
Integer Programming for Media Streams Planning
Problem∗

Pavel Troubil and Hana Rudová

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
pavel@ics.muni.cz, hanka@fi.muni.cz

Abstract
Continually increasing demands for high-quality videoconferencing have brought a problem of fully
automated environment setup. A media streams planning problem forms an important part of
this issue. As the multimedia streams are extremely bandwidth-demanding, their transmission
has to be planned with respect to available capacities of network links and the plan also needs to
be optimal in terms of data transfer latencies. This paper presents an integer programming solu-
tion of the problem and its implementation. The implementation achieved very promising results
in performance-evaluating measurements. Compared to previous constraint-based solver, it is
capable of finding optimal solution significantly faster, allowing for real-time planning of larger
problem instances.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.116

1 Introduction

Modern computer networks allowing high-bandwidth transmissions have become more and
more widespread recently. Their increasing availability heavily supports deployment and
user-adoption of advanced collaborative environments. These environments frequently
require transmission of very high-bandwidth data streams. Smoothness and enjoyability of
synchronous remote collaboration also crucially depends on a low-latency transmission of the
data streams.

Setting up an advanced collaborative environment might be a difficult and tedious
task, probably undesirably hard for end-users. The setup often comprises configuring
of potentially high number of individual components (e. g., data producers, processors,
distributors, or consumers), and also data distribution paths in a network. As a bandwidth
needed for transmission of the data streams is frequently close to capacities of state-of-the-art
backbone links, finding out correct and latency-minimal distribution paths also becomes
a very complicated task.

In order to automate the process of the environment setup, the CoUniverse framework
has been proposed in [5]. The problem of deciding the data distribution paths has been
formally defined as a media streams planning problem (MSPP) in [3]. The MSPP is a network
optimization problem close to a multicommodity network flows problem [1]. A survey of
network optimization problems can be found in [9]. The MSPP is also strongly related
to a multicast routing problem [6] for multiple multicast groups (called multicast packing
problem). Unfortunately the multicast service is not proper for our purpose since it is not
continuously deployed over the whole Internet, and lacks performance needed for high-speed
transmissions. Still methodologies applied to solve this problem can provide an inspiration

∗ This research is supported by the Ministry of Education, Youth and Sports of the Czech Republic under
the project 0021622419.

© Pavel Troubil and Hana Rudová;
licensed under Creative Commons License NC-ND

Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10)—Selected Papers.
Editors: L. Matyska, M. Kozubek, T. Vojnar, P. Zemčík, D. Antoš; pp. 116–123

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MEMICS.2010.116
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


Pavel Troubil and Hana Rudová 117

for our work. Heuristics for this problem were presented in [2, 10, 8] and an optimal solution
using linear programming is known for single multicast problem even if data streams are
allowed to split [4].

A constraint-programming based solver of the MSPP has been implemented in the
CoUniverse [3]. This solver is only capable of solving medium-sized instances of the problem
quickly enough, i. e., in a few seconds. With the aim to solve larger problem instances, we
propose a new solver based on integer programming. We have rewritten the previous constraint
programming model to a form of an integer programme, reformulating some improper
disjunctive constraints. The IP model was implemented in the CoUniverse framework and
evaluated in terms of performance. Results of the evaluation show that our solver is capable
of solving larger instances of the problem for real-world network topologies, e. g., those used
for distributed lectures.

2 Problem description

Generally said, the media streams planning problem is a network optimization problem of
computing data distribution paths in a network. Given a topology of the network, a set of
data sources, and destinations for the data delivery, the goal is to find a distribution tree for
each of the data sources. The data distribution paths are required to be optimal in terms
of overall transmission latency. Media streaming network applications usually require all
data transmissions to occur at the same time, e. g., in a videoconference. Hence no temporal
parameters are considered in the MSPP. In order to handle changes in the network (e. g.,
link outage), the CoUniverse monitors the environment and may invoke a replanning, i. e.,
a new call of the solver.

Main entity of the network is a node v ∈ V . Since we abstract from physical network
devices such as switches or routers, the nodes represent computers (servers as well work-
stations), each of them running one or possibly more applications. The applications either
produce a data stream (called producers, p ∈ P ), consume the stream (consumers, c ∈ C), or
distribute it (distributors, d ∈ D), possibly creating multiple copies of received data. The
applications are capable of processing one data stream at most, i. e., a single application
can neither produce, consume, nor distribute more than one stream. If an application
a ∈ P ∪D∪C is running on a node v, we write a ∈ v. The distributors are server applications
providing a multicast functionality on an application layer of the ISO/OSI model. UDP
packet reflectors and Active Elements are examples of such applications.

