
Colored Hypergraph Isomorphism is Fixed
Parameter Tractable
V. Arvind1, Bireswar Das2, Johannes Köbler3, and Seinosuke Toda4

1 The Institute of Mathematical Sciences, Chennai 600 113, India
arvind@imsc.res.in

2 Indian Institute of Technology, Gandhinagar, India
bireswar@iitgn.ac.in

3 Institut für Informatik, Humboldt Universität zu Berlin, Germany
koebler@informatik.hu-berlin.de

4 Nihon University, Tokyo, Japan
toda@cssa.chs.nihon-u.ac.jp

Abstract
We describe a fixed parameter tractable (fpt) algorithm for Colored Hypergraph Isomor-
phism which has running time 2O(b)NO(1), where the parameter b is the maximum size of the
color classes of the given hypergraphs and N is the input size. We also describe fpt algorithms
for certain permutation group problems that are used as subroutines in our algorithm.

Keywords and phrases Fixed parameter tractability, fpt algorithms, graph isomorphism, com-
putational complexity.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.327

1 Introduction

A hypergraph is an ordered pair X = (V,E) where V is the vertex set and E ⊆ 2V is
the edge set. Two hypergraphs X = (V,E) and X ′ = (V ′, E′) are said to be isomorphic,
denoted X ∼= X ′, if there is a bijection ϕ : V → V ′ such that for all e = {u1, · · · , ul} ⊆ V ,
e ∈ E if and only if ϕ(e) = {ϕ(u1), · · · , ϕ(ul)} ∈ E′. Given two hypergraphs X and X ′,
the decision problem Hypergraph Isomorphism (HI) asks whether X ∼= X ′. Graph
Isomorphism (GI) is obviously polynomial-time reducible to HI. Conversely, HI is also
known to be polynomial-time reducible to GI: Given a pair of hypergraphs X = (V,E) and
X ′ = (V ′, E′) as instance for HI, the reduced instance of GI consists of two corresponding
bipartite graphs Y and Y ′ defined as follows. The graph Y has vertex set V]E and edge set
E(Y) = {{v, e} | v ∈ V, e ∈ E and v ∈ e}, and Y ′ is defined similarly. Here, C]D denotes
the disjoint union of the sets C and D. It is easy to verify that Y ∼= Y ′ if and only if X ∼= X ′

assuming that V can be mapped only to V ′ and E can be mapped only to E′. This latter
condition is easy to enforce.

However, since the above reduction blows up the size of the vertex set in the bipartite
encoding, the Zemlyachenko-Luks-Babai graph isomorphism algorithm [3, 5, 6, 25] that runs
in time c

√
n logn, where n is the size of the vertex set of the graph, does not yield a similar

algorithm for hypergraph isomorphism. We note here that the best known hypergraph
isomorphism test due to Luks [16] has running time cn. Recently, Babai and Codenotti [4]
have shown a 2Õ(k2√n) isomorphism testing algorithm for hypergraphs with hyperedges of
size bounded by k.

Motivated by this situation, we explore the same algorithmic problem for bounded color
class hypergraphs. The input to Colored Hypergraph Isomorphism (CHI) is a pair

© V. Arvind, Bireswar Das, Johannes Köbler and Seinosuke Toda;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 327–337

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.327
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

328 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

of hypergraphs X = (V,E) and X ′ = (V ′, E′) together with partitions V = C1] · · ·] Ck
and V ′ = C ′1] · · ·] C ′k of their vertex sets into color classes Ci and C ′i, respectively. The
problem is to decide if there is an isomorphism ϕ that preserves the colors (meaning that
v ∈ Ci ⇔ ϕ(v) ∈ C ′i). Colored Graph Isomorphism (CGI) is the analogous problem
where instead of hypergraphs we have graphs as inputs.

CGI with color classes of size bounded by a constant is the first special case of GI shown
to be in polynomial time [2, 12] and which brought in the application of permutation group
theory to the problem. In fact, Babai [2] and Furst, Hopcroft and Luks [12] even gave an fpt
algorithm for CGI with running time O(b!)nO(1), where the parameter b is the maximum
size of the color classes and n is the number of vertices of the input graphs. By using the
halving technique as introduced in [5] (see also [16]), the running time can be improved to
2O(b)nO(1).

In [13] a complexity-theoretic study of some special cases of bounded color class Graph
Isomorphism has been done in connection to logarithmic space-bounded complexity classes.
This line of research is continued in [1], where special cases of bounded color class Graph
Isomorphism as well as Hypergraph Isomorphism are studied from a complexity theory
perspective.

In this paper our focus is on designing an efficient algorithm for CHI. Although HI is
polynomial time many-one reducible to GI, the reduction we described above does not impose
any bound on the size of the color classes of the bipartite graphs Y and Y ′. More specifically,
if the color classes of the hypergraphs X and X ′ have size at most b, then the vertices of
the graphs Y and Y ′ that correspond to the edges of X and X ′ do not get partitioned into
color classes of size bounded by any function of b. Thus, the fpt algorithm for CGI cannot
be combined with the above reduction to get an fpt algorithm for CHI. Moreover, even if b
is bounded by a constant (say 2), the color classes in the resulting bipartite graphs can have
size exponential in n where n is the number of vertices and hence, this approach would not
even give a polynomial time isomorphism algorithm for hypergraphs with color class bound
2.

