
Instructor Selector Generation from Architecture
Description
Miloslav Trmač1, Adam Husár1, Jan Hranáč2, Tomáš Hruška1, and
Karel Masařík1

1 Brno University of Technology, Faculty of Information Technology
{itrmac, ihusar, hruska, masarik}@fit.vutbr.cz

2 ApS Brno, s.r.o.
hranac@aps-brno.cz

Abstract
We describe an automated way to generate data for a practical LLVM instruction selector based
on machine-generated description of the target architecture at register transfer level.

The generated instruction selector can handle arbitrarily complex machine instructions with
no internal control flow, and can automatically find and take advantage of arithmetic properties
of an instructions, specialized pseudo-registers and special cases of immediate operands.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.109

1 Introduction

Application-specific processors are often used in embedded applications with large production
quantities due to the speed and low power consumption they can provide at modest cost
compared to using a generic CPU with higher execution speed. The Lissom project[8] devel-
oped at the Brno University of Technology aims to provide a full development environment
for iterative hardware-software codesign, allowing embedded system developers to rapidly ex-
periment with application-specific architecture facilities by automatically generating software
development tools (assembler, disassembler, linker, simulator, C compiler) and a hardware
prototype. Typically, the embedded system developer would experiment with changing the
CPU, e.g. adding specialized instructions, and evaluate each experiment by using the Lissom
software to regenerate the tool chain, recompile the application, and test its performance on
a simulator.

This effort includes automatic generation of a C compiler. We have decided to base this
work on the open-source LLVM project[6], reusing its existing front-end (which converts
input in C into the LLVM internal representation), its optimization passes, and the provided
infrastructure for implementing back-ends (which convert the internal representation into
assembler or binary code).

In the compiler front-end it is only necessary to provide information about the application
binary interface (ABI) of the target platform; front-ends are already prepared for this, so
we only need to describe data types in a predetermined format. The LLVM optimization
passes work purely on the internal representation without considering the target architecture.
Most of the work therefore involves the compiler back-end, which is described in this article,
focusing primarily on the instruction selection component.

2 Related Work

A full-featured compiler generator is described in [5]: from an architecture description in
a language called LISA, it generates input for the commercial CoSy compiler development

© Miloslav Trmač, Adam Husár, Jan Hranáč, Tomáš Hruška, Karel Masařík;
licensed under Creative Commons License NC-ND

Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10)—Selected Papers.
Editors: L. Matyska, M. Kozubek, T. Vojnar, P. Zemčík, D. Antoš; pp. 109–115

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MEMICS.2010.109
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

110 Instructor Selector Generation from Architecture Description

system. LISA is suitable primarily for accurate simulation, so compiler generation is
not automatic: register properties and instruction scheduling information is extracted
automatically, but the user must manually provide instruction behavior descriptions using
a provided GUI. If the LISA input is changed, the information in the GUI may become
obsolete and needs to be updated manually. In contrast, in our approach the instruction
selector is generated automatically from the same input file used for generating other tools,
shortening the edit-compile-evaluate cycle of architecture design exploration.

An approach that does not ask the user to specify the instruction selector described in
[2]. The necessary instruction operation descriptions are extracted from an architecture
description automatically. After phases that simplify the instruction behavior descriptions,
the descriptions are matched against manually prepared patterns to find instructions that
can be used in the initial instruction selection pass of gcc (gcc does not use a tree pattern
selector, and requires named templates for the atomic operations). Unlike our approach,
instructions that combine several basic operations are not supported.

An entirely different approach is not to try to support arbitrary user-specified archi-
tectures. Such systems are based on a specific CPU architecture, and provide a combined
hardware/software compiler to the user. Given an input program, the compiler produces
description of hardware (e.g. in VHDL) that implements some parts of the program, and
executable code for the base architecture augmented with the described hardware, that
implements the rest.[9] Such systems can produce good results if the base architecture is
suitable, but are difficult to adapt when the base architecture needs to be replaced.