If there is a distributor running on a network node, no other application is allowed to run
there, i. e., no producers and/or consumers may run on that node, neither may any other
distributor. If there is no distributor on a node, there may be running several producers
and consumers together. Their number is not limited as long as they all process different
streams. Yet, this model targets primarily on CPU-intensive multimedia applications that
might cause overload of the node when run simultaneously. Nodes are organized into sites,
which generally represent geographical collocation of the nodes. There are typically several
nodes at a site, each of them running a single application.

Each network node has several network interfaces i ∈ I configured. We denote by i ∈ v

that the interface i is configured on the node v. An interface has a limited transmission
capacity capI (i). Every interface belongs to a subnetwork. We consider each interface
reachable from all other interfaces in the same subnetwork and vice versa.

In other words, there is a link l ∈ L between each ordered pair of interfaces, i. e.,
it is strictly directional. Links together with nodes form a directed graph N = (V, L)

MEMICS’10



118 Integer Programming for Media Streams Planning Problem

corresponding to the underlying network. The links represent a network infrastructure which
facilitates the data transfer between the pair of network nodes. Although links formally
interconnect interfaces, we often speak about them as connecting nodes. Naturally, a link
between interfaces (i1, i2) connects nodes (v1, v2) if and only if i1 ∈ v1 ∧ i2 ∈ v2. Source
and target nodes of a link l are denoted begin(l) and end(l), respectively. We also denote
a set of links connected to an interface i as links(i).

For an application a ∈ P ∪D∪C on a node v, we define inlinks(a) as a set of links ending
in the node v, i. e., l ∈ inlinks(a) ⇐⇒ a ∈ end(l). We extend this notation on a set of
applications A ⊆ P ∪D ∪C: l ∈ inlinks(A) ⇐⇒ a ∈ end(l) for some a ∈ A. We also define
outlinks(a) and outlinks(A) analogously.

Each network link l has two attributes: its maximum capacity cap(l) and transfer delay
latency(l). Since the links do not represent physical topology of a network, several links in
our model might share one physical network link. Consequently, whole bandwidth of cap(l)
might not be actually available for transmission. A static configuration of capacity of the
links is augmented by a real-time monitoring in the CoUniverse, similarly as latency of the
links needs to be also monitored.

The goal of media streams planning is to determine paths for the distribution of the
data streams (s ∈ S). We use the term stream since motivation for the MSPP lies in
continuous multimedia transmissions. We denote a bandwidth required for transmission of
the stream s as bw(s). Each stream s is produced by a single application producer(s) ∈ P

and is required to be delivered to a set of consumers consumers(s) ⊆ C. There is exactly one
producer of the stream s and at least one consumer of the stream, i. e., consumers(s) 6= ∅.
Transmission of the streams and possibly creation of multiple data copies is performed by
the distributors. More precisely, each stream is transferred from a producer to a set of
consumers by a communication tree with the producer in its root, consumers at leafs, and
media distributors at internal nodes. Therefore, the problem may be considered as a tree
placement [3] in contrast to classical path placement [9] where no data multiplication is
processed. On the other hand, all packets of each stream from its producer to a single
consumer have to be transferred along the same path. If the packets would be transferred
along more than one path, unfavourable reordering of the packets would occur due to different
latencies of the paths. The distributors are therefore not allowed to send data between any
producer—consumer pair from a node through more than one link (e. g., for load balancing
purposes).

3 Integer Programming Model

For each stream s and network link l, we introduce a binary decision variable xs,l, further
denoted as streamlink. The streamlink xs,l equals to 1 if the stream s is transmitted over the
link l, otherwise it corresponds to 0.

We also call a streamlink xs,l active if and only if xs,l = 1, or inactive otherwise. Since
our aim is to minimize overall transmission latency, we formulate the objective function as
a sum of latencies of all active streamlinks.

min
∑
s∈S

∑
l∈L

xs,l · latency(l)

The three following constraints implement network capacity limitations. By constraint (1),
it is not allowed to transfer a stream s through a link l of insufficient capacity. We set
the decision variable directly to zero when the link does not have sufficient capacity for



Pavel Troubil and Hana Rudová 119

transmission of the stream. This constraint is a redundant one and follows from the consequent
constraint (dependent on decision variables). Constraint (2) guarantees that the capacity
of a link l cannot be exceeded by a total bandwidth of the streams transferred over the
link. Constraint (3) states that the capacity of an interface i cannot be exceeded by a total
bandwidth of the streams transferred over all links connected to this interface. The presented
variant of the constraint is used for interfaces which do not support full duplex. On full
duplex interfaces, incoming and outgoing links are treated separately, since they do not
interfere with each other.

