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Abstract
Embedded Block Coding with Optimal Truncation (EBCOT) is the fundamental and compu-
tationally very demanding part of the compression process of JPEG2000 image compression
standard. EBCOT itself consists of two tiers. In Tier-1, image samples are compressed using
context modeling and arithmetic coding. Resulting bit-stream is further formated and truncated
in Tier-2. JPEG2000 has a number of applications in various fields where the processing speed
and/or latency is a crucial attribute and the main limitation with state of the art implementa-
tions. In this paper we propose a new parallel approach to EBCOT context modeling that truly
exploits massively parallel capabilities of modern GPUs and enables concurrent processing of
individual image samples. Performance evaluation of our prototype shows speedup 12 times for
the context modeller, and 1.4–5.3 times for the whole EBCOT Tier-1, which includes not yet
optimized arithmetic coder.
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1 Introduction

JPEG2000 [10] is an image compression standard created by the Joint Photographic Experts
Group (JPEG). JPEG2000 is aimed at providing not only compression performance superior
to the current JPEG standard but also advanced capabilities demanded by applications in the
fields such as medical imaging [18], film industry [12], or image archiving. It features optional
mathematically lossless processing, error resilience, or progressive image transmission by
improving pixel accuracy and resolution. On the other hand, the advanced features and the
superb compression performance yields higher computational demands which implies slower
processing.

Graphics processing units (GPUs) have become a popular computing architecture in
last half of decade due to their rapid increase of performance compared to traditional
CPUs [16]. While parallel and hierarchical architecture of GPUs allows for impressive
increase of performance at moderate cost, it requires specific regards when designing and
implementing algorithms to utilize potential of the GPU (Section 2.2). Since JPEG2000
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introduction, there has been a great deal of effort to provide JPEG2000 applications with
sufficient processing speed and bandwidth. The majority of this effort has its base in FPGA
and VLSI in general [3, 11, 20]. As for the GPU computing, there has been attempts [17, 19]
to coarse-grained parallelization resulting in performance very close to CPU implementations.
Our goal is adaptation or re-formulation of individual algorithms resulting in fine-grained
and more effective design which fits the specifics of modern GPUs better.

The simplified block diagram of compression system defined by JPEG2000 standard is
illustrated in Fig. 1. Prior to actual compression the image data is transformed using Discrete
Wavelet Transform [6, 7, 14] (DWT). JPEG2000 standard prescribes use of CDF 9/7 and
CDF 5/3 wavelet transform [5] for lossy and lossless compression modes respectively. In
case of lossy compression, the transformed coefficients are quantized using uniform scalar
dead-zone quantization [13]. The process of quantization introduces the data precision
reduction in order to make it more compressible. Thereafter the data is compressed in
EBCOT Tier-1 and the resulting bit-stream is further formated in Tier-2. As can be seen in
Fig. 2, the most computationally intensive parts of JPEG2000 are DWT, Context Modeling,
and Arithmetic Encoding.

This paper describes a novel fine-grained GPU-based parallel design of the context
modeling part of JPEG2000. Section 2 provides background on context modeling in JPEG2000
and mentions GPU basics needed for further explanations of our design introduced in Section 4.
Section 3 reviews related work. The evaluation methodology, experimental results and their
discussion is in Section 5. Section 6 summarizes the key findings and presents directions for
future work.

2 Preliminaries

As noted above, EBCOT is a two-tiered coder. The input to Tier-1 is DWT-transformed
image partitioned into so called code-blocks1. Each code-block is processed independently
in Tier-1 using context modeling and arithmetic coding to form an embedded bit-stream
representing the compressed code-block. The context modeller analyzes the bit structure
of the images and collects contextual information (CX) which is passed together with bit
values (D) to the arithmetic coder. The JPEG2000 uses MQ-Coder—a context adaptive
binary arithmetic coder—defined in JBIG2 standard [9]. The MQ-Coder codes bit values
based on its context information. There is 19 different contexts defined and for each of

1 Recommended code-block dimensions are 16× 16, 32× 32, and 64× 64. The total number of code-block
samples may not exceed 4096.
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them, the arithmetic coder maintains and consecutively adapts probability estimate [4, 2].
Final compressed bit-stream is formatted during Tier-2, where the embedded bit-streams are
combined so that the desired rate-distortion criteria is fulfilled.