3 ISAC and Instruction Semantics Extraction

ISAC is an architecture description language (ADL) based originally on LISA.[7] It is a
mixed ADL, meaning that it allows to describe both architecture and microarchitecture.

The architectural description consists of registers, memories, and instruction set descrip-
tion. Registers and memories are described as global C language variables. Instruction set is
described hierarchically, because most instructions can use the same register or immediate
operands. Two main constructs are used to describe the instruction set: The OPERATION
construct allows to describe parts of instruction’s syntax, binary encoding, and semantics.
Instances of other operations or groups may be used in an operation specification. GROUP is
used to describe situations where an instance used in an operation can be one of a set of
operations or groups. An example of a “store byte” instruction is in listing 1.

Listing 1 Example of a “store byte” instruction with indirect adressing mode
This is an simplified example , an operation usually represents
multiple instructions (e.g. also "store half -word", and
"store word ").
OPERATION instr_direct_loadstore {

INSTANCE register ALIAS {rt , base };
INSTANCE signed_imm16 ALIAS { offset };
ASSEMBLER { "SB" rt "," offset "(" base ")" }; # Syntax
CODING { 0 b100100 base rt offset }; # Binary encoding
BEHAVIOR { # Instruction behavior

int addr = regs[base] + offset ; # regs is an array of
char val = regs[rt] & 0xFF; # general - purpose registers
mem[addr] = val; # mem represents memory address space

};
}

Miloslav Trmač, Adam Husár, Jan Hranáč, Tomáš Hruška, and Karel Masařík 111

The compiler back-end needs to identify each particular target instruction, but there
is no notion of an instruction in the ISAC language. What can be used here, is that the
assembly syntax description is based on context-free grammars. If we generate all words of
the assembly language, we get a list of instructions. For each instruction the corresponding
behavior in C is generated as well. This C code representing instruction semantics is then
converted to a common format, a few simple optimizations that simplify the semantics are
performed, and this result is passed to the back-end generator. The result for the example
“store byte” instruction can be seen in listing 2.

Listing 2 Instruction semantics example, corresponding to listing 1
Temporary variable names were changed to make the example easier to
follow .
instr instr_direct_loadstore__op_sb__gpr_std__simm16__gpr_std__ ,

%imm = i16 immop (1);
%Rx = i32 regop(cl0 , 0);
% Rx_trunc = trunc (%Rx , i32 8);
% imm_ext = sext (%imm , i32 32);
%Ry = i32 regop(cl0 , 2);
%addr = add (%Ry , % imm_ext);
store (% Rx_trunc , %addr);

, "SB" 0 "," 1 "(" 2 ")", 1 # Assembler syntax

4 Instruction Selector Generation

Instruction selection is the largest component of a LLVM compiler back-end. Its purpose
is to convert an input program from a target-independent internal representation into a
lower-level representation that deals with instructions of the target architecture instead of
generic operations.

4.1 Instruction Semantics Format
The primary result of the instruction semantics extraction process described in section 3 is
a list of instructions. In contrast to the human concept of a “single instruction”, where all
binary formats that use the same assembler mnemonics are considered a single instruction,
we define a single instruction as a maximal set of binary encodings within which semantics
and binary encoding can change only by substituting one register by another register from the
same register class, or one constant by another constant of the same bit width and format.

For example, load R1 = [R1 + R2] and load [R1 + imm] are different instructions
although they share the “load” mnemonics. Also, add R1 = R2 + R3 and add R1 = R2 + R0
(where R0 denotes a read-only pseudo-register with zero value) are different instructions:
they share the same binary format, but the semantics of one is “add values of two registers”,
and the semantics of the other is “copy a register value.” In contrast, cmov if(R1) R2 = R3
is (necessarily) considered a single instruction, where the semantics depends on the value of
a register, not on its identity.

