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Abstract
Refinement types are a well-studied manner of performing in-depth analysis on functional pro-
grams. The dependency pair method is a very powerful method used to prove termination of
rewrite systems; however its extension to higher-order rewrite systems is still the subject of active
research. We observe that a variant of refinement types allows us to express a form of higher-order
dependency pair method: from the rewrite system labeled with typing information, we build a
type-level approximated dependency graph, and describe a type level embedding preorder. We de-
scribe a syntactic termination criterion involving the graph and the preorder, which generalizes
the simple projection criterion of Middeldorp and Hirokawa [21], and prove our main result: if
the graph passes the criterion, then every well-typed term is strongly normalizing.
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1 Introduction

Types are used to perform static analysis on programs. Various type systems have been
developed to infer information about termination, run-time complexity, or the presence of
uncaught exceptions.

We are interested in one such development, namely dependent types [30, 13]. Dependent
types explicitly allow “object level” terms to appear in the types, and may be used to fully
specify (extensional) program behavior using the so called Curry-Howard isomorphism. We
are particularly interested here in refinement types [36, 17]. For a given base type B and a
property P on programs, we may form a type R which is a refinement of B and which is
intuitively given the semantics:

R = {t :B | P (t)}.

Programing languages based on dependent type systems have the reputation of being
unwieldy, due to the perceived weight of proof obligations in heavily specified types. The
field of dependently typed programing can be seen as a quest to find the compromise between
expressivity of types and ease of use for the programmer. In this paper we propose a type
system which we believe achieves such a compromise for a termination analysis based on the
shape of constructor terms.

Dependency pairs are a highly successful technique for proving termination of first-order
rewrite systems [4]. However, it is difficult to apply the method to higher-order rewrite
systems. Indeed, the data-flow of such systems is significantly different than that of first-order
ones. Let us examine the rewrite rule:

f (S x) � (λy.f y) x
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Which can for example be written in the higher-order rewriting framework of Jouannaud
& Okada [26]. The termination of well-typed terms under this rewrite system combined
with β-reduction cannot be inferred by simply looking at the left-hand side f (S x) and
the recursive call f y in the right hand side as it could be in first-order rewriting. Here we
need to infer that the variable y can only be instantiated by a subterm of S x. This can be
done using dependent types, using a framework called size-based termination or sometimes
type-based termination [22, 1, 5, 7, 10].

The dependency pair method rests on the examination of the aptly-named dependency
pairs, which correspond to left-hand sides of rules and function calls with their arguments in
the right-hand side of the rules. For instance with a rule

f(c(x, y), z) � g(f(x, y))

We would have two dependency pairs, the pair f(c(x, y), z) � f(x, y) and the pair f(c(x, y), z)
� g(f(x, y)) (in the case that g is a defined symbol).

We can then define a chain to be a pair (θ, φ) of substitutions, and a couple (t1 � u1, t2 �
u2) of dependency pairs such that u1θ reduces to t2φ. We may connect chains in an intuitive
manner, and the fundamental theorem of dependency pairs may be stated: a (first-order)
rewrite system is terminating if and only if there are no infinite chains. See also the original
article [4] for details.

To prove that no infinite chains exist, one wants to work with the dependency graph: the
graph built using the dependency pairs as nodes and with a vertex between N1 = t1 � u1
and N2 = t2 � u2 if there exist θ and φ such that (θ, φ), (N1, N2) form a chain. It is then
shown that if the system is finite, then it is sufficient to consider only the cycles in this
graph and prove that they may not lead to infinite chains [18]. It is known that in general
computing the dependency graph is undecidable (this is the unification modulo rewriting
problem, see e.g. Jouannaud et al . [25]), so in practice we compute an approximation (or
estimation) of the graph that is conservative: all edges in the dependency graph are sure to
appear in the approximated graph. One common (see for instance Giesl [20]) and reasonable
approximation is to perform ordinary unification on non-defined symbols (that is, symbols
that are not at the head of a left-hand side), while replacing each subterm headed by a
defined symbol by a fresh variable, ensuring that it may unify with any other term.