The following explanation of JPEG2000 and EBCOT processes uses only single color
component of the image for sake of simplicity. This approach is possible because EBCOT
Tier-1 processes color components independently [1, Chapter 6.6].

2.1 EBCOT Tier-1 Context Modeling
The context modeling module processes code-blocks bit-plane by bit-plane2 starting from
the most significant bit-plane (MSB). Each bit-plane is coded in three passes but each
bit is processed in exactly one pass—i.e., each pass scans through the entire bit-plane but
processes only some of the bits. The decision whether to process a bit in current pass or not
is made based on current state of the bit and states of its neighbours. Note that the bit state
information changes as the bits are processed; therefore, the process is defined sequentially
with the prescribed scanning order to create and maintain correct state. The scanning order
in the bit-plane is illustrated in [1, p. 166]. The three passes are i) Signification Propagation
Pass (SPP), ii) Magnitude Refinement Pass (MRP), and iii) Clean-Up Pass (CUP). Each
pass encodes a bit using one or more of the following four bit-coding operations defined by
JPEG2000 standard: Zero Coding (ZC), Run-Length Coding (RLC), Magnitude Refinement
Coding (MRC), and Sign Coding (SC). Based on bit values and state informations, these four
operations generate 1–4 CX,D pairs per each bit in a bit-plane as input for the arithmetic
encoder.

The state information consists of three state variables σ, σ′, η. The σ and σ′ states are
shared by all the bits of a pixel, indicating that the first non-zero bit of the pixel has already
been processed and that MRC coding has been applied, respectively. The η is not shared,
and indicates the bit has been processed in SPP pass on the current bit-plane [1].

A bit is in a so called preferred neighborhood (PN) if at least one of its 8 adjacent
neighbours is significant, i.e., has σ = 1. All bits having σ = 0 and being in the PN are coded
in SPP pass. The bits of the pixels that have become significant in the previous bit-planes,
are coded in second, MRP, pass. Those bits have σ = 1 and η = 0. The rest of bits in current
bit-plane is processed in CUP pass—i.e., all bits having σ = η = 0 after the previous two
passes.

2.2 GPU architecture and programming model
Attracted by their raw computing power, a number of general-purpose GPU computing
approaches has been implemented in recent years, including GLSL3, CUDA, and OpenCL4.
Because of its flexibility and potential to utilize power of GPU, we have opted for CUDA
(Compute Unified Device Architecture) [15]—a massively parallel computing architecture
designed by Nvidia. In general, modern GPU architectures are, capable of running thousands
of threads in parallel. In the context of CUDA, threads are grouped into so called thread
blocks. Threads within the block can cooperate among themselves using synchronization

2 Bit-plane is defined as one-bit image composed of the same bit of each pixel, see [8, Chapter 3]. Number
of bit-planes corresponds to the number of bits per pixel for each color component of the image. Given
the preceding DWT transformation, each “pixel” in actually a DWT coefficient generated by the
transformation.

3 http://www.opengl.org/documentation/glsl/
4 http://www.khronos.org/opencl/
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primitives, shared memory, and global memory. Compared to the global memory, the shared
memory is considerably smaller and significantly faster and should be used whenever possible.
The advantage of the global memory is that it can be accessed by all threads, whereas
the shared memory is only visible to threads of one block. The common CUDA work
flow is to copy data from RAM to the global memory of the GPU. All GPU threads can
access and process the data directly in global memory, or, more preferably, the data can
be partitioned and fetched into the shared memory to provide higher throughput for more
complex operations. It is also important that threads within the same warp follow the same
execution path; otherwise the thread divergence is introduced and divergent execution paths
are serialized, thus worsening performance.