xs,l = 0 ∀s ∈ S ∀ l ∈ L s.t. bw(s) > cap(l) (1)∑
s∈S

bw(s) · xs,l ≤ cap(l) ∀l ∈ L (2)∑
s∈S

∑
l∈links(i)

bw(s) · xs,l ≤ capI (i) ∀i ∈ I (3)

A network node cannot send a stream s over arbitrary outgoing links. To allow transmis-
sion of the stream s over a link l, either consumer of this stream or a distributor must reside
on the target node of the link l (4). A similar rule holds for receiving of the stream. To allow
transmission of the stream s over a link l, either producer of this stream or a distributor
must reside on the source node of the link l (see constraint (5)).

xs,l = 0 ∀s ∈ S ∀ l 6∈ inlinks(D ∪ consumers(s)) (4)
xs,l = 0 ∀s ∈ S ∀ l 6∈ outlinks({producer(s)} ∪D) (5)

Each producer is capable of producing a stream and sending it to another network node
and does not have any additional data distribution capabilities. Consequently any producer
is required to send the stream over exactly one link.∑

l∈outlinks(producer(s))

xs,l = 1 ∀s ∈ S (6)

If there is more than one consumer of a stream s, its producer is not allowed to send
the stream directly to any consumer. We disable all direct links from the producer to all
consumers of the stream s. We introduce the constraint (7) for each stream s such that
‖consumers(s)‖ > 1.

xs,l = 0 ∀l ∈ L s. t. l ∈ outlinks(producer(s)) ∩ inlinks(consumers(s)) (7)

This constraint is redundant, since any directlink form producer(s) to any consumer of
the stream would leaverequests of the other consumers unsatisfied without breaking the
constraint (6).

Each producer is required to send the data to each consumer along a single path. This
means that any consumer does not need to receive a stream from more than one node unless
there is some redundant transmission. The consumer is therefore required to receive the
stream over exactly one link.∑

l∈inlinks(c)

xs,l = 1 ∀s ∈ S ∀c ∈ consumers(s) (8)

The following constraints are aimed to make each stream s transferred along a tree
rooted at a node where producer(s) resides. A distributor d is allowed to distribute one

MEMICS’10



120 Integer Programming for Media Streams Planning Problem

stream at most, and the stream has to be transferred to any network node only by a single
network link. In addition, each node containing a distributor cannot contain any other
application. Following these rules, there may be at most one active streamlink incoming
in the distributor’s node (see (9)). Constraints (10) and (11) guarantee that a stream s is
sent by a distributor d if and only if it is also received by d. Contrary to the constraint (9),
they have to be formulated on a per-stream basis. In this case, summing all streamlinks
would allow the distributor to send further arbitrary stream no matter which stream it
receives. Since corresponding constraints of the constraint programming model [3] are not
suitable for the integer programming due to their improper statement with disjunctions, their
reformulation was necessary. Constraint (10) states that there are not less active outgoing
links than active incoming links, i. e., the distributor d is forced to forward an incoming
stream. Next, a distributor d is not allowed to forward any stream it does not receive. As the
distributor may only distribute a single stream, ‖outlinks(d)‖ corresponds to the maximum
possible number of streamlinks over which the distributor may send any data (11).∑

s∈S

∑
l∈inlinks(d)

xs,l ≤ 1 ∀d ∈ D (9)

∑
l∈inlinks(d)

xs,l ≤
∑

l∈outlinks(d)

xs,l ∀s ∈ S ∀d ∈ D (10)

‖outlinks(d)‖ ·
∑

l∈inlinks(d)

xs,l ≥
∑

l∈outlinks(d)

xs,l ∀s ∈ S ∀d ∈ D (11)

A distribution tree of each stream s is limited in size by the number of consumers of s

and the number of available distributors. There are three redundant constraints (12),
(13), and (14) to support that. First, the distribution tree may include at most 1 +
‖D‖ + ‖consumers(s)‖ nodes. Since cycles among nodes are not allowed (see constraint
(15)), maximum number of links over which the stream s may be transferred is equal to
‖D‖ + ‖consumers(s)‖ (see (12)). Next, if there is only a single consumer of a stream s,
one link may be sufficient for transmission (13). Otherwise, the stream has to be trans-
mitted through at least one distributor, setting the minimal number of needed links to
1 + ‖consumers(s)‖ (see (14)).∑

l∈L

xs,l ≤ ‖D‖+ ‖consumers(s)‖ ∀s ∈ S (12)∑
l∈L

xs,l ≥ 1 ∀s ∈ S s. t. ‖consumers(s)‖ = 1 (13)∑
l∈L

xs,l ≥ 1 + ‖consumers(s)‖ ∀s ∈ S s. t. ‖consumers(s)‖ > 1 (14)