The extracted semantics is a sequence of atomic operations, using an unbounded number
of temporary variables. Only limited control flow is supported: an if operation can be
used to delineate a conditionally-executed set of atomic operations, but control flow can not
return to the “main path” after executing the if body. Loops are not supported, so the
control flow graph can form at most a tree rooted at entry of the semantics. In this control

MEMICS’10

112 Instructor Selector Generation from Architecture Description

flow format, it is easy to arrange temporary variables to form the industry-standard SSA
representation[4]. In contrast, the semantics can modify a single physical register repeatedly,
so physical registers are not in SSA form.

4.2 Basic LLVM Instruction Selector
LLVM uses a tree pattern matching instruction selector, which can take advantage of complex
instructions, as long as they have only one result. In contrast to research in this area,
which suggests using bottom-up analysis with dynamic programming and generating globally
optimal instruction selections (within the assumed cost model)[1, 3], LLVM uses a top-down,
only locally optimal selector, sacrificing code quality for flexibility and speed. The selector is
automatically generated from instruction descriptions, but it also allows adding additional
C++ code to handle more complex cases.

Description of each instruction in LLVM includes its assembler format, (variable) operands,
effects on other (fixed) registers, and other information, e.g. flags describing important
behavior, and optionally binary format of the instruction. Instructions that should be
handled by the generic instruction selector must also include semantics description in an
expression tree form.

Instructions for which the extracted semantics naturally describe an expression tree (single
externally-observable output—either register assignment or a side effect, no conditionals)
can be converted to the LLVM format by treating the use-def links in the linear instruction
semantics description as parent-child links in an expression tree. Instructions that change a
register value conditionally can be converted into a corresponding LLVM operation as well,
by implicitly constructing the C “?:” operator within the semantics.

An example LLVM instruction description is provided in listing 3.

Listing 3 LLVM instruction description example, corresponding to listing 2
def instr_direct_loadstore__op_sb__gpr_std__simm16__gpr_std__ :

LissomInst
<(outs), (ins cl0:$op0 , cl0:$op2 , Si32i16imm :$op1), # Operands

"SB $op0 , $op1 ($op2)", # Assembler
[(truncstorei8 cl0:$op0 , # Expression

(add cl0:$op2 , (i32 sextimm16 :$op1)))] >{}

This approach can handle a large number of instructions, including instructions that
combine several operations. On the other hand, this alone is insufficient on almost all
architectures, because many architectures do not provide some of the “atomic” operations
in a pure form, and if the “atomic” operations are not available to the instruction selector,
there are likely to be programs that cannot be compiled.

4.3 Instructions with Multiple Outputs
Many architectures support instructions that provide more than one output (in this section,
“output” means storing a value in a register, or a side effect). These instructions are
often primarily used for only one of the outputs. This includes almost all instructions on
architectures that use a flags register. To handle these cases, any instruction that has more
than one output is cloned. One clone is created for each output, and in each clone, the other
outputs are made invisible to LLVM (setting of a register is replaced by an annotation that
the register is clobbered by an indeterminate value). If one of the outputs can not safely
be made invisible (e.g. a jump), the clone is discarded. Thus, a single xor Rx = Ry ^ Rz

Miloslav Trmač, Adam Husár, Jan Hranáč, Tomáš Hruška, and Karel Masařík 113

instruction on an architecture with a flags register is cloned into xor_reg, which sets Rx and
clobbers the flags register, and xor_flags, which sets the flags register and clobbers Rx. The
LLVM instruction selector can use the xor_reg clone and thus automatically take advantage
of the instruction.

4.4 Specialized Instruction Outputs
On many architectures some atomic operations are available only as a part of a more
generic instruction. For example, an architecture might provide only a single flexible load
instruction: load Rx = [Ry + Rz * imm1 + imm2] (where values of imm1 and imm2 are
often limited in range). By choosing imm1 = 1, imm2 = 0, or imm1 = imm2 = 0, we can
get the simpler load Rx = [Ry + Rz], and load Rx = [Ry], respectively. To handle these
cases, we attempt to specialize each instruction with chosen constant values.

