one can think that this algorithm can be adapted in order to find special tree-
decompositions.

6 Automata for monadic second-order formulas with edge set
quantifications

Our objective is to adapt the constructions of Section 3 to the model-checking of MS2
graph properties for graphs defined by special terms. We will obtain fixed-parameter lin-
ear algorithms for graphs of bounded special tree-width given by the relevant terms or
decompositions.

MS2 formulas and the encoding of assignments

In order to use MS2-formulas, i.e., monadic second-order formulas with edge set quantifi-
cations, we will represent a graph G by the relational structure dGe := Inc(G) defined in
Section 4. As in Section 3, we will use formulas written without first-order variables and
universal quantifications. We will use the "standard" set variables X1, ..., Xn, ... for denoting
sets of vertices and similarly the variables Y1, ..., Ym, ... for denoting sets of edges. The atomic
formulas are of the forms edg(Xi, Xj), in(Yi, Xj) (graphs are undirected), and of course,
Xi ⊆ Xj , Yi ⊆ Yj , Z = ∅, Sgl(Z), where Z is Xi or Yj . The meaning of in(Yi, Xj) is that
Yi and Xj are singletons, respectively {y} and {x} such that (y, x) ∈ inG.

We now discuss the encoding of assignments in terms. Let t be a special term and G(t)
be the (concrete) graph it defines. Its vertex set is Occ0(t), the set of occurrences of constant
symbols and it edge set is Occ1(t), the set of useful occurrences of edge addition operations
(cf. Definition 8.) In order to encode {X1, ..., Xn, Y1, ..., Ym}-assignments, we will use, the
signatures F (n,m)

k,⊥ obtained from F
(n)
k,⊥ by replacing every edge addition operation f by the

unary operations (f, w), for all w in {0, 1}m.
We will use the projections pr as in Claim 5 and the projections pr′, that delete the

Booleans in the unary operations (f, w). It is clear that a term t ∈ T (F (n,m)
k,⊥ ) such that

pr(pr′(t)) is a special term and the occurrences of edge addition operations in pr(pr′(t))
are all useful, defines a graph G(pr(pr′(t)) and an {X1, ..., Xn, Y1, ..., Ym}-assignment γ such
that γ(Xi) is a set of vertices (for i ∈ [n]) and γ(Yj) is a set of edges (for j ∈ [m]).

We will denote by RT (F (n,m)
k,⊥ ) ⊆ SpT (F (n,m)

k,⊥ ) the set of reduced terms, defined as
the set of special terms in which every occurrence of an edge addition operation is useful.
Whether a term t in T (F (n,m)

k,⊥ ) is in RT (F (n,m)
k,⊥ ) or not does not depend on the Boolean

components of its constant symbols and of its edge addition operations. In other words,
RT (F (n,m)

k,⊥ ) = pr′−1(pr−1(RT (Fk,⊥))).

Claim 19 : For each triple n,m, k of integers, the set RT (F (n,m)
k,⊥ ) is regular and is

recognized by a deterministic automaton with 2k states.

For everyMS2 formula ϕ with free variables in {X1, ..., Xn, Y1, ..., Ym} and every k, we de-
fine Lϕ,(X1,...,Xn,Y1,...,Ym),k as the set of terms t inRT (F (n,m)

k,⊥ ) such that (dG(pr(pr′(t)))e, γ(t))
|= ϕ where γ(t) denotes the {X1, ..., Xn, Y1, ..., Ym}-assignment encoded by t. The language

FSTTCS 2010



26 Special tree-width

LP (X1,...,Xn,Y1,...,Ym),k can be defined similarly for a graph property P (X1, ..., Xn, Y1, ..., Ym)
independently of its logical expression. Note that we define here sets of reduced terms.

Theorem 20: For every MS2 graph property P (X1, ..., Xn, Y1, ..., Ym) and every k, the
language LP (X1,...,Xn,Y1,...,Ym),k is regular and an automaton recognizing it can be constructed
from an MS2 formula that expresses P .

Proof: The construction is as for Theorem 6. At each step we restrict the defined sets so
that they only contain reduced terms. For example, if ϕ is ¬θ, we construct an automaton
that recognizes Lϕ,(X1,...,Xn,Y1,...,Ym),k = RT (F (n,m)

k,⊥ ) − Lθ,(X1,...,Xn,Y1,...,Ym),k. We do not
simply take the complement.

