
Process Algebra for Modal Transition Systemses∗

Nikola Beneš1 and Jan Křetínský1,2

1 Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
xbenes3@fi.muni.cz, jan.kretinsky@fi.muni.cz

2 Institut für Informatik, TU München
Boltzmannstr. 3, D-85748, Garching, Germany

Abstract
The formalism of modal transition systems (MTS) is a well established framework for systems
specification as well as abstract interpretation. Nevertheless, due to incapability to capture some
useful features, various extensions have been studied, such as e.g. mixed transition systems or
disjunctive MTS. Thus a need to compare them has emerged. Therefore, we introduce transition
system with obligations as a general model encompassing all the aforementioned models, and
equip it with a process algebra description. Using these instruments, we then compare the
previously studied subclasses and characterize their relationships.

Keywords and phrases modal transition systems, process algebra, specification

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.9

1 Introduction

Design and verification of parallel systems is a difficult task for several reasons. Firstly,
a system usually consists of a number of components working in parallel. Component based
design thus receives much attention and composition is a crucial element to be supported
in every reasonable specification framework for parallel systems. Secondly, the behaviour
of the components themselves is not trivial. One thus begins the design process with an
underspecified system where some behaviour is already prescribed and some may or may
not be present. The specification is then successively refined until a real implementation
is obtained, where all details of the behaviour are settled. Therefore, a need for support
of stepwise refinement design arises. This is indispensable, either due to incapability of
capturing all the required behaviour in the early design phase, or due to leaving a bunch
of possibilities for the implementations, such as in e.g. product lines [6]. Modal transition
systems is a framework supporting both these fundamental features.

Modal transition systems (MTS) is a specification formalism introduced by Larsen and
Thomsen [7, 1] allowing both for stepwise refinement design of systems and their compos-
ition. A considerable attention has been recently paid to MTS due to many applications,
e.g. component-based software development [9], interface theories [10], or modal abstractions
and program analysis [5], to name just a few.

The MTS formalism is based on transparent and simple to understand model of labelled
transition systems (LTS). While LTS has only one labelled transition relation between the
states determining the behaviour of the system, MTS as a specification formalism is equipped
with two types of transitions: the must transitions capture the required behaviour, which

∗ The word “Systemses” in the title is deliberate. Modal transition systems is a formalism. We consider
several formalisms based on modal transition systems here.

© Nikola Beneš and Jan Křetínský;
licensed under Creative Commons License NC-ND

Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10)—Selected Papers.
Editors: L. Matyska, M. Kozubek, T. Vojnar, P. Zemčík, D. Antoš; pp. 9–18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MEMICS.2010.9
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

10 Process Algebra for MTSs

client(a) server database

request query

processing
response answer

(b)

request

processing
response

Figure 1 An example of (a) a modal transition system (b) its implementation

is present in all its implementations; the may transitions capture the allowed behaviour,
which need not be present in all implementations. Such a system can be refined in two ways:
a may transition is either implemented (and becomes a must transition) or omitted (and
disappears as a transition). Figure 1 depicts an MTS that has arisen as a composition of
three systems and specifies the following. A request from a client may arrive. Then we can
process it directly or make a query to a database where we are guaranteed an answer. In both
cases we send a response. On the right there is an implementation of the system where the
processing branch is implemented and the database query branch is omitted. Note that in
this formalism we can easily compose implementations as well as specifications.