First, promising values of immediate operands are collected: Basic dominator optimiza-
tions (dead code deletion, copy propagation, constant folding, arithmetic simplification) are
performed on the semantics, and each atomic operation that refers to an immediate operand
is examined for values of the operand that could allow constant folding the operation. For
example, values 0 and 1 are used for multiplication operands, or values 0 and ~0 (of correct
width) are used for operands of bit-wise operations. Other atomic operations, including other
arithmetic operations, comparisons, and if, are handled similarly. Finally, the value 0 is
always added, simply because it so often leads to simplification.

After all candidate values are collected for each immediate operand, the instruction is
cloned: one clone is created for each possible assignment of candidate values to respective
immediate operands (including the cases when a specific value is not assigned to some of
the operands). Each clone is then re-optimized: if the optimization does not simplify the
instruction semantics, the clone is discarded. The remaining clones are treated exactly the
same as “native” instructions (e.g. an LLVM description is generated for them).

4.5 The Instruction Set as a Whole
In addition to cooperating with the LLVM instruction selector, LLVM needs some information
about the overall structure of the instruction set.

Most important is the LLVM “legalization” pass, whose purpose is to modify the input
program to only use operations that are available in the target architecture, e.g. converting a
64-bit multiplication into a sequence of 32-bit multiplications and additions. Unfortunately
LLVM is not able to extract the required information about available instructions from the
individual instruction descriptions, so this information has to be generated separately.

Second, the LLVM instruction selector build process can not handle instructions sets
in which two or more instructions match the same expression subtree; the backend author
must explicitly select the instruction that the instruction selector will use for the subtree.
(The other instructions can still be made available to LLVM—and used perhaps through
specialized built-in functions—but their description must not contain the expression subtree,
making them unavailable to the instruction selector.) To do this, structurally identical
expression subtrees are identified in the backend generator, and a single instruction is chosen
from each set of duplicates.

Finally, LLVM needs to generate some target instructions after instruction selection has
finished, notably instructions for moves and memory accesses necessary for register allocation
and spilling. These instructions are located by looking for instructions matching a specific
form of atomic operations that do not have any unwanted side effects.

MEMICS’10

114 Instructor Selector Generation from Architecture Description

5 Other Backend Tasks

In addition to instruction selection, a LLVM backend needs to provide information to the
register allocator, mainly description of register classes and lists of registers unavailable for
allocation. This information is already provided in the extracted instruction semantics, based
primarily on user’s annotations in the source ISAC file.

We do not currently extract enough information about the pipeline and usage of functional
units by instructions to implement effective instruction scheduling.

Finally, a back-end must implement handling of function frames, function calls, parameter
passing, and other ABI-dependent transformations. We handle this by looking for instructions
matching a specific form of atomic operations, similar to the case of target instructions used
after instruction selection. The specific ABI can not be automatically determined, and means
to allow the user to specify it are currently being added to ISAC. Without such information,
the backend generator automatically generates a reasonable ABI by examining the existing
instructions (e.g. looking for “return” or “call”), or, on very regular architectures with little
built-in function call support, by looking for indirect addressing modes suitable for managing
a stack manually.

6 Experimental Results

We have used the back-end generator on a restricted model of the MIPS architecture developed
for the purpose. The semantics extraction implementation resulted in a description of 139
individual instructions (using the definition of “instruction” given in section 4.1). Out of
these 139 instructions, 62 could be directly used by the LLVM instruction selector, remaining
instructions required additional handling and conversion. Because the architecture includes
a R0 pseudo-register equal to a immediate value of 0, the instruction extraction process
recognized a large number of instruction variants involving the R0 register that ultimately
resulted in the same LLVM semantics: in particular, semantics of 17 instructions was Rx = 0,
and semantics of 11 instructions was Rx = Ry.

