Efficient Distributed Intrusion Detection applying
Multi Step Signatures

Michael Vogel and Sebastian Schmerl

Brandenburg University of Technology
Cottbus, Germany
{mv|sbs}@informatik.tu-cottbus.de

—— Abstract

Intrusion Detection Systems (IDS) offer valuable measures to cope with today’s attacks on com-
puters and networks. But the increasing performance of networks and end systems and the
growing complexity of IT systems lead to rapidly growing volumes of observation data and large
signature bases. Therefore, IDS are forced to drop observations in high load situations offering
chances to attackers to act undetectable. We introduce an efficient dynamically adaptable, dis-
tributed approach for a multi-step signature based IDS. Finally, we discuss initial performance
evaluations of a prototype implementation and motivate future work scopes.

Keywords and phrases Computer Security, Distributed Intrusion Detection, Attack Signatures

Digital Object Identifier 10.4230/0OASIcs. KiVS.2011.188

1 Motivation

Intrusion Detection Systems (IDS) have been proven as important instruments for the
protection of computer systems and networks. IDSs consist of sensors and analysis units.
Sensors are either network-based or host-based. Host sensors monitor the activities of
applications and the operating system on observed hosts (e.g. system calls). Network Sensors
monitor network traffic at mirror ports of routers and switches. The sensors capture security
relevant activities from these observations and continuously output a stream of audit events
which is passed to an analysis unit. IDSs apply either pattern anomaly or misuse detection.
Misuse detection searches for traces of security violations in captured observations (audit
data), using known attack patterns — the signatures.

A challenge that all intrusion detection systems are facing today is the increasing per-
formance of both networks and end systems. This leads to a rapid growth of audit data
volumes to be analyzed. On the other hand, the growing complexity of the IT-systems causes
novel vulnerabilities and offers new possibilities for running attacks so that the number of
signatures to be analyzed increases as well. Already today intrusion detection systems are
forced to drop audit data in high load situations. Thus, countermeasures become impossible.
This provides the attackers also the possibility to apply a "be patient'-attack-strategy which
portions their malicious activities over several days to exploit the fact that overloaded IDS
discard detection results regularly, due to limited memory resources.

To cope with this situation several approaches have been proposed, e.g. the detection of
intrusions based on an analysis of more compact, less detailed network log data [3]. But all
these approaches aim at optimizing the non-distributed, single threaded signature analysis.
The GNORT approach in [7] utilizes the massive parallel computing capabilities of expensive,
high end graphic processors (GPUs), but it only doubles the analysis throughput compared
to the sequential SNORT tool. In contrast to today’s highly loaded IDS, extensive spare
computing resources are available on cheap desktop machines in every network. Therefore,
? Michael Vogel and.Sebastian Schrr.lerl;

O™ licensed under Creative Commons License NC-ND
17th GI/ITG Conference on Communication in Distributed Systems (KiVS’11).

Editors: Norbert Luttenberger, Hagen Peters; pp. 188-193

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.KiVS.2011.188
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Michael Vogel and Sebastian Schmerl

a distributed signature analysis is a possible way to overcome this issue. So far, today’s
network-based IDS only apply primitive means to parallelize packet analysis by load balancing
mechanisms [1]. There are also almost no approaches to parallelize host-based audit data
analyses [2].

2 Efficient Distributed Intrusion Detection

Today, most IDS used in practice use a centralistic approach and apply misuse detection (e.g.
Snort [6]). The implementation and configuration of misuse detection systems are simpler and
allow for a significantly higher detection accuracy compared to anomaly detection. Typically,
single step signatures are applied to detect attacks by analyzing a single audit event (e.g.
network packet). In contrast to single step signatures, multi-step signatures allow for a
fine-grained modeling of attacks. They specify more detailed characteristic attack traces,
their dependencies, and the chronological order of the steps. Many semantic aspects of
multi-step attacks cannot be modeled by single-step signatures or only insufficiently, which
results in an increased false alarm rate (false positives). Therefore, in the following we focus
on misuse detection based on the analysis of multi-step signatures. Our approach bases on
an existing non-distributed IDS, which applies multi-step signatures defined in the Event
Description Language (EDL) [5]. The state/transition approach EDL uses a Petri net like
description principle.