While specifying may transitions brings guarantees on safety, liveness can be guaranteed to
some extent using must transitions. Nevertheless, at an early stage of design we may not know
which of several possible different ways to implement a particular functionality will later be
chosen, although we know at least one of them has to be present. We want to specify e.g. that
either processing or query will be implemented, otherwise we have no guarantee on receiving
response eventually. Therefore, several formalisms extending MTS have been introduced.
Disjunctive modal transition systems (DMTS) do not enforce a particular transition, but
specify a whole set of transitions at least one of which must be present. (In our example, it
would be the set consisting of processing and query transitions.) DMTS have been introduced
in several flavours [8, 4, 2]. Another extension guaranteeing more structured requirements
on the behaviour are mixed transition systems (MixTS) [3]. Here the required behaviour is
not automatically allowed (not all must transitions are necessarily also may transitions) and
it must be realized using other allowed behaviour. This corresponds to the situation where
a new requirement can be implemented using some reused components. Moreover, it allows
for some liveness properties as well. All in all, a need for more structured requirements has
emerged. Therefore, we want to compare these formalisms and their expressive power.

We introduce transition system with obligations (OTS), a framework that encompasses
all the aforementioned systems. Further, we introduce a new process algebra, since there
was none for any of the discussed classes of systems. The algebra comes with the respective
structural operational semantics, and thus enriches the ways to reason about all these
systems. More importantly it allows us to obtain their alternative characterization and
provide a more compact description language for them. Altogether, these two new tools allow
us to compare all the variants of MTS and we indeed show interesting relationships among
the discussed systems. We characterize the process algebra fragments corresponding to the
various subclasses of OTS, such as MTS, MixTS or variants of DMTS. Since bisimulation
is a congruence w.r.t. all operators of the algebra, this allows for modular analysis of
the systems and also for practical optimizations based on minimization by bisimulation
quotienting. Finally, since OTS allow to specify requirements in quite a general form, we can
perform some important optimizations in the composition of systems. E.g., when composing
DMTS we can avoid an additional exponential blowup that was unavoidable so far.

Nikola Beneš and Jan Křetínský 11

2 Preliminaries

In order to define the framework we will work in, we need a tool to handle complex
requirements imposed on the systems. For this we use positive boolean formulae.

I Definition 1. A positive boolean formula over set X of atomic propositions is given by the
following syntax:

ϕ ::= x | ϕ ∧ ϕ | ϕ ∨ ϕ | tt | ff

where x ranges over X. The set of all positive boolean formulae over X is denoted as B+(X).
The semantics JϕK of a positive boolean formula ϕ is a set of subsets of X satisfying ϕ. It is
inductively defined as follows:

JxK = {Y ⊆ X | x ∈ Y } Jϕ ∧ ψK = JϕK ∩ JψK JttK = 2X JffK = ∅ Jϕ ∨ ψK = JϕK ∪ JψK

Every positive boolean formula can be uniquely represented in conjunctive normal form
(CNF). It can also be uniquely represented in disjunctive normal form (DNF). In the
disjunctive normal form of ϕ, the disjuncts are precisely the minimal elements of JϕK (with
set inclusion). The formulae tt and ff are never needed as proper subformulae of any other
formula.

We now proceed with the definition of the systems that are general enough to capture
features of all the systems that we discuss in the paper.

I Definition 2. A transition system with obligations (OTS) over an action alphabet Σ is
a triple (P, 99K,Ω), where P is a set of processes, 99K ⊆ P × Σ × P is the may transition
relation and Ω : P → B+(Σ× P) is the set of obligations.

For simplicity we also require the systems to be finitely branching, i.e. for every P ∈ P
there are only finitely many P ′ ∈ P with (P, a, P ′) ∈ 99K for some a. Nevertheless, we could
easily drop this assumption if we allowed conjunctions and disjunctions of infinite arities.

Various subclasses of OTS have been studied. We list the most important ones and depict
their syntactic relationships in Fig. 2.

A disjunctive modal transition system (DMTS) [8] is an OTS where the must obligations
are in CNF. An arbitrary OTS can thus be expressed as a DMTS. Indeed, as noted above,
any formula can be translated into CNF. However, this can cost an exponential blowup.
A mixed transition system (MixTS) [3] is an OTS where the must obligations are just
conjunctions of atomic predicates.