However, an algorithm for CHI running in time NO(b) was shown in [19], where b bounds
the size of the color classes of the given hypergraphs and N is the input size. Hence, if
b is bounded by a constant, we have already a polynomial-time algorithm for CHI. This
algorithm basically applies Luks’s seminal result [15] showing that the set stabilizer problem
with respect to a class of permutation groups Γd can be solved in time nO(d).

Parametrized complexity and isomorphism testing
Parametrized complexity is a fundamental strategy for coping with intractability. Pioneered
by Downey and Fellows in [8], it is a flourishing area of research (see, e.g. the monographs
[9, 11]). Fixed parameter tractability provides a notion of feasible computation less restrictive
than polynomial time. It provides a theoretical basis for the design of new algorithms that
are efficient and practically useful for small parameter values.

Parametrized complexity theory deals with the study and design of algorithms that have
a running time of the form f(b)nO(1) where n is the input size, b is the parameter and f
is a computable function. If a problem is solvable by such an algorithm it is called fixed
parameter tractable (fpt).

Since no polynomial-time algorithm for GI is known, one approach is to design fpt
isomorphism testing algorithms with respect to natural graph parameters. For example, the
algorithm of Babai and Furst et al [2, 12] mentioned above is fpt with respect to the color
class size. For isomorphism testing of graphs with eigenvalue multiplicity bounded by k,

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 329

Evdokimov and Ponomarenko have designed a highly nontrivial fpt algorithm with running
time kO(k)nO(1) [10].

Apart from this, fpt algorithms have also been designed with respect to the parameters
tree-distance width [24] and the size of the simplicial components of the input graphs [23].
Very recently, it is shown in [14] that Graph Isomorphism for graphs with feedback vertex
sets of size k is fixed parameter tractable, with k as the parameter.

On the other hand, if we use the maximum degree [15], or the treewidth [7], or the genus
[18] of the input graphs as parameter b, the best known isomorphism testing algorithms have
a worst-case running time bound nO(b). It is an interesting open question if GI has an fpt
algorithm with respect to any of these three parameters.

Our result
In this paper we present an fpt algorithm for Colored Hypergraph Isomorphism that
runs in time 2O(b)NO(1), where b is the maximum size of the color classes and N is the input
size (which we can define as N = mn, where n is the number of vertices and m is the number
of hyperedges).

Broadly speaking, our algorithm is a combination of divide and conquer with dynamic
programming. We adapt ideas from [5, 16] which applies the halving technique in combi-
nation with dynamic programming. Luks [16] gives a 2O(n) time algorithm for Hypergraph
Isomorphism. Our algorithm can be seen as a generalization of Luks’s result.

We use as subroutines fpt algorithms for certain permutation group problems (mainly, the
coset intersection problem) parametrized by the size of the largest color class of the group.
While the parametrized complexity of permutation group problems, for different parameters,
is certainly interesting in its own right, it could also be applicable to GI. For example, an
fpt algorithm for Set Transporter w.r.t. groups in Γd (with d as parameter) would result
in an fpt algorithm for testing isomorphism of graphs of degree ≤ d.

2 Preliminaries

In this section we recall some basic group theory. Let G be a finite group and let Ω be a
finite nonempty set. The action of the group G on Ω is defined by a map α : Ω×G→ Ω
such that for all x ∈ Ω, (i) α(x, id) = x, i.e., the identity id ∈ G fixes each x ∈ Ω, and (ii)
α(α(x, g), h) = α(x, gh) for all g, h ∈ G. We write xg instead of α(x, g) when the group
action is clear from the context.

For x ∈ Ω, its G-orbit is the set xG = {y|y ∈ X, y = xg for some g ∈ G}. When the
group is clear from the context, we call xG the orbit of x. Notice that the orbits form a
partition of Ω.

We write H ≤ G when H is a subgroup of G. The symmetric group on a finite set Ω
consisting of all permutations on Ω is denoted by Sym(Ω). If Ω = [n] = {1, · · · , n}, we write
Sn instead of Sym([n]). A finite permutation group G is a subgroup of Sym(Ω) for some
finite set Ω.

The permutation group generated by a subset S ⊆ Sym(Ω) is the smallest subgroup of
Sym(Ω) containing S and is denoted by 〈S〉. Each element of the group 〈S〉 is expressible as
a product of elements of S.

The subgroup G(i) of G ≤ Sn that fixes each of {1, . . . , i} is called a pointwise stabilizer
of G. These subgroups form a tower

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n−1) = {id}.