2.1 EDL Signatures

EDL descriptions consist of places and transitions connected by directed edges. Places
represent relevant system states of an attack. Hence, they characterize the attack progress.
Transitions describe state changes triggered by audit events from the audit data stream
recorded during an attack. An example of an EDL signature with four places (P, — P;) and
three transitions (77 — T3) is depicted in Fig. 1. Ongoing attacks are represented by tokens

{4 initial place

Feature definitions by places:
O interior place

/ Lil P 2 I N Ps Ts NP4 © exit place
— @ S O| =
VY escape place
€ Conditions: transition associated
Pa.userlD == 1066 with event type Ei

host == webserver
Figure 1 EDL Signature Example

int userlD,
int processID

string openfFile,
int timestamp

int userlD

userlD=1066
process|D=12

userlD=1080 || userID=1066

e token

on places. Tokens can be labeled with values like colored Petri nets. A place defines zero or
more features which specify the properties of tokens located on this place. EDL distinguishes
four place types: initial, interior, escape and exit. Initial places are signature’s starting
places which are marked with an initial token at start up. The exit place represents the
completion of an attack instance. Thus, a token reaches this place implies that an attack has
been detected. Fscape places indicate that events occurred in the audit data stream which
make the completion of an attack instance impossible. Therefore, tokens reaching places of
this type are discarded. All other places are interior places.

A transition that is triggered by an event of a certain type can also contain a set of
conditions. As shown in Fig. 1, these conditions can specify constraints over certain features
of the triggering event (e.g., host=webserver) and token values (e.g., P3.userID=1066). The

189

KiVvS’'11

190

Efficient Distributed Intrusion Detection applying Multi Step Signatures

evaluation of these transition conditions requires CPU time depending on the complexity of
the conditions and the frequency of the evaluation, which is determined by the number of
occurring events in the audit data and the number of tokens on input places of a transition.

2.2 Distributed Analysis

In order to cope with overload situations, which often forces today’s IDS to drop audit data,
the required analysis effort can be distributed among a set of cooperating analysis units on
different hosts or multiple CPU cores. Primitive load balancing mechanisms, assigning audit
events to some analysis units cannot be used for multi-step signature-based IDS, because an
attack consists of a chain of distinct attack traces (audit events). Instead, the signature base
of the IDS can be split up into a number of distinct subsets which are assigned to different
cooperating analysis units. But this requires to transmit each audit event many times (from
the sensor to each host that runs an analysis unit). Therefore, a more sophisticated signature
distribution, which minimizes the need to duplicate captured audit events is desirable. This
can be achieved by identifying fine grained minimal parts in each multi-step signature that
can be independently assigned to different analysis units. This allows to optimize the required
communication effort for distributing and duplicating captured audit data for each distributed
analysis unit. By pooling minimal signature parts which analyze the same type of audit
events and assigning them to the same analysis unit, events of this type only have to be
sent to a subset of the analysis units. As an example, we consider an EDL signature that

T Pi
transition Ti O place Pi
w. triggering

event E; SUID

prt:

execute shell
+... command w/o
complgie path

childScript

execute
prty script
Ti

=

P1

start SUID shell
script which has critical
path environment

start SUID attack

child script
Pa Te

iy

_termination of
|-+ child shell script

process

minimal Qermir;a(ion of no SUID attack

signature SUID shell script

prt part prti process

prts

Figure 2 Minimal parts of SUID example signature

describes the SUID (set user ID) script attack on a former version of the Solaris OS, which
is depicted in Fig. 2. Without explaining the attack in detail, the attacker tries to gain
administrative privileges by exploiting a vulnerability of the extended file access rights.

The gray shaded spheres in Fig. 2 represent the three minimal parts, this signature can
be partitioned into. These parts cannot be partitioned further, because the transitions have
to evaluate the tokens on their input places. Therefore, a transition and its input places have
to be assigned to the same signature part. Now, if signature parts are assigned to different
analysis units, a token forward mechanism is required. In Fig. 2, the execution of transition
Ty from signature part prts requires to place a token on the output place P3 which belongs
to different signature part prts. If prty and prts are assigned to different analysis hosts the
token has to be forwarded via a communication channel between both analysis hosts.

The basic concept of a prototype implementation of our approach is depicted in Figure 3.
A sensor logs audit events and classifies them into different event types (e.g. network protocol,
port, specific system calls). The signature base is splitted up into minimal signature parts
(prtij) and each part is assigned to one analysis unit (AU), which allows for many different
assignments of the signature base to avaliable analysis units. A configurable filter, knowing

Michael Vogel and Sebastian Schmerl

sensor
filter

audit data
stream

analysis results
host m (detected attackg

infor-

mation

(token)— ="
kep)

state
infor-
mation

N

security
administrator

Figure 3 Distributed IDS Overview

the current signature partitioning, discards non-relevant audit data and transmits only those
event types to each analysis unit, which are analyzed by them to limit the communication
effort. The distributed analysis units examine incoming audit events by evaluating the
transition conditions of assigned signature parts. If a transition is activated and a token has
to be placed on an output place, which was assigned to a remote analysis unit, then this
token is transmitted to the responsible analysis unit. The results of the distributed analysis
are aggregated and evaluated by a security administrator.