Moreover, we can impose the following consistency requirement

Ω(S) 6= ff and if Ω(S) contains (a, T) then S a
99K T,

which guarantees that all required behaviour is also allowed. This gives rise to the following
systems:

A consistent DMTS (cDMTS) [2] is a DMTS satisfying the consistency requirement.
A modal transition system (MTS) [7] is a MixTS satisfying the consistency requirement.
A labelled transition system (LTS) is an MTS such that whenever S a

99K T then Ω(S) =
(a, T) ∧ ϕ for some ϕ. Since all behaviour of an LTS is both allowed and required at the
same time, we also call LTS an implementation.

MEMICS’10

12 Process Algebra for MTSs

OTS

DMTS

MixTS cDMTS

MTS

LTS

Figure 2 The syntactic hierarchy of MTS extensions

In order to define the refinement relation on the systems, we need the following auxiliary
notion of refinement on formulae motivated by the following example.

I Example 3. Let us assume formulae ϕ = (a ∧ b) ∨ c and ψ = A ∨ C ∨D. The renaming
R : a = A, c = C then guarantees that ϕ⇒ ψ. This logical refinement (entailment) up to
renaming is formalized in the following definition.

I Definition 4. Let R ⊆ X ×X, let ϕ, ψ ∈ B+(X). We write ϕ vR ψ to denote

∀M ∈ JϕK ∃N ∈ JψK ∀n ∈ N ∃m ∈M : (m,n) ∈ R

Note that if we take R = id, ϕ vid ψ if and only if ϕ⇒ ψ (i.e. JϕK ⊆ JψK). Before proceeding
to the fundamental definition of OTS, we prove the following lemmata that will be useful in
later proofs. The first lemma is straightforward.

I Lemma 5. Let ϕ ∈ B+(X). Then JϕK is an upwards closed set in (2X ,⊆).

For the two following lemmata, assume this situation: Let X be an arbitrary set and let
Yx be an arbitrary finite set for all x ∈ X. Let ϕ ∈ B+(X) and ϕ̂ be the formula that is
created from ϕ by replacing all occurrences of x by

∨
Yx (where

∨
∅ = ff).

I Lemma 6. Let Z ⊆ X and let Z ′ ⊆
⋃

z∈Z Yz such that for all z ∈ Z, there is some
y ∈ Yz ∩ Z ′. Then Z ∈ JϕK implies Z ′ ∈ Jϕ̂K.

Proof. The proof is done by induction on ϕ.
The cases of ϕ = tt and ϕ = ff are trivial.
ϕ = x. Then ϕ̂ =

∨
Yx. Z ∈ JϕK implies x ∈ Z and thus there is some y ∈ Yx ∩ Z ′.

Therefore Z ′ ∈ Jϕ̂K as Jϕ̂K contains {y} and it is an upwards closed set.
ϕ = ψ ∧ ξ, then ϕ̂ = ψ̂ ∧ ξ̂. Let Z ∈ JϕK = JψK ∩ JξK. Then Z ∈ JψK and Z ∈ JξK. Due to
the induction hypothesis, Z ′ ∈ Jψ̂K and Z ′ ∈ Jξ̂K, thus also Z ′ ∈ Jψ̂ ∧ ξ̂K = Jϕ̂K.
The case of ∨ is similar to the previous case. J

I Lemma 7. Let Z ′ ⊆
⋃

x Yx and let Z = {x | ∃y ∈ Yx ∩ Z ′}. Then Z ′ ∈ Jϕ̂K implies
Z ∈ JϕK.

Proof. The proof is done by induction on ϕ.
The cases of ϕ = tt and ϕ = ff are trivial.
ϕ = x. Then ϕ̂ =

∨
Yx. As Z ′ ∈ Jϕ̂K, there has to be some y ∈ Yx ∩ Z ′. Thus x ∈ Z,

which means that Z ∈ JϕK.

Nikola Beneš and Jan Křetínský 13

The cases of ∧ and ∨ are similar to the proof of the previous lemma. J

We can now proceed to the fundamental definition of refinement of OTS.