FSTTCS 2010

330 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

We notice that by the orbit-stabilizer lemma, the index [G(i−1) : G(i)] is at most n. For
each i, let Ri be a set of complete and distinct coset representatives of G(i) in G(i−1). Then⋃n−1
i=1 Ri generates G and is called a strong generating set for G. Given a permutation π ∈ G

it is easy to check if π ∈ G(i). It is also easy to check if two permutations π, σ ∈ G(i) are in
the same coset of G(i+1) in G(i). We just have to test if π−1σ ∈ G(i+1). These observations
yield a polynomial-time algorithm [21, 22, 12] for computing a strong generating set of a
permutation group G. This algorithm can also be used to test in polynomial time if g ∈ Sn
is in the group 〈S〉 ≤ Sn.

In some applications there is an efficient algorithm for testing membership in a subgroup
H of G, where G ≤ Sn is given by a generating set but no generating set for H is given. By
[21, 22, 12] we can efficiently compute a generating set for H provided that its index in G is
polynomially bounded.

I Theorem 1 (Schreier Generators). Let G = 〈S〉 ≤ Sn and H ≤ G. Then for any set R of
coset representatives of H in G, the set B = {r′xr−1 | r, r′ ∈ R, x ∈ S} ∩H generates H.
The generators in B are called Schreier generators.

The proof of Theorem 1 also provides an algorithm for computing a suitable set R of coset
representatives by making m2|S| tests of membership in H, where m = [G : H]. Though the
set B of Schreier generators for H can be of size polynomial in m, it is possible to convert it
to a strong generating set for H of size O(n2) [21, 22, 12].

For a permutation π ∈ Sym(Ω) and a subset C ⊆ Ω we use Cπ to denote the set
{xπ | x ∈ C}. For a set S of permutations, C is called S-stable if Cπ = C for all
π ∈ S. For a permutation group G ≤ Sym(Ω), the stabilizer subgroup of G is defined
as GC = {π ∈ G | Cπ = C}.

3 Permutation group problems

In this section we describe fpt algorithms for some permutation group problems with respect
to the color class bound as parameter. These algorithms are useful subroutines for our main
algorithm which will be described in the next section.

A permutation group G ≤ Sym(Ω) has color class bound b if Ω is a colored set partitioned
into color classes Ω = C1] · · ·] Ck such that |Ci| ≤ b for each i and each Ci is G-stable.
Equivalently, the maximum orbit size of G is bounded by b. Since the orbits of G can be
computed in |Ω|O(1) time (for G given by a generating set S), we can determine in |Ω|O(1)

time if G has color class bound b. We first consider the following parametrized version of the
set transporter problem.

Set Transporter

Input: A generating set for a group G ≤ Sym(Ω), a permutation z ∈ Sym(Ω),
subsets Π1, . . . ,Πk,Π′1, . . . ,Π′k ⊆ Ω and a partition Ω = C1] · · ·] Ck such
that for each i, Ci is G-stable and Πi,Π′i ⊆ Ci.

Parameter: b = max{|C1|, · · · , |Ck|}.
Output: A description of (Gz)Π1,...,Πk→Π′1,...,Π′k = {x ∈ Gz | Πx

i = Π′i for i = 1, . . . , k}.

The simple fpt algorithm for Set Transporter works by solving the problem for the
first color class C1 by computing the subcoset G1z1 of Gz that maps Π1 to Π′1, then computing
the subcoset G2z2 of G1z1 that maps Π2 to Π′2 and so on until all the color classes are dealt
with. The following lemma shows how to compute Gizi from Gi−1zi−1.

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 331

I Lemma 2. There is an fpt algorithm running in time 2O(b)nO(1) that computes the subcoset
H ′y′ of the coset Hy that maps Πi to Π′i, where Πi,Π′i ⊆ Ci.

Proof. Let HΠi = {x ∈ H | Πx
i = Πi} be the subgroup of H that stabilizes Πi. Let |Πi| = `.

Since Ci is H-stable the set Πx
i is also a size ` subset of Ci. It follows that

[H : HΠi
] ≤

(
b

`

)
≤ 2b.

Also note that given x ∈ H, it only takes O(n) time to check if x ∈ HΠi
. Applying the

algorithm given by Theorem 1 we can compute a set R = {ρ1, · · · , ρt} of coset representatives
of HΠi

in H in time 2O(b)nO(1) together with a strong generating set S for HΠi
of size at

most n2. Writing

Hy = HΠiρ1y] · · ·]HΠiρty,

the algorithm picks the uniquely determined coset HΠi
ρiy that sends Πi to Π′i and outputs

the pair (S, ρiz) as a description of the coset HΠiρiy. If none of the cosets HΠiρiz maps Πi

to Π′i, the algorithm outputs the empty set. J

I Theorem 3. There is an fpt algorithm for Set Transporter running in time 2O(b)nO(1),
where b = max{|C1|, · · · , |Ck|} and n = |Ω|.

Proof. Let G0 = G and z0 = z and for i = 1, · · · , k use the algorithm of Lemma 2 to
compute

Gizi = (Gi−1zi−1)Πi→Π′
i
.

Notice that for each x ∈ Gkzk we have Πx
i = Π′i for i = 1, . . . , k, implying that Gkzk =

(Gz)Π1,...,Πk→Π′1,...,Π′k .
Furthermore, each of the subgroups Gi stabilizes the sets Cj , j = 1, · · · , k. Thus, Lemma 2

implies that we can compute Gizi from Gi−1zi−1 in time 2O(b)nO(1), implying that the overall
running time is also 2O(b)nO(1). J

Next we consider the following parametrized version of the coset intersection problem.