In this article, we show that the dependency pair technique with the approximated
dependency graph can be modeled using a form of refinement types containing patterns
which denote sets of possible values to which a term reduces. The syntax and type system
are described in section 2. These type-patterns must be explicitly abstracted and applied,
a choice that allows us to have very simple type inference. We then use these types to
build a notion of type-based dependency pair for higher-order rewrite rules, as well as an
approximated dependency graph which corresponds to the estimation described above. We
describe an order on the type annotations, that essentially captures the subterm ordering, and
use this order to express a decrease condition along cycles in the approximated dependency
graph. In section 3 we describe a suitable generalization of the simple projection criterion first
described by Middeldorp and Hirokawa [21]: if in every strongly connected component of the
graph and every cycle in the component, the decrease condition holds, then every well-typed
term is strongly normalizing under combination of the rewrite rules and β-reduction. The
actual operational semantics are defined not on the terms themselves, but on erased terms in
which we remove the explicit type information. Section 4 concludes with a comparison with
other approaches to higher-order dependency pairs and possible extensions of our criterion.
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2 Syntax and Typing Rules

The language we consider is simply a variant of the λ-calculus with constants. For simplicity we
only consider the datatype of binary (unlabeled) trees. The development may be generalized
without difficulty to other first-order datatypes, i.e. types whose constructors do not have
higher-order recursive arguments. We define the syntax of patterns

p, q ∈ P := α | _ | ⊥ | leaf | node(p, q)

With α ∈ V a set of pattern variables, and _ is called wildcard. Patterns appear in types to
describe possible reducts of terms. We define the set of types:

T,U ∈ T := B(p) | T → U | ∀α.T

An atomic type is a type of the form B(p). The set of terms of our language is defined by:

t, u ∈ Trm := x | f | t u | t p | λx :T.t | λα.t | Leaf | Node

With x ∈ X a set of term variables, f ∈ Σ is a set of defined function symbols and α ∈ V .
A constructor is either Leaf or Node. A context is a list of judgements x :T with x ∈ X

and T ∈ T , with each variable appearing only once. Notice that application and abstraction
of patterns is explicit.

Intuitively, B(p) denotes the set of terms for which every reduct in normal form matches
the pattern p. For instance, any binary tree t is in the semantics of B(_), only binary
trees that reduce to Node t1 t2 for some binary trees t1 and t2 are in B(node(_,_)), and
only terms that never reduce to a constructor are in B(⊥). Our operational semantics is
defined by rewriting, which has the following consequences, which may be surprising to a
programming language theorist:

It may be the case that a term t has several distinct normal forms. Indeed we do not
require our system to be orthogonal, or even confluent (we do require it to be finitely
branching though). Therefore a term is in the semantics of B(node(_,_)) if all its reducts
reduce to a term of the form Node t u.
It is possible for a term to be stuck in the empty context, that is in normal form and not
headed by a constructor or an abstraction. Therefore B(⊥) is not necessarily empty even
in the empty context.

We write FV(t) (resp. FV(T ), FV(Γ)) for the set of free (type or term) variables in a
term t (resp. a type T , a context Γ). If a term (resp. pattern) does not contain any free
variables, we say that it is closed. We write ∀~α.T for ∀α1.∀α2 . . . ∀αn.T , and arrows and
application are associative to the left and right respectively, as usual. A pattern variable α
appears in B(p) if it appears in p. It appears positively in a type T if:

T = B(p) and α appears in p
T = T1 → T2 and α appears positively in T2 or negatively in T1 (or both),

with α appearing negatively in T if T = T1 → T2 and α appears negatively in T2 or positively
in T1 (or both).

We consider a type assignment τ : Σ→ T , such that for each f ∈ Σ, there is a number k
such that τf is of the form

τf = ∀α1, . . . , αk.B(α1)→ . . .→ B(αk)→ Tf

and each αi may appear only positively in Tf . In this case k is called the number of recursive
arguments.