Let us say a few words on the automata for the atomic formulas. Most of the constructions
are straightforward from the definitions, as in Theorem 6. We only consider the atomic
formulas edg(X1, X2) and in(Y1, X1).

An F (2)
k,⊥-automaton A′ for edg(X1, X2), that is essentially the same as the automaton A

of Theorem 6, can be constructed so as to work correctly on reduced terms. The automaton
Aedg(X1,X2),k intended to define the set Ledg(X1,X2),k is then obtained by a product with
the one of Claim 19 that recognizes the set of reduced terms. Its number of states is thus
2k.O(k2) instead of O(k2). In the following remark, we discuss this difficulty.

We now construct an automaton B for in(Y1, X1), intended to work on reduced terms. Its
set of states is S := {0, Error,Ok} ∪ [k]. Their meanings are described in Table 3, where W1
denotes the value of the set variable Y1. Its transitions not yielding Error are in Table 4. As
examples of transitions to Error we have ⊕[Ok, a]→ Error and (adda,b, 1)[Ok]→ Error.

The unique accepting state is Ok.

State s Property Ps

0 V1 = W1 = ∅
a V1 = {v},W1 = ∅, πG(t)(v) = a

Ok V1 = {v}, W1 = {e}, (e, v) ∈ inG(t)

Error All other cases
Table 3 Meanings of the states of B.

Transition rules Conditions
(a, 0)→ 0
(a, 1)→ a

relabh[0]→ 0
relabh[Ok]→ Ok

relabh[a]→ b b = h(a) 6= ⊥
(adda,b, 0)[s]→ s all s
(adda,b, 1)[c]→ Ok c ∈ {a, b}
⊕[s, 0]→ s all s
⊕[0, s]→ s

Table 4 The transition rules of B.

Remark 21: The above construction associates with each subformula θ(X1, ..., Xn, Y1, ...,

Ym) of the considered formula ϕ an automaton Aθ,(X1,...,Xn,Y1,...,Ym),k that recognizes only



B. Courcelle 27

reduced terms. This means that each of these automata repeats the verification that the
input term is reduced. One can actually postpone this verification to the very end.

Assume that for each atomic formula α(X1, ..., Xn, Y1, ..., Ym), we have an automaton
Bα,(X1,...,Xn,Y1,...,Ym),k such that

Lα,(X1,...,Xn,Y1,...,Ym),k = L(Bα,(X1,...,Xn,Y1,...,Ym),k) ∩RT (F (n,m)
k,⊥ ).

This means that Bα(X1,...,Xn,Y1,...,Ym),k is constructed so as to work correctly on reduced
terms, and this is what we did above for A′ and B.

Let us build Bϕ(X1,...,Xn,Y1,...,Ym),k for all formulas ϕ by applying the general inductive
construction described for Theorem 6 with, for the negation:

L(B¬θ,(X1,...,Xn,Y1,...,Ym),k) = T (F (n,m)
k,⊥ )− L(Bθ,(X1,...,Xn,Y1,...,Ym),k).

At the end, for the input formula ϕ(X1, ..., Xn, Y1, ..., Ym), we make the restriction to
reduced terms by defining Aϕ,(X1,...,Xn,Y1,...,Ym),k in such a way that:

L(Aϕ,(X1,...,Xn,Y1,...,Ym),k) = L(Bϕ,(X1,...,Xn,Y1,...,Ym),k) ∩RT (F (n,m)
k,⊥ ).

Hence, we use only at the end the restriction to reduced terms. We claim that L(Aϕ,(X1,...,

Xn,Y1,...,Ym),k) = Lϕ,(X1,...,Xn,Y1,...,Ym),k. This is true by the hypotheses on the automata Bα
associated with the atomic formulas and by the following observations:

if L,M,R, T ,L′, R′ and T ′ are sets such that L,M,R ⊆ T and L′, R′ ⊆ T ′, and
pr is a mapping from T ′ to T such that T ′ = pr−1(T ) and R′ = pr−1(R) then,
(L∩R)∩(M∩R) = (L∩M)∩R, (L∩R)∪(M∩R) = (L∪M)∩R, R−(L∩R) = (T−L)∩R
and pr(L′ ∩R′) ∩R = pr(L′) ∩R.