Coset Intersection (Coset-Inter)

Input: Generating sets for groups G,H ≤ Sym(Ω), permutations x, y ∈ Sym(Ω) and
a partition Ω = C1]· · ·]Ck such that for each i, Ci is G∪H ∪{x, y}-stable.

Parameter: b = max{|C1|, · · · , |Ck|}.
Output: Gx ∩Hy.

Applying well-known techniques from [5] we will design an fpt algorithm for Coset-Inter.
We will use this as a subroutine in the next section to solve Colored Hypergraph
Isomorphism. Our fpt algorithm for Coset-Inter will require solving a subproblem which
is a restricted version of the set stabilizer problem.

Restricted Set Stabilizer (RSS)

Input: A generating set for a group L ≤ Sym(Ω1) × Sym(Ω2), a permutation
z ∈ Sym(Ω1 × Ω2) and subsets Π,Θ = Φ×Ψ ⊆ C ×D, where Ω1 = C] U ,
Ω2 = D] V and the two sets C ×D and Θ are L-stable.

Parameter: b = max{|C|, |D|}.
Output: (Lz)Π[Θ] = {x ∈ Lz | (Π ∩Θ)x = Π ∩Θx}.

FSTTCS 2010

332 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

I Lemma 4. There is an fpt algorithm for RSS running in time 2O(b)nO(1), where b =
max{|C|, |D|} and n = |Ω1|+ |Ω2|.

Proof. We use ideas from [16, Proposition 3.1] where the author describes an algorithm for
a version of the set transporter problem that can be easily adapted to solve RSS. These
ideas were first applied in [5]. We only have to slightly modify Luks’s proof to suit the
parametrized setting.

We can assume that |Φ| and |Ψ| are powers of 2 since otherwise we can add some points
to Φ and Ψ (as well as to C and D) and let L act trivially on these points. This will increase
the size of b and of the input only by a factor of 4. Further, these extra points can be easily
removed from the algorithm’s output.

Observe that since LΘ = L, we have Θx = Θz for all x ∈ Lz. If (Lz)Π[Θ] is not empty
then for x, y ∈ (Lz)Π[Θ] we have (Π ∩Θ)x = Π ∩Θz = (Π ∩Θ)y and hence (Lz)Π[Θ] is a
coset of LΠ∩Θ.

Clearly, if |Π ∩Θ| 6= |Π ∩Θz| then (Lz)Π[Θ] is empty. Next we consider the case that
|Π ∩Θ| = |Π ∩Θz| = 1. Let Π ∩Θ = {u} and Π ∩Θz = {v}. Let Lu be the stabilizer of the
point u which can be computed using the Schreier-Sims method. Then we can express L as
the disjoint union of cosets

L = Lux1] · · ·] Luxt

and consequently Lz as Lux1z]· · ·]Luxtz. Hence, it suffices to pick the uniquely determined
coset Luxiz that maps u to v (if there is any).

It remains to consider the case that |Π ∩Θ| = |Π ∩Θz| > 1. If |Φ| > 1 we partition Φ
in two subsets Φ1 and Φ2 of equal size and let Θ1 = Φ1 ×Ψ. Otherwise, |Ψi| > 1 and we
partition Ψ in two subsets Ψ1 and Ψ2 of equal size and let Θ1 = Φ×Ψ1. In both cases we
let Θ2 = Θ \Θ1.

Let k = max{|Φ|, |Ψ|} and let M = LΘ1 . Notice that [L : M] ≤
(
k
k/2
)
≤ 2b, no matter

which of the two sets Φ or Ψ we divide into two parts. Now we write L as the disjoint union
of cosets

L = My1] · · ·]Mys

of M , yielding Lz = My1z] · · ·]Mysz. As mentioned in the preliminary section, this
decomposition of Lz can be computed in time 2O(b)nO(1). Since M stabilizes Θ1, we can use
the equality

(Myiz)Π[Θ] = ((Myiz)Π[Θ1])Π[Θ2]

to set up the recursive calls. Finally we paste the answers to the subproblems (Myiz)Π[Θ]
together to get

(Lz)Π[Θ] = ∪ti=1(Myiz)Π[Θ].

It is easy to verify that the overall run-time of the algorithm is bounded by 2O(b)poly(n). J

I Theorem 5. There is an fpt algorithm for Coset-Inter running in time 2O(b)nO(1),
where b = max{|C1|, · · · , |Ck|} and n = |Ω|.

Proof. Let L = G×H ≤ Sym(Ω)×Sym(Ω) and let z = (x, y) ∈ Sym(Ω)×Sym(Ω). Further,
let Πi = {(a, a) | a ∈ Ci} and notice that (Lz)Π1,...,Πk

= {x ∈ Lz | Πx
i = Πi for i = 1, . . . , k}

projected to the first (or second) coordinate is Gx ∩ Hy. Hence, it suffices to prove the
following claim.