RTA’11
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ax
Γ, x :T,∆ ` x :T

Γ, x :T ` t :U
t-lamΓ ` λx :T.t :T → U

Γ ` t :Tα /∈ FV(Γ) p-lamΓ ` λα.t :∀α.T

leaf-introΓ ` Leaf : B(leaf)

node-introΓ ` Node:∀αβ.B(α)→ B(β)→ B(node(α, β))

Γ ` t :T → U Γ ` u :T t-appΓ ` t u :U
Γ ` t :∀α.T p-app

Γ ` t p :T{α 7→ p}

symbΓ ` f : τf

Figure 1 Typing Rules

The positivity condition is quite similar to the one used in the usual formulation of
type-based termination, see for instance Abel [2] for an in depth analysis. The typing rules
are also similar to the ones for type-based termination. The typing rules of our system are
given by the typing rules in Figure 1.

To these rules we add the subtyping rule:

Γ ` t :T T ≤ U
subΓ ` t :U

Where the subtyping relation is defined, first on patterns, then on types by:

p� _ ⊥ � p

α� α leaf � leaf

p1 � q1 p2 � q2

node(p1, p2)� node(q1, q2)

p� q

B(p) ≤ B(q)

T2 ≤ T1 U1 ≤ U2
T1 → U1 ≤ T2 ≤ U2

T ≤ U
∀α.T ≤ ∀α.U

This type system is similar to the refinement types described by Freeman et al . [17], for
a subset of the ML language. However they consider more complex refinements in which
arbitrary unions are allowed (and for which type checking is undecidable!) and which does
not allow one to explicitly name the shape of a term in the type, i.e. it does not allow (our
version of) type-level variables. Furthermore, our system is not very distant from generalized
algebraic datatypes as are implemented in certain Haskell extensions [33], though subtyping
is not present in that framework.
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α /∈ Γ,Γ′
Γ, x : B(α),Γ′ `min x : B(α)

Γ `min Leaf : B(leaf)

Γ `min c1 : B(p1) Γ `min c2 : B(p2)
Γ `min Node p1 p2 c1 c2 : B(node(p1, p2))

Γ `min c1 : B(p1) . . . Γ `min ck : B(pk)
~α /∈ ΓΓ `min f p1 . . . pk c1 . . . ck :Tfφ

With τf = ∀α1 . . . αk.B(α1)→ . . .→ B(αk)→ Tf and φ(αi) = pi for 1 ≤ i ≤ k.

Figure 2 Minimal Typing Rules

It may seem surprising that we choose to represent pattern abstraction (by λα.t), and
pattern application (by t p) explicitly in our system. This choice is justified by the simplicity
of type inference with explicit parameters. In the author’s opinion, implicit arguments
should be handled by the following schema: at the user level a language without implicit
parameters; these parameters are inferred by the compiler, which type-checks a language
with all parameters present. Then at run-time they are once again erased. This is exactly
analogous to a Hindley-Milner type language in which System F is used as an intermediate
language [31, 24]. It is also our belief that explicit parameters will allow this criterion to
be more easily integrated into languages with pre-existing dependent types, e.g. Agda [32],
Epigram [29] or Coq [15].

A constructor term c ∈ C is a term built following the rules:
c1, c2 ∈ C := x | Leaf | Node p1 p2 c1 c2

with x ∈ X .
A rewrite rule is a pair of terms (l, r) which we write l � r, such that l is of the form

f p1 . . . pn c1 . . . ck with f ∈ Σ, pi ∈ P and ci ∈ C, and k is the number of recursive arguments
of f . We suppose that the free variables of r appear in l. Note that there is no linearity
restriction on the left-hand sides of rules, and that left-hand sides may not contain any
abstractions.

