
Efficient Computation of Morphological Greyscale
Reconstruction

Pavel Karas

Centre for Biomedical Image Analysis
Faculty of Informatics
Masaryk University Brno

Abstract
Morphological reconstruction is an important image operator from mathematical morphology. It
is very often used for filtering, segmentation, and feature extraction. However, its computation
can be very time-consuming for some input data. In this paper we review several efficient
algorithms to compute the reconstruction, and compare their performance on real 3D images
of large sizes. Furthermore, we propose a GPU implementation which performs up to 15× faster
than the CPU methods. To our best knowledge, this is the first GPU implementation of the
morphological reconstruction, described in literature.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.54

1 Introduction

Mathematical morphology is a theory for analysis and processing spatial structures in im-
ages. Morphological methods can be used for image pre-processing and for image analysis
[9, 14, 16].

Morphological reconstruction is an advanced approach to image analysis. It can be used
for various applications, such as filtering, segmentation, and feature extraction [18], image
and video compression [13], remote sensing [15], and biomedical image analysis [12]. In image
segmentation, the reconstruction is often used for pre-processing, to avoid over-segmentation
[5, 8].

To compute the morphological reconstruction, several sequential and FIFO-based al-
gorithms were proposed [11, 18]. To our best knowledge, no GPU implementation of the
morphological reconstruction has been described in literature. Eidheim et al. [6] proposed a
GPU implementation of basic morphological operations, such as dilation and erosion. These
algorithms are easy to implement in parallel as described in [3]. Jivet et al. [10] implemen-
ted the morphological reconstruction on a dedicated FPGA hardware using the iterative
computation of the geodesic dilation. In this paper, we adopt the sequential algorithm [18]
with the reduced number of iterations and propose a parallel GPU-based implementation.
We compare its performance with several algorithms executed on CPU.

1.1 Notations

In the following text, an n-dimensional image f is considered a mapping from a finite
subset Df ⊂ Zn into a set I of image values. I is usually a finite discrete set of m levels
{0, 1, . . . ,m − 1}. The discrete grid G ⊂ Zn × Zn provides the neighbourhood relationship
between pixels: p is a neighbour of q if and only if (p, q) ∈ G. Depending on a particular
application, various grids can be used; in 2-D case, 4-, 6-, or 8-connectivity are the most
common examples.

© Pavel Karas;
licensed under Creative Commons License NC-ND

Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10)—Selected Papers.
Editors: L. Matyska, M. Kozubek, T. Vojnar, P. Zemčík, D. Antoš; pp. 54–61

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MEMICS.2010.54
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Pavel Karas 55

1.2 Definition of Morphological Reconstruction by Dilation

Before we define the reconstruction by dilation, we define the geodesic dilation first. We use
the same definition as in [15]. Let f , g be two images fulfiling the following properties:
Df = Dg, i.e., both images share the same definition domain,
f(p) ≤ g(p),∀p ∈ Df , i.e., f is smaller or equal to g in all pixels

We call f the marker image and g the mask image and define the geodesic dilation of size
1 as follows:

δ(1)
g (f) = δ(1)(f) ∧ g, (1)

where δ(1) denotes the elementary dilation (i.e., dilation with the smallest non-trivial struc-
ture element of the used connectivity) and the ∧ operator denotes point-wise minimum. The
geodesic dilation of size n > 1 is obtained by performing n successive geodesic dilations:

δ(n)
g (f) = δ(1)

g

[
δ(n−1)
g (f)

]
. (2)

The reconstruction by dilation is defined as the geodesic dilation iterated until stability:

Rδg(f) = δ(i)
g (f), (3)

where i is such that δ(i+1)
g (f) = δ

(i)
g (f). The reconstruction by dilation of a 1-D signal is

illustrated in Fig. 1.
In our application of biomedical image analysis, we process 3-D grayscale images. There-

fore, we describe our implementations for the 3-D images with the 6-connectivity.
The paper is organized as follows: First, we review three algorithms for computing the

morphological reconstruction, described in literature [18]. Second, we describe our GPU
implementation. Finally, we analyze and compare the performance of all implementations
on several 3D images from our field.