3 Initial Evaluations

The distribution strategy described in the previous section has been implemented and
evaluated using a distributed Intrusion Detection System, which bases on EDL multi-step
signatures [4]. We modified and extended our existing Intrusion Detection tool SAM (signature
analysis module) according to Figure 3 to convert it into a distributed IDS. SAM sensors
forward audit events to a configurable number of analysis units over network connections
(sockets). Each SAM analysis unit possesses a configurable set of EDL signatures. This

implies that a configurable set of minimal signature parts is assigned to each analysis unit.

The analysis units exchange state information (tokens) between each other also over network
connections. We choose three example signatures and calculated all possible partitions
(assignments) of the contained signature parts to three analysis units. We evaluated each of
these 965 partitions on three parallel running SAM analysis units. These partitions include
very efficient distributions as well as completely inappropriate, inefficient ones, causing badly
balanced loads of the analysis units. Because of limited space, only two of the used signature
examples are explained in the following.

The first example describes the SUID (set user ID) script attack that already has been
introduced in the previous section. Another used signature example, consisting of 8 places
and 15 transitions, which is not depicted here due to lack of space, describes the link shell
attack which exploits a vulnerability of a former version of the Solaris OS. The attack exploits
a specific shell function as well as the SUID (set user ID) mechanism. If a link refers to a
shell script and the scripts filename starts with a hyphen "-" then an attacker can get an

interactive shell having the access rights of the script owner (e.g. root) by executing the link.

In order to evaluate the analysis efficiency of our distributed system we first used a generic
set of audit data. The data set was created by capturing system calls of a host while the
described attacks were executed. Afterwards, all logged system calls, which do not belong
to the executed attacks have been discarded manually. Therefore, the audit data set only
contains relevant attack traces of the applied signatures. Concerning the required analysis
effort, this represents the worst case scenario, demanding for the maximum computation

191

KiVvS’'11

192

Efficient Distributed Intrusion Detection applying Multi Step Signatures

effort for analysis. Additionally, the captured attack traces have been duplicated to create
a sufficiently large audit data file of 6,000 events (system calls). The experiments were
conducted on four separate machines (Intel Xeon, 2.66 GHz, 512 KB L2 cache, 2 GB RAM)
which are connected by switched Fast Ethernet links. One machine executes the sensor; the
others each run an analysis unit. At first we applied the generic audit data set and evaluated,
that even assigning the three example signatures to different analysis units, without splitting
them into parts, leads to a runtime improvement. We measured the run time separately for
each analysis unit. Then, we evaluated if further runtime improvements can be achieved, by
fine grained assignment of signature parts to different AUs and which signature partition
turned out to be efficient. Therefore, we evaluated all 965 possible different distributions of
our signature examples to three analysis units. The Table 1 contains runtime evaluations for
some selected signature distributions. The sensor runtime is related to the slowest analysis
unit, as the sensor terminates after transmitting the last audit event (to the slowest AU).
The first row (id 0) represents the non-distributed case. Thus, only one analysis unit (client)

distribution Sensor Client 1 Client 2 Client 3

id. real [s] real [s] user[s] real[s] |user[s] real[s] user [s]
0 47.953 47.625 46.89

96 29.625 37.718 28.672 29.328 9.828 32.390 7.844
302 110.641 110.656 108.469 116.343 33.891 113.718 19.313
626 19.719 19.750 17.948 25.437 18.078 23.453 17.969