I Definition 8. Let (P1, 99K1,Ω1), (P2, 99K2,Ω2) be two OTS and R ⊆ P1 × P2. We say
that R is a refinement relation, if (S, T) ∈ R implies that:

Whenever S a
99K S′ there is T a

99K T ′ such that (S′, T ′) ∈ R.
Ω1(S) vΣR Ω2(T) where ΣR = {((a, S), (a, T)) | a ∈ Σ, (S, T) ∈ R}.

We say that S refines T (denoted as S ≤ T) if there is a refinement relation R such
that (S, T) ∈ R. Further, we say that a process I is an implementation of a process S
if I is an implementation and I ≤ S. We denote the set of all implementations of S by
JSK = {I | I ≤ S, I is an implementation}.

I Remark. Clearly, our definition of refinement coincides with modal refinements on all
discussed subclasses of OTS.

One can easily see that every system satisfying the consistency requirement has an
implementation, whereas DMTS and MixTS do not necessarily have one. We can compare
various flavours of modal transition systems according to expressivity. Due to previous
observation, we only consider nonempty sets of implementations.

I Definition 9. Let C,D be subclasses of OTS. We say that D is at least as expressive as
C, written C � D, if for every C ∈ C with JCK 6= ∅ there is D ∈ D such that JDK = JCK.We
write C ≡ D to indicate C � D and C � D, and C ≺ D to indicate C � D and not C ≡ D.

3 Process Algebra for DMTS

In this section we define a process algebra for OTS. However, since the processes represent sets
of implemented systems (i.e. sets of sets of behaviours), we still need the obligation function
to fully capture them. For the sake of simplicity, we introduce the parallel composition
operator only in the following subsection.

I Definition 10. Let X be a set of process names. A term of process algebra for OTS is
given by the following syntax:

P ::= nil | co-nil | a.P | X | P ∧ P | P ∨ P | P

where X ranges over X and every X ∈ X is assigned a defining equality of the form X := P

where P is a term. The semantics is given by the following structural operational semantics
rules:

a.P
a

99K P

P
a

99K P ′

X
a

99K P ′
X := P

P
a

99K P ′

P ∧Q a
99K P ′

P
a

99K P ′

P ∨Q a
99K P ′

The obligation function on terms is defined structurally as follows:

Ω(nil) = tt Ω(P ∧Q) = Ω(P) ∧Ω(Q)
Ω(co-nil) = ff Ω(P ∨Q) = Ω(P) ∨Ω(Q)
Ω(a.P) = (a, P) Ω(P) = Ω(P)
Ω(X) = Ω(P) for X := P

MEMICS’10

14 Process Algebra for MTSs

As a convenient shortcut we introduce ?P ≡ (P ∨ nil) to capture the may transitions, i.e. an
allowed behaviour that is not necessarily forced. Hence we easily obtain the following using
the rules above:

P
a

99K P ′

?P a
99K P ′

Ω(?P) = tt

We now obtain the discussed subclasses of OTS as syntactic subclasses generated by the
following syntax equations (modulo transformation to CNF):

DMTS P ::= nil | a.P | X | P ∧ P | P ∨ P | P | co-nil
cDMTS P ::= nil | a.P | X | P ∧ P | P ∨ P

MixTS P ::= nil | a.P | X | P ∧ P | P ∨ nil | P | co-nil
MTS P ::= nil | a.P | X | P ∧ P | P ∨ nil
LTS P ::= nil | a.P | X | P ∧ P

3.1 Composition

We define the composition operator based on synchronous message passing, as it encompasses
the synchronous product as well as interleaving.

I Definition 11. Let Γ ⊆ Σ be a synchronizing alphabet. For processes S1 and S2 we define
the process S1 ‖ S2 as follows.