3 Related Work

JPEG2000 standard allows for code-block level parallelism, which is rather coarse-grained
and because of intermediate data size requirements, it enforces use of global memory on
CUDA platform. Another option is stripe-level parallelism in casual mode, which has lesser
requirements on memory but results in worse compression performance. Sequential nature of
the context modeller requires processing of one code-block/stripe by a single thread only;
thus yielding (a) not enough threads too utilize massively parallel architecture of GPUs
and (b) code divergence that introduces further performance penalty.The code-block level
parallelism has been used by the CUJ2K [19], an open source JPEG2000 project which uses
CUDA architecture and its programming model to implement all compute intensive parts for
GPU. A design similar to CUJ2K has been proposed by Datla et al. in [17].

4 Context Modeling Parallelization for GPU Architectures

Compared to the coarse-grained parallelism contained within JPEG2000 standard, the bit-
parallel context modeling architecture proposed by us allows for independent processing of all
samples of a bit-plane as well as independent processing of all bit-planes. Our design bypasses
the three coding passes (SPP, MRP, CUP) and the prescribed scan pattern, enabling direct
coding by the four bit-coding operations (ZC, MRC, RLC, SC).

For the purposes of the following explanation we define a code-block as two-dimensional
sequence of samples, γx,y (x = 1..m, y = 1..n), m and n being the horizontal and vertical
code-block dimensions respectively. A binary representation of a sample γ is a sequence
[γP−1, γP−2, . . . , γ1, γ0] where P is image bit depth. γp

x,y thus denotes a bit of the sample
[x, y] on bit-plane p.

To be able to bypass the passes and to enable the direct coding, we introduce two new
state variables ρp

x,y, and τp
x,y as replacement to the original states. The meaning of the two

new state variables is as follows: ρp
x,y is shared by all the bits of each pixel and ρp

x,y = 1
indicates the pixel γx,y became significant in either p or in one of the previous bit-planes
according to the processing order; τp

x,y = 1 indicates γx,y is going to become significant
during SPP on the current bit-plane.

To be able to code a bit-plane p in parallel, the two new coding states need to be
precomputed before the actual coding. The ρp+1

x,y is computed in parallel by examining
the previous p + 1 bit-planes; ρp+1

x,y = 1 iff there is a non-zero bit above current bit, i.e.∨P
p′=p+1 γ

p′

x,y = 1.
The τp

x,y is inductively computed in parallel as follows:
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τp
x,y = 1 ∀[x, y] where ρp+1

x,y = 0 ∧ γp
x,y = 1 ∧ at least one of 8 adjacent neighbors has

ρp+1 = 1
In each further step τp

x,y = 1 ∀[x, y] where ρp+1
x,y = 0 ∧ γp

x,y = 1 ∧ ( at least one of 8
adjacent neighbors has ρp+1 = 1 ∨ one of four preceding neighbours5 has non-zero τp).

Original New

MRC σx,y = 1 ∧ ηx,y = 0 ρp+1
x,y = 1

RLC σx,y = 1 ∧ ηx,y = 0 ∧ y is a multiple
of 4 ∧

∑x+1
i=x−1

∑y+4
j=y−1 σi,j = 0

ρp+1
x,y = 0 ∧ is in PN ∧(∑x+1

i=x−1

∑y+4
j=y−1 (ρp+1

i,j + τp
i,j) +∑y+3

j=y−1 γ
p
x−1,j + γp

x,y−1 = 0
)

ZC σx,y = 0 ∧ [in PN (for SPP) or ηx,y

= 0 (for CUP)]
ρp+1

x,y = 0 (PN differentiate SPP
from CUP)

SC (SPP or CUP preconditions) ∧ γp
x,y

= 1
ρp+1

x,y = 0 ∧ γp
x,y = 1 (τp

x,y

differentiates SPP from CUP)
Table 1 Overview of preconditions of coding operations.