Table 1 Selected runtimes for different signature distributions

is used, which gets all signatures assigned. This is the benchmark for any optimizations by
signature distribution. The second row (id 96) represents the obvious distribution, which
assigns each of the three example signatures completely to a different analysis unit (clients).
Thus, the signatures are not split up into parts and no state information (tokens) have to
be exchanged between different analysis units. The runtime evaluation shows a relevant
improvement for the distributed case. The real runtime of the sensor, which captures and
sends the audit data decreases by roughly 60 %. That means the distributed analysis run
completes 60 % faster than the non-distributed run. But the really consumed CPU time
(user time) of the three clients indicate that the analysis distribution is not well balanced.
Client 1 (28.672 sec) consumes significantly more CPU time than the other clients (9.828 sec,
7.844 sec). Further, the last row shows the signature distribution (id 626) requiring the least
runtime to complete, which is significantly more efficient than the distribution (id 96). Here,
parts of a signature are fine-grained assigned to the different AUs and the sensor requires
only half of the runtime compared to the non-distributed case. Further the required CPU
times (user time) of the clients indicate a well balanced signature distribution among three
clients. Finally, the third row (id 302) shows runtime results of the expected worst suitable
analysis distribution requiring the maximum runtime (110 sec). Thus, by choosing a bad
signature distribution, where signatures are split up poorly, the distributed analysis can
take substantially longer compared to the non-distributed case (id 0). The evaluation of all
possible 965 different partitions of the signature base shows that there are many efficient
signature partitions offering short run times as well as some completely unsuitable partitions.

An efficient distributed IDS applying EDL signatures has to choose one of the partitions,
requiring a low overall runtime. Therefore, it is necessary to introduce, resp. create a
metrics which maps features of the audit data characteristics (e.g. number of occurred

Michael Vogel and Sebastian Schmerl

specific audit events), monitored by the sensor, as well as the statistics maintained by the
analysis units (detailed logs of spend communication and computation effort) for the currently
used signature distribution to a metrics value M. This metrics then should be applied to
continuously predict suitable assignments of signature parts to available analysis units. The
distributed IDS then can use the metrics predictions to dynamically adapt the analysis
configuration to the ever changing characteristics of the captured audit data, as well as
changing available analysis resources, by reassigning signature parts to other analysis units.
But even without a predicting metrics our approach is not useless. A suitable, resp. efficient
initial partition can always be achieved by simply equally assigning whole signatures (without
splitting them) to the analysis units in a round-robin manner (e.g. id 96 in Table 1).

4 Summary and Future Work

We presented an efficient approach for distributed IDS, which aims at balancing the compu-
tation load of complex signature-based IDS across multiple analysis units. The approach is
not limited to EDL signatures and thus can be adapted to any multi-step signature based
IDS. A prototype implementation was used to initially examine the achievable performance
improvements by distributing the audit data analysis to a number of parallel running analysis
units. We applied a set of three example signatures, split up into minimal signature parts.
Then, we evaluated the analysis performance for the non-distributed case (as a benchmark)
and all possible, different assignments of signature parts to three distinct analysis units.
Evaluation shows many suitable signature partitions, which run significantly faster, but also
worse ones, requiring much more run time, compared to the non-distributed baseline. Further
work to create a metrics which predicts expectable computation and communication effort for
different signature partitions based on audit data characteristics is in progress. The metrics
should enable a distributed IDS to dynamically reconfigure its analysis distribution in order
to adapt to changing analysis effort and available resources.

—— References

1 Michele Colajanni and Mirco Marchetti. A parallel architecture for stateful intrusion detec-
tion in high traffic networks. In Proc. of the IEEE/IST Workshop on "Monitoring, attack
detection and mitigation" (MonAM 2006), Tuebingen, Germany, September 2006.

2 Christopher Kriigel, Thomas Toth, and Clemens Kerer. Decentralized event correlation for
intrusion detection. In ICISC, volume 2288 of Lecture Notes in Computer Science, pages
114-131. Springer, 2001.

3 John McHugh. Sets, bags, and rock and roll: Analyzing large data sets of network data.
In ESORICS, volume 3193 of Lecture Notes in Computer Science, pages 407-422. Springer,

2004.
4 Michael Meier. A model for the semantics of attack signatures in misuse detection systems.
In ISC, volume 3225 of Lecture Notes in Computer Science, pages 158-169. Springer, 2004.
5 Michael Meier, Sebastian Schmerl, and Hartmut Konig. Improving the efficiency of misuse

detection. In DIMVA, volume 3548 of Lecture Notes in Computer Science, pages 188-205.
Springer, 2005.

6 Martin Roesch. Snort: Lightweight intrusion detection for networks. In LISA, pages 229—
238. USENIX, 1999.

7 Giorgos Vasiliadis, Spyros Antonatos, Michalis Polychronakis, Evangelos P. Markatos, and
Sotiris Toannidis. Gnort: High performance network intrusion detection using graphics
processors. In RAID, volume 5230 of Lecture Notes in Computer Science, pages 116—134.
Springer, 2008.

193

KiVvS’'11

	Motivation
	Efficient Distributed Intrusion Detection
	EDL Signatures
	Distributed Analysis

	Initial Evaluations
	Summary and Future Work