�

∃MS2(P) sentences can be defined and fly-automata can be used to check them on graphs
of bounded special tree-width.

Tree-width versus special tree-width

We now explain why the constructions of automata are easier for bounded special
tree-width than for bounded tree-width.

Definition 22: Special tree-width-terms.
We let Hk,⊥ be the signature obtained from Fk,⊥ by replacing the operation ⊕ by //.

This operation symbol will be interpreted as follows: for graphs G and H such that, as in
Definition 8, π(G)−π1(G) ⊆ {⊥} and π(H)−π1(H) ⊆ {⊥}, we define G//H from G⊕H by
fusing any two vertices having the same label a 6= ⊥. A special tree-width-term is a term t in
T (Hk,⊥) that satisfies conditions 1), 3), 4) and 5) of Definition 8. We denote by TWT (Hk,⊥)
the set of these terms. Every graph is the value G(t) of a term t in TWT (Hk,⊥) for some
large enough k.

Proposition 23 ([6], Chapter 2): The tree-width of a graph is the least integer k such
that this graph is the value of a term in TWT (Hk+1,⊥). There are linear-time algorithms for
converting a term t in TWT (Hk+1,⊥) into a tree-decomposition of width k of the graph G(t)
and vice-versa.

FSTTCS 2010



28 Special tree-width

In view of the verification of MS2 properties, let us consider the encoding of assignments
in terms. Let t ∈ TWT (Hk,⊥) and G = G(t). Its edges are in bijection with the set Occ1(t)
defined as for special terms. However, its vertex set is isomorphic to a quotient of Occ0(t) by
the equivalence relation ≈ expressing that x and y in Occ0(t) have a least common ancestor
u that is an occurrence of // and that the associated vertices have the same label (different
from ⊥) in G(t/u), the graph defined by the subterm of t issued from u. This means that x
and y, because of a fusion occurring at u, yield the same vertex of G. Hence, we lose the nice
bijection between vertices of G(t) and particular occurrences of symbols in t. It follows that
a set X ⊆ Occ0(t) represents correctly a set of vertices of G(t) if and only it is saturated
for ≈ (is a union of classes of this equivalence relation). The Hk,⊥-automaton analogous to
Bϕ,(X1,...,Xn,Y1,...,Ym),k must check this saturation property, which increases substantially its
number of states.

There is actually another possibility for representing vertices by occurrences of symbols
in terms. Let us assume that all vertices of G(t) are labelled by ⊥ and that each vertex
corresponds to a unique occurrence of an operation relaba−→⊥. Such occurrences, let us
denote their set by Occvert1 (t), can be chosen to represent the vertices. In this case, an
edge will be represented by a node of t that is below the nodes representing its ends. This
is not a difficulty for constructing an Hk,⊥-automaton for the atomic formula in(Y1, X1)
(like B in the proof of Theorem 20) having k + 3 states. However, the construction of an
Hk,⊥-automata for edg(X1, X2) is more complicated. It can be done directly or by the general
construction: since edg(X1, X2) is equivalent to X1 6= X2 ∧ ∃Y1(in1(Y1, X1) ∧ in2(Y1, X2)),
the general construction produces an Hk,⊥-automaton with 2O(k2) states. (The factor
k2 is due to the use of a product of two automata with k + 3 states for the subformula
in1(Y1, X1)∧ in2(Y1, X2), and the exponentiation is due to the determinization that is needed
because of ∃Y1). Furthermore, every deterministic Hk,⊥-automaton for edg(X1, X2) must
have at least 2k(k−1) states ([6], Chapter 6). Hence, with this encoding of assignments, an
atomic formula like edg(X1, X2) needs already fairly "large" automata. This difficulty is
avoided in special terms because they use ⊕ instead of //.

7 Conclusion

We have presented some tools intended to yield practically usable methods for the verification
of certain monadic second-order graph properties for graphs of bounded tree-width or clique
width. We have proposed to restrict the constructions of automata to the formulas of an
appropriate fragment of monadic second-order logic and to use fly automata (a notion first
presented in [8]). Although some experimental results are encouraging, these ideas have to
be tested on more cases.

Special tree-width seems interesting on its own, but the construction of "small" automata
has motivated its introduction. The corresponding parsing problem is open.