The last constraint eliminates cycles that might occur among nodes with distributors.
The previous constraints allow existence of a cycle in which each distributor may receive
a stream from another distributor, potentially forwarding the stream on a path to one or
more consumers. The cycle-avoidance constraints are derived from the graph theory results.
If a graph with k vertices has more than k − 1 edges, there is a cycle in the graph. Further,
if there is not a cycle in any subgraph of a graph then the graph does not contain any
cycle either. We denote the number of distributors ‖D‖ as n. To avoid cycles among the
distributors, we put an upper bound on the number of edges in each k-tuple of distributors
for 2 ≤ k ≤ n. For n distributors, there are

(
n
k

)
subsets of k elements in total, i. e., k-tuples of

distributors. We denote a set of all distributor k-tuples as Dk, and its i-th member as Dk(i).



Pavel Troubil and Hana Rudová 121

For each stream s and each k-tuple of distributors, we introduce the following constraint.∑
j1,j2∈Dk(i) ∧

vj1 =begin(l) ∧ vj2 =end(l)

xs,l ≤ k − 1 ∀s ∈ S ∀k ∈ {2, . . . , n} ∀i ∈ {1, . . . ,
(

n
k

)
} (15)

This formulation is similar to cycle-avoidance constraints in subtour formulation of cycle
elimination in the travelling salesman problem (TSP) [7]. The main difference is that we
need to apply the constraint even for cycles containing more than n/2 nodes. In the TSP,
occurrence of larger cycle would necessarily enforce occurrence of another cycle with less
than n/2 nodes; yet, this assumption does not hold in the MSPP.

Redundant Constraints

The redundant constraints were kept in the model although they do not strengthen the for-
mulation. On the other hand, they may improve performance of the MIP solvers significantly.
Evaluation of their influence on the solver performance will be part of our follow-up work.

4 Evaluation and Results

We modified an MSPP solving module in the CoUniverse to implement the integer program-
ming model. The module is written in the Java programming language and uses the Gurobi
Optimizer1 version 3.0.0 as a backend MIP solver.

Three topologies simulating typical data distribution patterns in advanced collaborative
environments were chosen for evaluation of the solver performance:
(a) 1:n topology: one site si transmits a stream to all other sites through a single distributor,

and each of the other sites transmits a stream back to si. Further denoted 1:n-s.
(b) 1:n topology: it is similar to the previous one with an exception of higher number of

distributors— there is one for each site except si. The topology is further denoted 1:n-r.
(c) m:n topology: each site transmits a stream to all other sites through its own distributor(s).
These topologies were taken from [3] to compare with their results (see this paper for more
detailed description of the topologies and their relation to real-world problems).

All measurements were performed on a PC equipped with Intel Xeon 5160 @ 3.0GHz
quadcore processor and 6GB RAM, running Linux 2.6.22-17 and Java SDK 1.6.0 in a virtual-
ized Xen environment. Options for java were set to -server -da -dsa. Each measurement
was continuously repeated 20 times, and only the last 5 runs were taken into account. A meas-
urement timer had 4ms resolution. We did not limit the number of processor cores available
to the Gurobi optimizer. Unfortunately, we did not observe any significant performance
differences when compared to single-thread runs.

Numbers of nodes and links in instances of the topologies (parametrized by number of
sites) are shown in Table 1. The number of links is presented after an elimination process
(same as the one applied in [3]).

Results of the performance measurements are shown in Table 2. The measured times
(in milliseconds) are split in two parts: preparation (creation of variables and constraints,
elimination of the links), and optimization, which is performed by the backend solver solely.
The largest instances of each topology represent current limitation of the solver for real-time
application. In case of the 1:n-s topology, the preparation phase is the bottleneck. The 1:n-
r-12 topology is already above interactivity requirements. Steep growth in the computation

1 http://www.gurobi.com

MEMICS’10

http://www.gurobi.com


122 Integer Programming for Media Streams Planning Problem

Table 1 Parameters of topologies used for performance measurement

Topology 1:n-s-2 1:n-s-4 1:n-s-8 1:n-s-16 1:n-s-32
Nodes 5 11 23 47 95
Edges 10 44 184 752 3,040
Topology 1:n-r-2 1:n-r-4 1:n-r-6 1:n-r-8 1:n-r-10 1:n-r-12
Nodes 5 13 21 29 37 45
Edges 10 78 210 406 666 990
Topology m:n-2 m:n-3 m:n-4 m:n-5 m:n-6 m:n-7
Nodes 6 12 20 30 42 56
Edges 18 60 140 270 462 728