S1
a

99K S′1 S2
a

99K S′2

S1 ‖ S2
a

99K S′1 ‖ S′2
a ∈ Γ

S1
a

99K S′1

S1 ‖ S2
a

99K S′1 ‖ S2
a ∈ Σ \ Γ S2

a
99K S′2

S1 ‖ S2
a

99K S1 ‖ S′2
a ∈ Σ \ Γ

As we may assume obligations to be in disjunctive normal form, let us denote Ω(S1) =∨
i

∧
j(aij , Pij) and Ω(S2) =

∨
k

∧
`(bk`, Qk`). We define Ω(S1 ‖ S2) by

∨
i,k

(∧
j,`:aij=bk`∈Γ

(aij , Pij ‖ Qkl) ∧
∧

j:aij /∈Γ

(aij , Pij ‖ S2) ∧
∧

`:bk` /∈Γ

(bk`, S1 ‖ Qkl)
)

Intuitively, for a process S, the set JΩ(S)K ⊆ 2Σ×P consists of all possible choices of
successors of S that realize all obligations. Composing JΩ(S1)K and JΩ(S2)K in the same
manner as may transitions above generates JΩ(S1 ‖ S2)K.

Note that JΩ(S)K corresponds to DNF of obligations. Nevertheless, they can also be
written equivalently in the form of a set of must transitions of DMTS, which corresponds to
CNF. During the design process CNF is more convenient to use, whereas the composition has
to be done in DNF even for DMTS and then translated back, thus causing an exponential
blowup. However, using OTS allows for only one transformation and then the compositions
are done using DNF, as the result is again in DNF. As our definition extends the previous
definitions on all the discussed models, this shows another use of OTS.

I Remark. Refinement is a precongruence with respect to all operators of the process algebra
(including the composition operator). Hence, refinemental equivalence, i.e. ≤ ∩ ≤−1, is a
congruence.

Nikola Beneš and Jan Křetínský 15

4 Hierarchy Results

In this section, we study the relationship between the OTS subclasses and establish the
following complete result:

LTS (implementations) ≺ MTS ≺ MixTS ≺ cDMTS ≡ DMTS (OTS)

We first show that cDMTS ≡ DMTS. We do that by showing that every OTS process that
has an implementation can be substituted by an OTS process that satisfies the consistency
requirement and has the same set of implementations. To that end, we use an auxiliary
definition of a consistency relation. This definition is a slight modification of the consistency
relation defined in [8]. In the definition, the notation 2PFin stands for the set of all finite
subsets of P.

I Definition 12 (consistency). Let (P, 99K,Ω) be a OTS. A subset C of 2PFin is called
a consistency relation if for all {S1, . . . , Sn} ∈ C and i ∈ {1, . . . , n} there is X ∈ JΩ(Si)K
such that for all (a, U) ∈ X there are Sj

a
99K Tj (for all j) such that {U, T1, . . . , Tn} ∈ C.

It may be easily seen that an arbitrary union of consistency relations (for given OTS) is also
a consistency relation. Therefore, we may talk about the greatest consistency relation. The
following lemma explains the motivation behind the consistency relation, i.e. that a set of
processes is consistent if it has a common implementation.

I Lemma 13. Let S1, . . . , Sn be processes. There exists a consistency relation C containing
{S1, . . . , Sn} if and only if

⋂
1≤i≤nJSiK 6= ∅.

Proof. Recall that ϕ vΣ≤ ψ if and only if for all M ∈ JϕK there is some N ∈ JψK such that
for all (a, T) ∈ N there is some (a, S) ∈M such that S ≤ T .

We show that C = {{S1, . . . , Sk} | k ∈ N,
⋂

iJSiK 6= ∅} is a consistency relation. Let
{S1, . . . , Sn} ∈ C, let I ∈

⋂
iJSiK and let i ∈ {1, . . . , n} be arbitrary. Take M = {(a, J) |

I
a

99K J}. Clearly, M ∈ JΩ(I)K as I is an implementation. Due to Ω(I) vΣ≤ Ω(Si) there has
to be some N ∈ JΩ(Si)K such that for each (a, U) ∈ N there is (a, J) ∈M such that J ≤ U .