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 333

Claim 6. (Lz)Π1,...,Πk
is computable in time 2O(b)nO(1).

We will repeatedly use Lemma 4 to solve the problem in time 2O(b)nO(1) as in the
above claim. To start off we let L0z0 = Lz. Then we compute Lizi = (Li−1zi−1)Πi from
Li−1zi−1 for i = 1, · · · , k. We claim that for all i, Lizi = (Lz)Π1,...,Πi

. This follows from
the fact that ((Lz)Π1,...,Πi−1)Πi

= (Lz)Π1,...,Πi
. Thus at the end of the computation we

have Lkzk = (Lz)Π1,...,Πk
. Furthermore, by Lemma 4 it follows that the time needed for

computing Lizi from Li−1zi−1 is 2O(b)nO(1), implying that the overall running time is also
2O(b)nO(1). J

4 Fpt algorithms for Colored Hypergraph Isomorphism

In this section, we use a dynamic programming approach to design an fpt algorithm for
finding the automorphism group Aut(X) (i.e., a set of generators for Aut(X)) of a given
hypergraph X which has running time 2O(b)NO(1).

I Theorem 7. Let X = (V,E) be a colored hypergraph of size N with V = C1] · · ·] Ck
where |Ci| ≤ b for all i. Given X as input there is an algorithm that computes Aut(X) in
time 2O(b)NO(1).

Proof. The algorithm first partitions the hyperedges into different subsets that we call blocks.
More formally, we say that two hyperedges e1, e2 ∈ E are i-equivalent and write e1 ≡i e2, if

e1 ∩ Cj = e2 ∩ Cj for j = 0, . . . , i,

where we let C0 = ∅. We call the corresponding equivalence classes (i)-blocks.
Notice that for i ≥ j, i-equivalence is a refinement of j-equivalence. Thus, if e1 and e2

are in the same (i)-block then they are in the same (j)-block for all j = 0, 1, . . . , i− 1. The
algorithm proceeds in stages i = k, k − 1, . . . , 0, where in stage i the algorithm considers
(i)-blocks. More precisely, in stage i the algorithm computes for each pair of (i)-blocks A,A′
the coset ISO(Y, Y ′) of all isomorphisms between the hypergraphs Y and Y ′ induced by A
and A′, respectively, on Vi = Ci ∪ · · · ∪ Ck and stores this coset in a table T .

Stage k: Let A,A′ be two (k)-blocks and let Y, Y ′ be the corresponding hypergraphs on
the vertex set Ck as defined above. Since A and A′ are (k)-blocks, the sets E(Y) =
{e ∩Ck | e ∈ A} and E(Y ′) = {e ∩Ck | e ∈ A′} only contain a single hyperedge a and a′,
respectively.
Clearly, ISO(Y, Y ′) = ∅ if |a| 6= |a′|. Otherwise, ISO(Y, Y ′) ⊆ Sym(Ck) is the coset of
Aut(Y) = Sym(Ck)a that maps a to a′ which can be easily computed in time O(N) and
stored in the table entry T [A,A′].

Stage i < k: Let A,A′ be two (i)-blocks and let Y, Y ′ be the corresponding hypergraphs
on the vertex set Vi. We explain how to compute the entry T [A,A′] = ISO(Y, Y ′).
Let a and a′ be the unique subsets of Ci such that for all e ∈ A, e ∩ Ci = a and for all
e′ ∈ A′, e′∩Ci = a′. Clearly ISO(Y, Y ′) is empty if the sizes of a and a′ or the sizes of the
hyperedge sets E(Y) = {e ∩ Vi | e ∈ A} and E(Y ′) = {e ∩ Vi | e ∈ A′} differ. Otherwise,
let S1 = {ϕ ∈ Sym(Ci) | aϕ = a′} be the set containing all permutations in Sym(Ci)
that map a to a′ and let S2 be the set of all permutations on Vi+1 that map Y to Y ′
isomorphically when restricted to Vi+1. Crucially, since A and A′ are both (i)-blocks it
follows that ISO(Y, Y ′) = S1 × S2.
Clearly, S1 can be easily computed as explained above. The crux of the algorithm is in
computing the set S2. We first explain a naive method that takes time (b!)2O(b)NO(1)

(later we will explain the more complicated 2O(b)NO(1) algorithm for computing S2).

FSTTCS 2010

334 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

To compute S2, we partition the (i)-blocks A and A′ into (i + 1)-blocks A1, · · · , A`
and A′1, · · · , A′`′ , respectively. Since S2 is empty if ` 6= `′ we assume ` = `′. For each
j = 1, . . . , `, let Zj and Z ′j be the hypergraphs induced by the (i+ 1)-blocks Aj and A′j ,
respectively, on the vertex set Vi+1. Now it is easy to see that