(a) Marker f and mask g (b) δ(1)
g (f) (c) δ(2)

g (f)

(d) δ(3)
g (f) (e) δ(4)

g (f) (f) δ(5)
g (f) = Rδg(f)

Figure 1 Reconstruction by dilation Rδ of a 1-D signal g from a marker signal f .

MEMICS’10

56 Efficient Computation of Morphological Greyscale Reconstruction

2 Methods

2.1 Existing Algorithms
Standard technique

The reconstruction by dilation can be computed directly from its definition (3). Even though
the iterations can be performed efficiently using van Herk/Gil-Werman algorithm [7, 17], an
enormous number of iterations is required to converge. Therefore, we do not consider this
algorithm in our paper in the performance evaluation.

Sequential reconstruction (SR)

This algorithm was proposed to reduce the number of iterations [18]. The image is scanned in
a predefined order and the information is propagated throughout the image. First, the image
is scanned in the raster order—see Fig. 2a. Subsequently, it is scanned in the anti-raster
order—Fig. 2b. The scans are repeated until convergence. The computation is performed
"in-place" in the marker image.

Hybrid reconstruction algorithm (HRA)

HRA does not yield multiple iterations, thus, the computation time is further reduced [18].
It has two phases: a sequential and a FIFO phase. The former uses the previous sequential
algorithm to execute a single iteration. During the anti-raster scan, pixels of regional maxima
are put into a queue. In the latter phase, the pixels are read from the queue and their
neighbourhood pixels are examined. If the information is propagated to the neighbourhood
pixels, they are put into the queue. Once the queue is empty, the computation is complete.

2.2 GPU Implementation (SR_GPU)
Our GPU implementation is a modified version of the SR algorithm described in Section
2.1 and Fig. 3. It was written in the CUDA parallel programming model [2]. For the
flowchart of the SR_GPU algorithm refer to Fig. 3. The raster and anti-raster scans are
performed in each dimension, separately. Thus, each iteration requires 4 or 6 passes for
a 2-D or 3-D image, respectively. The raster scans are executed by CUDA kernels called
x_Forward, y_Forward, and z_Forward; the anti-raster scans are performed by kernels
called x_Backward, y_Backward, and z_Backward. Since the Forward and Backward kernels
are analogous, only the Forward variants will be described.

(a) Raster scan (b) Anti-raster scan

Figure 2 Scanning patterns in a 2-D image of size w × h pixels.

Pavel Karas 57

Figure 3 Flowchart of the SR_GPU algorithm for the morphological reconstruction. The
functions, called x_Forward, y_Forward, z_Forward, x_Backward, y_Backward, and z_Backward,
provide image scans. The global_change variable indicates changes in the marker image.

y_Forward

The y_Forward kernel is executed by NxNz threads, where Nx, Nz are the sizes of the input
images in x and z dimension, respectively. Except the input images marker and mask and
the variable called global_change stored in the global memory, all the variables can be
stored in registers. Since the threads are regularly distributed across the x and z dimensions
of the images, the accesses to the global memory are naturally coalesced [2], achieving the
maximum bandwidth.

z_Forward

The z_Forward kernel is analogous to the y_Forward kernel.

x_Forward

The x_Forward kernel is executed by NyNz threads. Since the threads are now distributed
across the y and z dimensions of the images, we cannot use the same approach as above to
achieve optimum access to the global memory. Therefore, we pre-load data and compute
results in the shared memory [2]. Afterwards, the data is written back to the global memory.
Only few threads of a block perform the computation itself, so this approach may seem
to be less efficient. However, the GPU thread scheduler can switch between warps, thus
overlapping the arithmetic operations and memory accesses and hiding the global memory
latency.

Stopping criterion

The scans are repeated until convergence, much like in the classic SR algorithm. The test of
convergence is performed by inspecting the global_change variable after each scan. Gath-

MEMICS’10

58 Efficient Computation of Morphological Greyscale Reconstruction

(a) 512 × 512 × 5 px (b) 512 × 512 × 20 px

(c) 512 × 512 × 100 px (d) 1300 × 1030 × 80 px

Figure 4 Input images.

ering information from all threads to one output variable generally requires the reduction
kernel [1]. However, in this case, only a boolean-type information is needed, thus, the reduc-
tion can be avoided. Before each scan, global_change is set to false. Iff a thread performs
the first change in the marker image, it assigns global_change to true. This approach also
avoids write-before-read conflicts.