Once both ρ and τ state variables are computed, the coding operations for an arbitrary
bit γp

x,y can be decided. In order to avoid execution path divergence on GPU, we propose to
serialize the coding operations execution manually and to implement bit-to-thread mapping—
i.e., the thread-blocks are of the same dimension as the code-blocks; each bit-plane is processed
in the following four consecutive steps: MRC, RLC, ZC, SC. Note, that each coding operation
is executed on a bit-plane in parallel. The only constraint on bit coding independence stems
from diverging number of bits coded by the RLC operation. The RLC is defined to code
one to four bits in column and a prediction of the number is virtually as expensive as the
RLC coding itself. The only operation affected by this is ZC, so we choose to perform RLC
operations on current bit plane before ZC. Although the new design we propose allows for
parallelism among bit-planes too, we do not exploit it because of restricted shared memory
size. Direct selection of coding operations based on the new state variables compared to the
original sequential state variables is summarized in Table 1. A detailed equivalence proof is
beyond the size limitation of this paper.

State information is also needed by the coding operations. To code the bits, the original
coding operations use σ, SC also exploits pixel sign information, and MRC uses σ′ state.
The new state variables are used instead as follows:

MRC uses ρp+1 and τp of all the neighbors instead of σ; the σ′ is substituted by looking
for the position of the first non-zero bit on previous p+ 1 bit-planes.
instead of σ, ZC uses ρp+1 of all neighbors and τp of four preceding neighbors for bits
belonging to SPP. ρp+1 and τp all neighbors and bit value of the four preceding neighbors
are used for bits belonging to CUP.
instead of σ, SC uses ρp+1 of two vertical and two horizontal neighbors and τp of the
upper and the left side neighbor for bits belonging to SPP. ρp+1 and τp of two vertical
and two horizontal neighbors and bit value of of the upper and the left side neighbor for
bits belonging to CUP.
RLC uses no state information at all, both prior and after the transformation.

5 The four preceding neighbors of [x, y] are as follows: [x, y − 1]; [x− 1, y − 1]; [x− 1, y]; [x− 1, y + 1].
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The described fine-grained parallel algorithm allows for processing individual bits in
parallel threads, resulting in high utilization of multi-processors on GPU. Depending on
chosen code block size, the data may be processed entirely in the fast shared memory6.

5 Experimental Evaluation

5.1 Methodology
We implemented two benchmark sets focused on the EBCOT Tier-1 processing speed of
selected single-threaded CPU implementations (OpenJPEG7, JasPer8 and Kakadu9) and
GPU implementation (CUJ2K10) together with our GPU implementation nicknamed bpcuda.
Except for Kakadu, all the implementations are open-source—this allowed us to add additional
timer functions to the source codes to obtain comparable results. Kakadu codec introduced
two limitations: (a) only the timer provided by the Kakadu authors could be used, (b) the
benchmarking of all the implementations comprises run-time of the whole EBCOT Tier-1,
not just the context modeller, to make results directly comparable. Further insight into
EBCOT Tier-1 components has been implemented using the best open-source CPU and
GPU implementations: JasPer and bpcuda.

Primary input image parameters affecting processing speed are size and bit-depth. The
image content itself also affects the runtime of EBCOT Tier-1; thus we selected two extreme
cases and one standard image for the first benchmark set: a single-color image, a white-noise
image, and Lenna image, a well-known picture which is broadly used for benchmarking
purposes. All three images were 8-bit grayscale with the same size of 512×512 pixels. The
second benchmark set was focused on dependency analysis of processing time on image size:
three images with the same content (a real-world digital photography portrait) and different
size have been used. Images were 8-bit grayscale with the size of 1280×720, 1920×1080
and 4096×2160 pixels, corresponding to common size used in cinematography. The images
were preprocessed using 3-level reversible DWT transformation prior to their processing in
EBCOT. Both benchmarks were run 30 times for the same configuration and codec.