S2 =
⋃
π∈S`

⋂̀
j=1

ISO(Zj , Z ′π(j)),

where the sets ISO(Zj , Z ′π(j)) are already stored in the table T . Now, observe that instead
of cycling through all π ∈ S` it suffices to cycle through all ρ ∈ Sym(Ci+1) and check
whether {{e∩Ci+1 | e ∈ A}}ρ = {{e′∩Ci+1 | e′ ∈ A′}}. For each such ρ the corresponding
induced permutation π ∈ S` with {{e∩Ci+1 | e ∈ Aj}}ρ = {{e′ ∩Ci+1 | e′ ∈ A′π(j)}} can
be easily derived.
Now we can apply Theorem 5 to compute for each ρ ∈ Sym(Ci+1) which corresponds to
some π ∈ S` as explained above the coset intersection Hρσρ =

⋂`
j=1 ISO(Zj , Z ′π(j)) which

is either empty or a coset. As ` ≤ 2b, this takes time bounded by 2O(b)NO(1). Now the
algorithm can compute

S2 =
⋃

ρ∈Sym(Ci+1)

Hρσρ

which again is either empty or a coset and stores the set S1 × S2 in T [A,A′].
Since there is a single (0)-block E, we can find Aut(X) = T (E,E) in the table. It remains to
analyze the running time of the algorithm. The number of blocks at any stage is bounded by
the number of edges of X. Thus, the i-th stage takes time bounded by b!2O(b)NO(1), where
the b! factor is because we cycle through all the ρ ∈ Sym(Ci+1).

In order to obtain the improved 2O(b)NO(1) time bound, it suffices to give a 2O(b)NO(1)

time algorithm for computing the coset S2 of all permutations on Vi+1 that map Y to Y ′
isomorphically when restricted to Vi+1.

Claim 8. There is a 2O(b)NO(1) time algorithm for computing S2.

We will compute S2 with a dynamic programming strategy that will involve solving 2O(b)

many subproblems and 2O(b) many coset intersection instances for which we can invoke
Theorem 5. We use ideas from Luks’s dynamic programming algorithm in [16]. For each
subset ∆ ⊆ Ci+1 and Σ ⊆ Ci+1 \∆ we define hypergraphs

Y ∆,Σ = {e ∩ Vi+1 | e ∈ Y, e ∩ (Ci+1 \∆) = Σ}, and
Y ′∆

′,Σ′ = {e′ ∩ Vi+1 | e′ ∈ Y ′, e′ ∩ (Ci+1 \∆′) = Σ′}.

Notice that Y projected on Vi+1 is Y Ci+1,∅ and that Y ′ projected on Vi+1 is Y ′Ci+1,∅,
and we are interested in computing S2 = ISO(Y Ci+1,∅, Y ′Ci+1,∅). Furthermore, notice that
for different subsets Σ and Σ′ the hypergraphs Y ∅,Σ and Y ∅,Σ′ are the hypergraphs induced
by the different (i+ 1)-blocks. Observe that in the (i+ 1)st stage we have already computed
the cosets ISO(Y ∅,Σ, Y ′∅,Σ′) for different Σ and Σ′ (as these correspond to the different
(i+ 1)-blocks). Our goal is to compute all the cosets

ISO(∆,Σ,∆′,Σ′),

consisting of all isomorphisms π from the hypergraph Y ∆,Σ to the hypergraph Y ′∆′,Σ′ that
map ∆ to ∆′ and Σ to Σ′. To this end we actually compute for different subsets Γ ⊆ ∆ and
Γ′ ⊆ ∆′ the cosets

ISO(∆,Σ,Γ,∆′,Σ′,Γ′) = ISO(∆,Σ,∆′,Σ′) ∩ Coset(Γ,Γ′), (1)

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 335

where Coset(Γ,Γ′) denotes the coset of all permutations on Vi+1 that map Γ to Γ′. Notice
that Coset(Γ,Γ′) can be easily computed in time O(N). To complete the description of the
dynamic programming algorithm, we consider different cases for |Γ| and |Γ′|. Clearly, if
|Γ| 6= |Γ′| then the corresponding coset intersection of Equation 1 is the empty set.

Suppose |Γ| = |Γ′| = ` > 1. In this case, we fix a subset Γ1 of Γ of size d`/2e and cycle
through all possible subsets Γ′1 of Γ′ of size d`/2e. Clearly, we can write

ISO(∆,Σ,Γ,∆′,Σ′Γ′) =⋃
Γ′1⊂Γ′(ISO(∆,Σ,Γ1,∆′,Σ′,Γ′1) ∩ ISO(∆,Σ,Γ \ Γ1,∆′,Σ′,Γ′ \ Γ′1)),

where the union runs over subsets of size d`/2e. Computing this union as a coset essentially
involves solving at most 2b many coset intersections, each of which takes 2O(b)NO(1) time,
assuming that the dynamic programming table entries for Γ1 and Γ′1 are already there. Finally,
we turn to the case when |Γ| = |Γ′| = 1. Let Γ = {γ} and Γ′ = {γ′}. Let ∆1 = ∆ \ {γ} and
∆′1 = ∆′ \ {γ′}. It is easy to see that

ISO(∆,Σ, {γ},∆′,Σ′, {γ′}) = Coset({γ}, {γ′})
∩ ISO(∆1,Σ ∪ {γ},∆1,∆′1,Σ′ ∪ {γ′},∆′1) ∩ ISO(∆1,Σ,∆1,∆′1,Σ′,∆′1),

which is again a coset intersection instance for table entries already computed since they
correspond to smaller size sets ∆1 and ∆′1.