In our model, the only cloned instructions with multiple outputs were variants of division
and multiplication.

Specializing instructions using specific values of immediate operands based on the original
139 instructions resulted in 26 new instruction clones, with 17 distinct classes of semantics for
the purpose of the LLVM instruction selector. Similarly to the handling of the R0 register in
semantics extraction, the most frequent specializations resulted in simple register-to register
copy and register assignment, but this process also identified ways to provide the primitive
load/store operations (e.g. LW Rx, 0(Ry) - load a 16-bit value from address given by register
Ry to register Rx), which are necessary both to guarantee ability of the instruction selector
to handle arbitrary programs, and to implement register spilling in the register allocator.

7 Conclusion and Future Work

In this article we have presented primarily our approach to automatic generation of a
LLVM instruction selector. While the other components of the LLVM backend generator
are sufficient to create a working MIPS backend, implementation experience with more
architectures is necessary before we can be confident in the viability of our approach and
before we can present it in detail.

Our goals for future work include extracting enough information for instruction scheduling,
which will also allow choosing the best possible instruction for the instruction selector when

Miloslav Trmač, Adam Husár, Jan Hranáč, Tomáš Hruška, and Karel Masařík 115

there are several alternatives. Extensions of LLVM to take advantage of SIMD instructions
and WLIW architectures are already under development. We also intend to test performance
of code created by the generated backend using industry-relevant benchmarks, and improve
our backend generator based on detailed analysis of the compiled code for these benchmarks.

Acknowledgements This research was supported by the grants of MPO Czech Republic
FR-TI1/038 and by the Research Plan MSM No. 0021630528. We would also like to thank
the anonymous reviewers for their valuable comments.

References
1 Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code generation using

tree matching and dynamic programming. ACM Transactions of Programming Languages
and Systems, 11(4):491–516, October 1989.

2 Soubhik Bhattacharya. Generation of gcc backend from Sim-nML processor description.
Master’s thesis, Indian Institute of Technology, Kapur, July 2001.

3 Todd A. Proebsting Christopher W. Fraser, David R. Hanson. Engineering a simple, ef-
ficient code generator generator. ACM Letters on Programming Languages and Systems,
1(3):213–226, September 1992.

4 Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph. ACM
Transactions of Programming Languages and Systems, 13(4):451–490, October 1991.

5 Manuel Hohenauer, Hanno Scharwaechter, Kingshuk Karuri, Oliver Wahlen, Tim Kogel,
Rainer Leupers, Gerd Ascheid, Heinrich Meyr, and Gunnar Braun. A methodology and
tool suite for C compiler generation from ADL processor models. In Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, pages 1530–1591, 2004.

6 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04), Palo Alto, California, March 2004.

7 Roman Lukáš, Tomáš Hruška, Dušan Kolář, and Karel Masařík. Two-way deterministic
translation and its usage in practice. In Proceedings of 8th Spring International Conference
- ISIM’05, pages 101–107, 2005.

8 Karel Masařík, Tomáš Hruška, and Dušan Kolář. Language and development environment
for microprocessor design of embedded systems. In Proceedings of IFAC Workshop on Pro-
grammable Devices and Embedded Systems PDeS 2006, pages 120–125. Faculty of Electrical
Engineering and Communication BUT, 2006.

9 Tim Sander, Aditya Vishnubhotla Vijay, and Sorin A. Huss. HW/SW codesignflow with
LLVM. 2008 LLVM Developers’ Meeting, August 2008.

MEMICS’10

	Introduction
	Related Work
	ISAC and Instruction Semantics Extraction
	Instruction Selector Generation
	Instruction Semantics Format
	Basic LLVM Instruction Selector
	Instructions with Multiple Outputs
	Specialized Instruction Outputs
	The Instruction Set as a Whole

	Other Backend Tasks
	Experimental Results
	Conclusion and Future Work