3 Results

The performance of the three algorithms, namely SR, HRA, and SR_GPU, was compared
on four real 3-D images from confocal microscopy (Fig. 4). These images were taken as the
input mask image g.

Pavel Karas 59

Two different approaches to create the marker image f were chosen. First, all but one
of the pixels of the marker image are set to zero. The non-zero pixel was selected to be the
one with the maximum value in the mask image and its value was set to the same value.
Second, the values of pixels in the marker image were set to the values of those in the mask
image, decreased by a constant h:

f(p) = max{g(p)− h, 0}. (4)

The morphological reconstruction with the marker image defined as above is often called
the HMAX transform in literature [16].

The implementations were tested on a workstation with an Intel Core2 Quad Q6600
2.4 GHz CPU, 8 GB DDR2 RAM, and a GeForce GTX 470 GPU with 448 SPs and 1280
MB of GDDR5 memory.

3.1 Morphological Reconstruction With a Simple Marker Image
The results of the first experiment are summarized in Table 1. The computation times are
in seconds, the data-transfer overhead for the GPU implementation is included.

It is obvious that results of both the SR and SR_GPU algorithm strongly depend on
the number of iterations needed to complete the computation. The number of iterations
depends strongly on both the image dimensions and the image content. The queue-based
HRA algorithm does not yield such iterations and converges significantly faster. However,
the GPU implementation is faster almost in all cases, due to higher performance and memory
bandwidth of the graphics hardware. The image (d) is the only case where the HRA al-
gorithm on CPU performs better, since the number of iterations is extremely high (661). In
other cases, the GPU implementation achieves up to 15× speedup over the HRA algorithm.

3.2 HMAX Transform
The results of the second experiment are summarized in Table 2. They are very similar to
those in the previous experiment, however, the number of iterations is generally lower.

We also analysed the dependancy of both the computation time and the number of
iterations on the h parameter. The results for two selected images are shown in Fig 5. As
expected, the dependancy is strong for the SR and the SR_GPU algorithms, while there
is almost no dependancy for the HRA algorithm. However, the computation time for the
SR_GPU algorithm does not grow so fast with increasing the number of iterations, because
with the higher computation time, the effect of the data-transfer overhead is reduced.

Table 1 Morphological reconstruction with a simple marker image. In the columns 2,
3, and 4, computation times in seconds are presented. The column 5 shows the number of iterations
needed to complete the computation in SR and SR_GPU. In the last column, the speedup achieved
by the SR_GPU algorithm is presented.

Image SR [s] HRA [s] SR_GPU [s] iterations speedup

(a) 8.02 2.26 0.22 30 10.3

(b) 18.74 6.17 0.51 17 12.1

(c) 280.23 64.57 4.16 51 15.5

(d) > 2 hours 98.97 135.13 661 0.7

MEMICS’10

60 Efficient Computation of Morphological Greyscale Reconstruction

 0

 1

 2

 3

 4

 5

 0 6 12 18 24 30
 0

 4

 8

 12

 16

 20
T

[s
]

ite
ra

tio
ns

h

SR
HRA
GPU

iterations

(a) Image (b)

 0

 15

 30

 45

 60

 75

 90

 0 6 12 18 24 30
 0

 10

 20

 30

 40

 50

 60

T
[s

]

ite
ra

tio
ns

h

SR
HRA
GPU

iterations

(b) Image (c)

Figure 5 Computation time and number of iterations for the HMAX transform on two selected
images.

4 Conclusion

In this paper we proposed a GPU implementation for the morphological reconstruction and
compared its performance with two CPU algorithms. The results showed that graphics
hardware offers good speedup and is able to perform significantly faster than the optimized
CPU algorithm in most cases.

By optimizing our GPU implementation, further speedup could be achieved. The main
issue is the high number of iterations for some input data. By implementing the optimized
HRA algorithm, this could be avoided, but FIFO-based algorithms are not generally good
candidates for GPU acceleration. In our future work, we will study possibilities of adopting
the HRA algorithm for GPU.

The CPU implementations can be improved, too, for example, by utilizing multiple CPU
cores. However, in the case of the faster queue approach this would require a challenging
effort. The performance of the SR algorithm strongly depends on the number of cache misses
and could be also improved by using cache-efficient matrix transpositions [4]. This is the
subject of our future work.