To complete the proof (of both the claim and the theorem), notice that we compute
the table entries for increasing sizes of ∆. For each ∆ we compute the entries for different
Σ and increasing sizes of Γ. Finally, the base case for which the cosets in the table are
already computed is when ∆ is the empty set. For different subsets Σ these correspond to
the (i+ 1)-blocks. This proves the correctness and the running time bound follows from the
fact that the number of subproblems is 2O(b)NO(1), each of which involves 2O(b)NO(1) many
coset intersections which takes 2O(b)NO(1) time by Theorem 5. J

It is easy to modify the algorithm in the above theorem to compute all isomorphisms between
two colored hypergraphs X = (V,E) and X ′ = (V ′, E′) without changing the running time.
Clearly, we can assume that V = V ′ = C1] · · ·] Ck. The new algorithm computes for each
pair of (i)-blocks A,A′ the set ISO(Y, Y ′), where Y and Y ′ are the hypergraphs induced
by A and A′, respectively, with the only difference that now the block A comes from the
hypergraph X and A′ comes from X ′. Thus, in stage 0 the algorithm computes the set
ISO(X,X ′) of all isomorphisms from X to X ′.

I Corollary 9. Let X = (V,E) and X ′ = (V,E′) be two colored hypergraphs of size N with
V = C1] · · ·] Ck where |Ci| ≤ b for all i. Given X and X ′ as input there is an algorithm
that computes the set ISO(X,X ′) of isomorphisms from X to X ′ in time 2O(b)NO(1).

5 Discussion

We now briefly address the complexity of the canonization problem associated with CHI.
We first recall the definition of canonization. Let K denote the set of all instances of CHI. A
mapping f : K → K is a canonizing function for K if for all pairs of isomorphic instances X
and X ′ in K, f(X) = f(X ′) and f(X) ∼= X. We say that f assigns a canonical form to each
isomorphism class of K.

It is often the case that canonization and isomorphism testing for a class of structures
have the same complexity. However, for CHI we do not know a canonization procedure even
with running time (b!)2O(b)nO(1). Indeed, we do not know if the problem is fixed parameter

FSTTCS 2010

336 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

tractable. The following result is the best we know which follows easily by applying known
techniques [6].

I Theorem 10. The canonization problem associated with CHI has an NO(b) time algorithm,
where N is the input size and b bounds the size of the color classes.

Proof Sketch. Let X = (V,E) be an input instance of CHI, where |E| = m and |V | = n.
Then, by definition, the size of X is N = mn. Let V =

⋃k
i=1 Ci be the partition of the

vertex set into color classes Ci, where |Ci| ≤ b for each i. Let Xi = (Vi, Ei) denote the multi-
hypergraph obtained from X by projecting the hyperedges e ∈ E to the set Vi = Ci∪ . . .∪Ck.
The canonization algorithm proceeds inductively. Suppose we have computed the canonical
labeling coset Gσ of the multi-hypergraph Xi+1. It suffices to give an mO(b) algorithm for
canonizing the multi-hypergraph Xi obtained by projecting E on Vi = Ci ∪ Vi+1, given
the canonical labeling coset Gσ for Xi+1. Clearly, it suffices to canonize Xi under the
action of the coset Sym(Ci) × Gσ, where Sym(Ci) is the group of the (at most b! many)
permutations acting on the color class Ci. Applying the standard orbit finding algorithm
for permutation groups [17, 20] we can compute the hypergraph X ′i with vertex set Vi
and multiset E′i consisting of all hyperedges E′i = {{eπ | e ∈ Ei and π ∈ Sym(Ci) ×Gσ}}.
Since Gσ canonizes Xi+1, it follows that |E′i| ≤ 2b · |Ei|. Thus, X ′i can be easily computed
in time poly(2b,m, n). Notice that every permutation π ∈ Sym(Ci) × Gσ maps Xi to a
subgraph Xπ

i of the hypergraph X ′i. Furthermore, notice that the automorphism group
Aut(X ′i) of X ′i is precisely Sym(Ci)× σ−1Gσ. Define Yi = X

(id,σ)
i , where id is the identity

permutation in Sym(Ci). Then, Yi is clearly a subgraph of X ′i, and canonizing Xi under
the action of the coset Sym(Ci) × Gσ is equivalent to canonizing Yi under the action of
Aut(X ′i) = Sym(Ci)× σ−1Gσ. Now, we write the multiset E′i as

E′i = {(e1, n1), (e2, n2), . . . , (er, nr)},

where the edges ej are the distinct edges (with corresponding multiplicity nj), lexicographi-
cally ordered. Since Sym(Ci)× σ−1Gσ is Aut(X ′i), each permutation in Sym(Ci)× σ−1Gσ

uniquely defines a permutation on the set {e1, e2, . . . , er}. Thus Sym(Ci) × σ−1Gσ gives
rise to a subgroup Hi contained in Sym({e1, . . . , er}). Let E(Yi) = {ei1 , ei2 , . . . , eik}. The
hypergraph Yi, as a subgraph of X ′i, can be represented by a colored binary string x ∈ {0, 1}r,
whose jth bit xj = 1 iff ej ∈ E(Yi), and xj is colored by its multiplicity nj .