Let now X = N and let (a, U) ∈ X. Then I a
99K J with J ≤ U . Therefore, as I ≤ Sj ,

Sj
a

99K Tj and J ≤ Tj for all j. Thus J ∈ JUK ∩
⋂

iJTiK and {U, T1, . . . , Tn} ∈ C.
To show the converse, assume that there is a consistency relation C containing {S1, . . . , Sn}.

We know that for all i there is someX ∈ Ω(Si) such that for all (a, U) ∈ X there are Sj
a

99K Tj

(for all j) such that {U, T1, . . . , Tn} ∈ C. For fixed i, we denote the chosen X as Xi. We
construct I coinductively as follows:

Ω(I) =
∧

i

∧
(a,U)∈Xi

(a, JU
i)

with I 99K transitions to all (a, JU
i), where JU

i is a common implementation of U , T1, . . . ,
Tn with Ti given above. Clearly, I is an implementation of all Si. J

We now proceed with the construction of a new consistent OTS that is equivalent to the
original OTS.

I Definition 14. Let (P, 99K,Ω) be a OTS, Con its greatest consistency relation. We create
a new OTS as (Con, 99K,Ω) where
S a
99K T whenever for all S ∈ S, S a

99K T with T ∈ T .

MEMICS’10

16 Process Algebra for MTSs

Ω(S) =
∧

S∈S Ω̂(S) where Ω̂(S) is the formula that is created from Ω(S) by replacing
all occurrences of (a, U) by

∨
{(a, {U, T1, . . . , Tn}) | ∀i : Si

a
99K Ti, {U, T1, . . . , Tn} ∈ Con}

(where
∨
∅ = ff).

Note that due to the properties of Con, Ω(S) is never ff . We prove that the construction is
correct, i.e. for every consistent process of the original OTS, we have indeed a process of the
new OTS with the same set of implementations.

I Theorem 15. Let S be a process. Then JSK 6= ∅ if and only if {S} ∈ Con. Moreover, if
{S} ∈ Con then JSK = J{S}K.

Proof. The first part of the theorem is already included in Lemma 13. We thus prove the
second part. We first show that I ∈ JSK implies I ∈ J{S}K. We define R as:

R = {(I, {S1, . . . , Sn}) | n ∈ N,∀i : I ∈ JSiK, {S1, . . . , Sn} ∈ Con}

and prove that R is a refinement relation. Let (I, {S1, . . . , Sn}) ∈ R.
Let I a

99K J . Then, as I ≤ Si, Si
a

99K Ti with J ≤ Ti for all i. Thus also {S1, . . . , Sn}
a

99K
{T1, . . . , Tn} and (J, {T1, . . . , Tn}) ∈ R.
Let Ω(I) = ϕ, Ω({S1, . . . , Sn}) = ψ. We need to show that ϕ vΣR ψ.
Let M ∈ JϕK. Then, as I ≤ Si for all i, there exist Ni ∈ JΩ(Si)K such that for all
(a, U) ∈ Ni exists (a, J) ∈ M with J ≤ U (due to ϕ vΣ≤ Ω(SI)). We use the notation
J(a,U) to denote such J .
Let now N = {(a, {U, T1, . . . , Tn}) | ∃i : (a, U) ∈ Ni,∀j : Sj

a
99K Tj , J(a,U) ≤ Tj ,

{U, T1, . . . , Tn} ∈ Con}. Clearly, for all (a, {U, T1, . . . , Tn}) ∈ N there is some (a, J) ∈M
such that (J, {U, T1, . . . , Tn}) ∈ R (we take J = J(a,U)).
We need to prove that N ∈ JψK. In other words, we need to prove that for all i,
N ∈ JΩ̂(Si)K. That is, however, a straightforward corollary of Lemma 6 (take Z = Ni,
Z ′ = N).