Hardware and software configuration was as follows: CPU Intel Core i7 950 at 3.07GHz,
6GB DDR3 main memory, ASUS P6T6 WS Revolution motherboard, GeForce GTX 285
GPU (with 30 multiprocessors, 240 cores, 16 MB of shared memory, 2 GB of global memory).
Software stack included Ubuntu Linux 9.04 with 2.6.28-15-server kernel, NVIDIA device
drivers version 256.53, CUDA toolkit 3.1, and GCC version 4.3.3.

5.2 Experimental Results and Discussion
Table 2 summarizes results for both benchmark sets. It can be seen that for trivial small
image (single color 512×512 image), the CPU implementations outperform GPU ones—this is
caused by the overhead of memory transfers and low utilization of the GPU multi-processors.
For non-trivial images and namely for larger images, the computation time prevails and
the GPU implementations perform better compared to CPU ones. For efficient bpcuda
implementation, even processing of 512×512 non-trivial images is approximately 2× better

6 Because of shared memory size limitations, older NVidia GPUs are limited to 16× 16 code blocks, while
new NVidia Fermi architecture allows for larger code blocks.

7 http://www.openjpeg.org/
8 http://www.ece.uvic.ca/~mdadams/jasper/
9 http://www.kakadusoftware.com/
10 http://cuj2k.sourceforge.net/
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compared to the best CPU implementation. Overall, 1.4–6.1 speedup can be observed for
non-trivial images.

OpenJPEG JasPer Kakadu CUJ2K bpcuda

Single-Color 39.9± 2.9 11.5± 2.3 1.2± 0.4 14.1± 0.1 12.4± 0.1
Lenna 128.9± 29.1 80.6± 20.2 47.8± 3.9 101.0± 0.2 26.3± 0.1
White-Noise 185.4± 4.9 129.9± 3.3 61.8± 3.9 98.2± 0.2 30.2± 0.1

1280×720 364.8± 2.9 164.0± 0.1 145.6± 4.9 120.1± 0.3 63.5± 0.3
1920×1080 723.3± 1.7 369.3± 16.6 309.7± 4.6 258.6± 0.4 137.2± 0.5
4096×2160 2818.0± 7.8 1481.5± 1.3 1093.1± 4.6 914.1± 0.8 662.9± 0.3
Table 2 EBCOT Tier-1 processing time [ms] of different implementations. Lower time means

better performance.

To provide deeper insight into the EBCOT Tier-1 components, the profiling results of
EBCOT Tier-1 of bpcuda and the reference CPU implementation JasPer are compared. We
used the Valgrind suite for the application profiling JasPer and the combination of built-in
CUDA timer functions for bpcuda. As shown in Fig. 2, the EBCOT Tier-1 is the most
time-consuming part of the encoding chain on CPU. From the profiling information and the
measured times, we can compare the runtimes of the single-threaded JasPer implementation
and our bpcuda. In the case of JasPer processing the HD image (1920×1080 pixels), the
context modeller occupies the 76% (280.7ms) and the arithmetic coder consumes 24%
(88.6ms) of the EBCOT Tier-1. When bpcuda processes the same image, the context
modeller consumes only 17% (23.3ms) and 83% (113.9ms) is spent in the arithmetic coder.
The overall speedup 1.4–5.3 of the EBCOT Tier-1 is degraded due to yet not-optimized
arithmetic coder. The speedup of the context modeller itself is 12 times when compared to
JasPer, the best open-source CPU implementation. We consider the results of parallelized
context modeller a significant improvement, indicating that we succeeded in reducing the
EBCOT Tier-1 time-consumption mainly by re-formulation of the BPC part.

6 Conclusion and Future Work

In this paper, we have presented a novel approach to reformulating the context modeller
algorithm of the EBCOT Tier-1 process in JPEG2000 in a way that enables an efficient
implementation on GPU computing platform. The proposed algorithm has been implemented
using CUDA, showing significant performance increase over existing CPU and GPU JPEG2000
implementations. In the future, we will focus on acceleration of the MQ-Coder in the EBCOT
Tier-1 process and bit-stream formatting, thus finishing complete JPEG2000 acceleration for
GPU architectures.
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