The problem of canonizing Xi under Sym(Ci)× σ−1Gσ action reduces to canonize the
binary string x ∈ {0, 1}r under the action of the group Hi. Since Sym(Ci) × σ−1Gσ is a
group with composition width [6] bounded by b, it follows that Hi also has composition
width bounded by b. Hence, by invoking the Babai-Luks canonization procedure [6] we can
compute the canonical form for Xi and the canonical labeling coset in NO(b) time. This
completes the proof sketch.

References
1 V. Arvind and J. Köbler. On Hypergraph and Graph Isomorphism with Bounded Color

Classes. In Proc. 23rd Symposium on Theoretical Aspects of Computer Science, volume
3884 of Lecture Notes in Computer Science, pages 384–395. Springer-Verlag, 2006.

2 L. Babai. Monte Carlo algorithms for graph isomorphism testing. Technical Report 79-10,
Dép. Math. et Stat., Univ. de Montréal, 1979.

3 L. Babai. Moderately exponential bounds for graph isomorphism. In Proc. International
Symposium on Fundamentals of Computing Theory 81, volume 117 of Lecture Notes in
Computer Science, pages 34–50. Springer-Verlag, 1981.

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 337

4 L. Babai and P. Codenotti. Isomorphism of Hypergraphs of Low Rank in Moderately
Exponential Time. In Proc. 39th Ann. IEEE Symposium on the Foundations of Computer
Science, pages 667–676, IEEE Computer Society Press, 2008.

5 L. Babai, W. Kantor, and E. M. Luks. Computational complexity and the classification
of finite simple groups. In Proc. 24th IEEE Symposium on the Foundations of Computer
Science, pages 162–171. IEEE Computer Society Press, 1983.

6 L. Babai and E. M. Luks. Canonical labeling of graphs. In Proc. 15th ACM Symposium
on Theory of Computing, pages 171–183, 1983.

7 H. Bodlaender. Polynomial algorithm for graph isomorphism and chromatic index on partial
k-trees. Journal of Algorithms, 11(4):631–643, 1990.

8 R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness I: Basic
results. SIAM Journal on Computing, 24(4):873–921, 1995.

9 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
10 S. Evdokimov and I. Ponomarenko. Isomorphism of colored graphs with slowly increasing

multiplicity of Jordan blocks. Combinatorica, 19(3):321–333, 1999.
11 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
12 M. Furst, J. Hopcroft, and E. M. Luks. Polynomial time algorithms for permutation

groups. In Proc. 21st IEEE Symposium on the Foundations of Computer Science, pages
36–41. IEEE Computer Society Press, 1980.

13 B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph isomor-
phism. Journal of Computer and System Sciences, 66:549–566, 2003.

14 S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex set
number is fixed-parameter tractable, 2009.

15 E. M. Luks. Isomorphism of bounded valence can be tested in polynomial time. Journal
of Computer and System Sciences, 25:42–65, 1982.

16 E. M. Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In
Proc. 31st ACM Symposium on Theory of Computing, pages 652–658. ACM Press, 1999.

17 E. M. Luks. Permutation groups and polynomial time computations. In L. Finkelstein and
W. M. Kantor, editors, Groups and Computation, volume 11 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 139–175. American Mathematical
Society, 1993.

18 G. L. Miller. Isomorphism testing for graphs of bounded genus. In Proc. 12th ACM
Symposium on Theory of Computing, pages 225–235. ACM Press, 1980.

19 G. L. Miller. Isomorphism of k-contractible graphs. A generalization of bounded valence
and bounded genus. Information and Computation, 56(1/2):1–20, 1983.

20 Á. Seress. Permutation Group Algorithms. Cambridge University Press, 2003.
21 C. C. Sims. Computational methods in the study of permutation groups. In J. Leech,

editor, Computational problems in abstract algebra, Proc. Conf. Oxford, 1967, pages 169–
183. Pergamon Press, 1970.

22 C. C. Sims. Some group theoretic algorithms. In A. Dold and B. Eckmann, editors, Topics
in Algebra, volume 697 of Lecture Notes in Mathematics, 108–124. Springer 1978.

23 S. Toda. Computing automorphism groups of chordal graphs whose simplicial components
are of small size. IEICE Transactions, 89-D(8):2388–2401, 2006.

24 K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos. Isomorphism for graphs
of bounded distance width. Algorithmica, 24(2):105–127, 1999.

25 V. N. Zemlyachenko, N. Konienko, and R. I. Tyshkevich. Graph isomorphism problem
(Russian). The Theory of Computation I, Notes Sci. Sem. LOMI 118, 1982.

FSTTCS 2010

	Introduction
	Preliminaries
	Permutation group problems
	Fpt algorithms for Colored Hypergraph Isomorphism
	Discussion