Table 2 Times in milliseconds required to solve the topologies

Topology 1:n-s-2 1:n-s-4 1:n-s-8 1:n-s-16 1:n-s-32
Preparation 4.0 ± 0 5.6 ± 2 51 ± 2 950 ± 30 24, 000 ± 200
Optimization < 4.0 < 4.0 2.4 ± 2 33 ± 2 370 ± 5
Topology 1:n-r-2 1:n-r-4 1:n-r-6 1:n-r-8 1:n-r-10 1:n-r-12
Preparation 4.0 ± 0 9 ± 2 39 ± 2 140 ± 6 410 ± 8 1, 300 ± 20
Optimization < 4.0 5 ± 2 17 ± 3 120 ± 2 970 ± 10 7, 900 ± 18
Topology m:n-2 m:n-3 m:n-4 m:n-5 m:n-6 m:n-7
Preparation < 4.0 5.6 ± 2 16 ± 0 46 ± 3 120 ± 5 270 ± 2
Optimization < 4.0 < 4.0 7.2 ± 2 18 ± 2 39 ± 3 100 ± 2

time is primarily caused by corresponding steep increase in the number of cycle-avoidance
constraints (15). These were needed due to the increasing number of distributors. Similarly,
the m:n topology can be solved for seven sites at most, as the m:n-8 topology requires many
more distributors and consequently also cycle-avoidance constraints.

Compared to the previous CP-based solver [3], limitation in solving the 1:n-s topologies
stays roughly the same. However, most of the time is spent by the preparation phase, not by
the IP solving. We will further pursue this issue to improve performance of the preparation
phase for larger instances. The IP solver allows to solve the 1:n-r topology for ten sites in
real-time. This is a significant improvement compared to the CP-based solver, which allows
for five sites at most. We also achieved an improvement for the m:n topologies, shifting from
five to seven sites. The results might possibly be improved by a different formulation of
cycle-avoidance.

5 Conclusions

Aiming to develop faster solver for the media streams planning problem, we presented
the solution based on the integer programming model. Measured performance of the new
solver shows promising results, shifting size of the problem instances which can be solved in
real-time.

In our future work, we will evaluate performance of the solver more elaborately. We will
also evaluate influence of the redundant constraints on performance of the backend solver.
Further, we will explore another formulations of the cycle-avoidance constraints and the
problem as a whole. Finally, we intend to explore various problem extensions to consider
more general problems.



Pavel Troubil and Hana Rudová 123

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James Orlin. Network Flows. Prentice Hall,

Englewood Cliffs, NJ, 1993.
2 Shiwen Chen, Oktay Günlük, and Bülent Yener. The multicast packing problem.

IEEE/ACM Transactions on Networking, 8(3):311–318, 2000.
3 Petr Holub, Miloš Liška, and Hana Rudová. Data transfer planning with tree placement

for collaborative environments, 2010. Under revision in Constraints.
4 Ayaz Isazadeh and Mohsen Heydarian. Optimal multicast multichannel routing in computer

networks. Computer Communications, 31(17):4149 – 4161, 2008.
5 Miloš Liška and Petr Holub. CoUniverse: Framework for building self-organizing collabor-

ative environments using extreme-bandwidth media applications. In Euro-Par 2008 Work-
shops – Parallel Processing, volume 5415 of Lecture Notes in Computer Science, pages
339–351. Springer, 2008.

6 Carlos A. S. Oliveira and Panos M. Pardalos. A survey of combinatorial optimization
problems in multicast routing. Computers & Operations Research, 32(8):1953 – 1981, 2005.

7 Gábor Pataki. Teaching integer programming formulations using the traveling salesman
problem. SIAM Review, 45:116–123, 2003.

8 Luca Sanna Randaccio and Luigi Atzori. Group multicast routing problem: A genetic
algorithms based approach. Computer Networks, 51(14):3989–4004, 2007.

9 Helmut Simonis. Constraint applications in networks. In Francesca Rossi, Peter van Beek,
and Toby Walsh, editors, Handbook of Constraint Programming, pages 875–903. Elsevier,
2006.

10 Chu-Fu Wang, Chun-Teng Liang, and Rong-Hong Jan. Heuristic algorithms for packing of
multiple-group multicasting. Computers & Operations Research, 29(7):905–924, 2002.

MEMICS’10


	Introduction
	Problem description
	Integer Programming Model
	Evaluation and Results
	Conclusions