What about automata for graphs of bounded tree-width? We are presently working on a
redundant representation of these graphs that equips terms in TWT (Hk,⊥) with additional
labels. "Small" automata for edg(X1, X2) whose transitions use these additional labels (as
opposed to the operations of Hk,⊥) can then be constructed.

8 References

[1] H. Bodlaender, J. Engelfriet, Domino tree-width, J. Algorithms 24 (1997) 94-123.
[2] M. Chudnovsky et al., Recognizing Berge graphs, Combinatorica 25 (2005) 143-186.



B. Courcelle 29

[3] M. Chudnovsky et al., The strong perfect graph theorem, Ann. Math. 164 (2006) 51-229.
[4] H. Comon et al., Tree Automata Techniques and Applications, On line for free at:

http://tata.gforge.inria.fr/
[5] D. Corneil, U. Rotics, On the relationship between clique-width and tree-width. SIAM J.

Comput. 34 (2005) 825-847.
[6] B. Courcelle, Graph structure and monadic second-order logic, book to be published by

Cambridge University Press. Readable on:
http://www.labri.fr/perso/courcell/Book/CourGGBook.pdf

[7] B. Courcelle, On the model-checking of monadic second-order formulas with edge set
quantifications, May 2010, to appear in Discrete Applied Mathematics. Available from :
http://hal.archives-ouvertes.fr/hal-00481735/fr/

[8] B. Courcelle, I. Durand, Verifying monadic second-order graph properties with tree
automata, 3rd European Lisp Symposium, May 2010, Lisbon, Informal proceedings edited
by C. Rhodes, pp. 7-21. See:
http://www.labri.fr/perso/courcell/ArticlesEnCours/BCDurandLISP.pdf

[9] B. Courcelle, J. Makowsky, U. Rotics, Linear time solvable optimization problems on
graphs of bounded clique-width. Theory of Computing Systems 33 (2000) 125-150.

[10] B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs, Discrete Applied
Mathematics 101 (2000) 77-114.

[11] R. Diestel, Graph Theory, 3rd edition, Springer, 2005.
[12] R. Downey, M. Fellows, Parameterized complexity, Springer-Verlag, 1999.
[13] I. Durand, Autowrite: A tool for term rewrite systems and tree automata, Electronic

Notes in Theoret. Comput. Sci. 124 (2005) 29-49.
[14] J. Flum, M. Grohe, Parametrized complexity theory, Springer, 2006.
[15] M. Frick, M. Grohe: The complexity of first-order and monadic second-order logic

revisited. Ann. Pure Appl. Logic 130 (2004) 3-31
[16] R. Ganian, P. Hlineny, On parse trees and Myhill-Nerode-type tools for handling graphs

of bounded rank-width. Discrete Applied Mathematics 158 (2010) 851-867
[17] R. Ganian, P. Hlineny, J.Obdrzalek, Better algorithms for satisfiability problems for

formulas of bounded rank-width, 2010, arXiv:1006.5621v1[cs. DM]
[18] G. Gottlob, R. Pichler, F. Wei: Abduction with bounded tree-width: from theoretical

tractability to practically efficient computation. Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, Chicago, AAAI Press, 2008, pp. 1541-1546

[19] G. Gottlob, R. Pichler, F. Wei: Monadic Datalog over finite structures with bounded
tree-width, CoRR abs/0809.3140 (2008)

[20] P. Hlineny, S. Oum: Finding branch-decompositions and rank-decompo-sitions. SIAM J.
Comput. 38 (2008) 1012-1032.

[21] L. Stockmeyer, A. Meyer, Cosmological lower bound on the circuit complexity of a small
problem in logic. J. ACM 49 (2002) 753-784.

[22] M. Weyer, Decidability of S1S and S2S. in Automata, Logics, and Infinite Games: A
Guide to Current Research. Lect. Notes Comp. Sci. 2500, Springer, 2002, pp. 207-230.

[23] M. Rao, MSOL partitioning problems on graphs of bounded tree-width and clique-width.
Theor. Comput. Sci. 377 (2007) 260-267.

[24] D. Wood, On tree-partition-width, European J. Combin. 30 (2009) 1245-1253.

FSTTCS 2010


	Introduction
	Clique-width
	Monadic second-order logic
	Edge set quantifications
	Special tree-width
	Automata  for monadic second-order formulas with edge set quantifications
	Conclusion
	References