We now show that I ∈ J{S}K implies I ∈ JSK. We define R as:

R = {(I, S) | I ≤ S with S ∈ S ∈ Con}

and prove that R is again a refinement relation. Let (I, S) ∈ R and let S be such that I ≤ S
and S ∈ S.

Let I a
99K J . Then S a

99K T with J ≤ T and thus S a
99K T with T ∈ T . Thus also

(J, T) ∈ R.
Let Ω(I) = ϕ, Ω(S) = ψ. We need to show that ϕ vΣR ψ. Let M ∈ JϕK. Due
to the fact that ϕ vΣ≤ ΩS, we know that there exists N ′ ∈ JΩ(S)K such that for
all (a, {U, T1, . . . , Tk}) ∈ N ′ there exists (a, J) ∈ M with J ≤ {U, T1, . . . , Tk}. Take
N = {(a, U) | (a, T) ∈ N ′ with U ∈ T }. Clearly, as N ′ ∈ JΩ(S)K also N ′ ∈ JΩ̂(S)K.
Using Lemma 7, we get that N ∈ JΩ(S)K (take Z ′ = N ′, Z = N). J

The following lemma shows that MixTS ≺ cDMTS.

I Lemma 16. There is no MixTS M such that JMK = Ja.nil ∨ b.nilK.

Proof. We first note that any equation defining a MixTS may be written in the following
normal form:

X :=
∧

i

?ai.Si ∧
∧
j

 aj .Tj

Nikola Beneš and Jan Křetínský 17

Clearly, there are three implementations of a.nil ∨ b.nil, namely a.nil, b.nil and a.nil ∧ b.nil.
Let thus M have these three implementations. Clearly, the part of M has to be empty
(i.e. Ω(M) = tt) asM can force neither a transition nor b transition. But then nil ∈ JMK. J

Due to Theorem 15, we have a syntactic characterization of consistent OTS. Since we now
know MixTS ≺ DMTS, a question arises whether such a characterization can be obtained also
for consistent MixTS. Observe that the previous construction transforms every MixTS into
a consistent OTS with formulae in CNF where all literals in one clause have the same action.
One might be tempted to consider the following syntactic characterization of consistent
MixTS:

P ::= nil | X | a.P | P ∧ P |
∨

i

a.Pi

However, that is not the case, as shown by the following lemma. Hence, this question remains
open.

I Lemma 17. There is no MixTS M such that JMK = J(a.(a.nil ∧ b.nil) ∨ a.nil) ∧ ?a.a.nilK.

Proof. Let M =
∧

i ?a.Ni ∧
∧

j a.Oj . (All outgoing transitions from M have to be a-
transitions.) We make the following observations:

For all j, Ω(Oj) = tt. Otherwise, a.nil could not be an implementation of M .
Also, for all j, Oj

a
99K. Otherwise, a.(a.nil ∧ b.nil) could not be an implementation of M .

There has to be some k such that a.nil ∈ JNkK, as a.nil ∧ a.a.nil also has to be an
implementation of M .

We now show that a.a.nil is an implementation of M . Let R′ be an arbitrary refinement
relation such that (a.nil, Nk) ∈ R′ (we know that such R′ exists as a.nil ≤ Nk). Take R as

R = id ∪R′ ∪ {(a.a.nil,M)} ∪ {(a.nil, Oj) | ∀j}

We now show that R is a refinement.
a.a.nil a

99K a.nil is matched by M a
99K Nk.

Ω(a.a.nil) = (a, a.nil), Ω(M) =
∧

j(a,Oj), thus Ω(a.a.nil) vΣR Ω(M).
((a.nil), Nk) ∈ R′, therefore the conditions of refinement are satisfied.
a.nil a

99K nil is matched by Oj
a

99K nil
As Ω(Oj) = tt, clearly Ω(a.nil) vΣR Ω(Oj).