Table 2 HMAX transform with the parameter h = 10. In the columns 2, 3, and 4,
computation times in seconds are presented. The column 5 shows the number of iterations needed
to complete the computation in SR and SR_GPU. In the last column, the speedup achieved by the
SR_GPU algorithm is presented.

Image SR [s] HRA [s] SR_GPU [s] iterations speedup

(a) 0.57 0.56 0.06 7 9.3

(b) 3.39 2.23 0.17 10 13.1

(c) 25.63 13.73 0.94 15 14.6

(d) 1414.25 71.73 40.37 204 1.8

Pavel Karas 61

Acknowledgments
This work has been supported by the Ministry of Education of the Czech Republic (Projects
No. MSM-0021622419, No. LC535 and No. 2B06052).

References
1 CUDA™ SDK Code Samples 3.1. http://developer.nvidia.com/object/cuda_sdk_

samples.html, Jun 2010.
2 NVIDIA GPU Computing Developer Home Page. http://developer.nvidia.com/

object/gpucomputing.html, Jun 2010.
3 Thomas Bräunl, Stefan Feyrer, Wolfgang Rapf, and Michael Reinhardt. Parallel Image

Processing. Springer, 2001.
4 S. Chatterjee and S. Sen. Cache-efficient matrix transposition. pages 195–205, 2000.
5 Xiaowei Chen, Xiaobo Zhou, and S.T.C. Wong. Automated segmentation, classification,

and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Transactions on Biomed-
ical Engineering, 53(4):762–766, 2006.

6 O.C. Eidheim, J. Skjermo, and L. Aurdal. Real-time analysis of ultrasound images using
GPU. International Congress Series, 1281:284–289, 2005. CARS 2005: Computer Assisted
Radiology and Surgery.

7 J. Gil and M. Werman. Computing 2-D min, median, and max filters. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(5):504–507, may. 1993.

8 K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos. Hybrid image segment-
ation using watersheds and fast region merging. IEEE Transactions on Image Processing,
7(12):1684–1699, 1998.

9 Bernd Jähne. Digital Image Processing. Springer, 6th edition, 2005.
10 Ioan Jivet, Alin Brindusescu, and Ivan Bogdanov. Image contrast enhancement using

morphological decomposition by reconstruction. WSEAS Trans. Cir. and Sys., 7(8):822–
831, 2008.

11 Kevin Robinson and Paul F. Whelan. Efficient morphological reconstruction: a downhill
filter. Pattern Recognition Letters, 25(15):1759–1767, 2004.

12 Pekka Ruusuvuori, Tarmo Aijo, Sharif Chowdhury, Cecilia Garmendia-Torres, Jyrki Selin-
ummi, Mirko Birbaumer, Aimee Dudley, Lucas Pelkmans, and Olli Yli-Harja. Evaluation
of methods for detection of fluorescence labeled subcellular objects in microscope images.
BMC Bioinformatics, 11(1):248, 2010.

13 P. Salembier, P. Brigger, J.R. Casas, and M. Pardas. Morphological operators for image
and video compression. IEEE Transactions on Image Processing, 5(6):881–898, 1996.

14 Jean Serra. Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando,
FL, USA, 1983.

15 P. Soille and M. Pesaresi. Advances in mathematical morphology applied to geoscience and
remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 40(9):2042–2055,
2002.

16 Pierre Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2003.

17 Marcel van Herk. A fast algorithm for local minimum and maximum filters on rectangular
and octagonal kernels. Pattern Recognition Letters, 13(7):517–521, 1992.

18 Luc Vincent. Morphological grayscale reconstruction in image analysis: Applications and
efficient algorithms. IEEE Transactions on Image Processing, 2:176–201, 1993.

MEMICS’10

http://developer.nvidia.com/object/cuda_sdk_samples.html
http://developer.nvidia.com/object/cuda_sdk_samples.html
http://developer.nvidia.com/object/gpucomputing.html
http://developer.nvidia.com/object/gpucomputing.html

	Introduction
	Notations
	Definition of Morphological Reconstruction by Dilation

	Methods
	Existing Algorithms
	GPU Implementation (SR_GPU)

	Results
	Morphological Reconstruction With a Simple Marker Image
	HMAX Transform

	Conclusion