However, a.a.nil is not an implementation of (a.(a.nil ∧ b.nil) ∨ a.nil) ∧ ?a.a.nil. J

Finally, we show that MTS ≺ MixTS.

I Lemma 18. There is no MTS S such that JSK = J?a.b.nil ∧ ?a.c.nil ∧ a.(?b.nil ∧ ?c.nil)K.

Proof. Similarly to MixTS, any equation defining a MTS can be written in the following
normal form:

X =
∧

i

?ai.Si ∧
∧
j

aj .Tj

There are three implementations which S has to possess and those are a.b.nil, a.c.nil,
and a.b.nil ∧ a.c.nil and S cannot possess any other implementation. Clearly, S cannot
be of the form a.T ∧ P , as then T would have to satisfy b.nil ≤ T (as a.b.nil ≤ S), also
c.nil ≤ T (as a.c.nil ≤ S), yet it cannot satisfy (b.nil ∧ c.nil) ≤ T (as a.(b.nil ∧ c.nil) 6≤ S).
This is not possible as it can be proven that if P ≤ T and Q ≤ T then also P ∧Q ≤ T for
all OTS. Therefore S =

∨
i ?a.Si and thus Ω(S) = tt. But then nil ≤ S and S has more

implementations than ?a.b.nil ∧ ?a.c.nil ∧ a.(?b.nil ∧ ?c.nil). J

MEMICS’10

18 Process Algebra for MTSs

For the sake of completeness, we also state that LTS ≺ MTS. This trivially follows, as
every LTS only has one implementation, whereas e.g. ?a.nil has two implementations a.nil
and nil.

5 Conclusion and Future Work

We have introduced a new formalism of transition system with obligations together with its
process algebra. We have used it to compare various previously studied systems. The main
result shows that general DMTS are not more powerful than consistent DMTS, whereas mixed
transition systems are strictly less expressive. Furthermore, we have given an alternative
syntactic characterizations of the studied systems, although a complete syntactic criterion
for consistent mixed transition systems remains as a future work. Surprisingly, using more
general OTS leads to some optimizations in computation of the composition that were not
possible in the previously used frameworks (as discussed in [2]).

Acknowledgements Nikola Beneš has been supported by Czech Grant Agency grant
no. GD102/09/H042. Jan Křetínský is a holder of Brno PhD Talent Financial Aid.

References
1 A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. 20 years of modal and

mixed specifications. Bulletin of the EATCS no. 95, pages 94–129, 2008.
2 N. Beneš, I. Černá, and J. Křetínský. Disjunctive modal transition systems and generalized

LTL model checking. Technical report FIMU-RS-2010-12, Faculty of Informatics, Masaryk
University, Brno, 2010.

3 Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

4 H. Fecher and M. Steffen. Characteristic mu-calculus formulas for underspecified transition
systems. ENTCS, 128(2):103–116, 2005.

5 M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A foundation for
three-valued program analysis. In Proc. of ESOP’01, volume 2028 of LNCS, pages 155–169.
Springer, 2001.

6 K. G. Larsen, U. Nyman, and A. Wasowski. Modeling software product lines using color-
blind transition systems. STTT, 9(5-6):471–487, 2007.

7 K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages 203–210. IEEE
Computer Society, 1988.

8 K. G. Larsen and L. Xinxin. Equation solving using modal transition systems. In LICS,
pages 108–117. IEEE Computer Society, 1990.

9 J.-B. Raclet. Residual for component specifications. In Proc. of the 4th International
Workshop on Formal Aspects of Component Software, 2007.

10 J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone. Why are modalities
good for interface theories? In ACSD, pages 119–127. IEEE, 2009.

	Introduction
	Preliminaries
	Process Algebra for DMTS
	Composition

	Hierarchy Results
	Conclusion and Future Work