We suppose in addition that every function symbol g ∈ r is fully applied to its pattern
arguments, that is if τg = ∀α1 . . . αl.T then for each occurrence of g in r there are patterns
p1, . . . , pl ∈ P such that g p1 . . . pl appears at that position.

In the following we consider a finite set R of rewrite rules. The set R is well-typed if for
each rule l � r ∈ R, there is a context Γ and a type T such that

Γ `min l :T
and

Γ ` r :T
with `min the minimal typing relation defined in Figure 2.

Notice that if Γ `min ci : T then T is unique. Minimal typing is related to other work
on size-based termination [11], in which it is called the pattern condition. Its purpose is to
constrain the possible types of constructor terms in left-hand sides, so that the type gives
an exact semantics of the matched terms. In particular, if Γ `min x : B(p), then p = α,
x : B(α) and α may not appear in the type of any other variable. Furthermore, subtyping is
forbidden, so that a constructor term of the form Node p q t u is given a type of the form
B(node(p, q)), and Leaf is given the type B(leaf).

RTA’11
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We give the following theorem without proof.

I Theorem 2.1. Type checking is decidable: there is a procedure which, given Γ, t and T ,
decides whether

Γ ` t :T
is derivable.

It may be useful to note here that subtyping is necessary to type all but the most trivial
of programs: let f : ∀α.B(α)→ B(_) be the function that computes the mirror image of a
binary tree, which may be defined in our system by the rules

f leaf Leaf � Leaf
f node(α, β) (Node α β x y) � Node _ _ (f β y) (f α x)

This function is well-typed using the minimal typing rules in the context x : B(α), y : B(β),
but subtyping is necessary to type the second rule, as the term Node _ _ (f β y) (f α x)
has type node(_,_) and not _ which is the required return type of f .

We can then define a higher-order analogue of dependency pairs, which uses type infor-
mation instead of term information.

I Definition 2.2. Let ρ = f ~p ~c � r be a rule in R, with Γ such that Γ `min f ~p ~c :T , and
Γ ` r :T . The set of type dependency pairs DPT (ρ) is the set{

f ](p1, . . . , pk) � g](q1, . . . , ql) | ∀i,Γ `min ci : B(pi) ∧ g q1 . . . ql appears in r
}

The set DPT (R) is defined as the union of all DPT (ρ), for ρ ∈ R, where we suppose that all
variables are disjoint between dependency pairs.

The set of higher-order dependency pairs defined above should already be seen as an
abstraction of the traditional dependency pair notion (for example those defined in [4]).
Indeed, due to subtyping, there may be some information lost in the types, if for instance
the wildcard pattern is used. As an example, if f, g and h all have type ∀α.B(α)→ B(_),
consider the rule

f α x � g _ (h α x)

The dependency pair we obtain is

f ](α) � g](_)

The information that g is called on the argument h α x is lost.
This approach can therefore be seen as a type-based manner to study an approximation

of the dependency graph. Note that in the case where h is given a more precise type, like
∀α.B(α)→ B(leaf), which is the case if every normal form of h p t is either neutral or Leaf,
we have a more precise approximation.

Note that in the following definition, a dependency pair can not be easily seen as a rule
of the system itself, though it may be seen as a first-order rewrite rule which operates on
“type level” function symbols and constructors.
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I Definition 2.3. Let p and q be patterns. We define pattern-unification as the smallest
relation verifying:

p ./ _ p ./ α

leaf ./ leaf ⊥ ./ ⊥
p ./ q
q ./ p

p1 ./ q1 p2 ./ q2

node(p1, p2) ./ node(q1, q2)

The standard typed dependency graph GR is defined as the graph with

As set of nodes the set DPT (R).
An edge from the dependency pair t � g](p1, . . . , pk) to g](q1, . . . , qk) � u if for every
1 ≤ i ≤ k, pi ./ qi.

This definition gives us an adequate higher-order notion of standard approximated
dependency graph. We will now show that it is possible to give an order on the terms in the
dependency pairs, which is similar to a simplification order and which will allow us to show
termination of well-typed terms under the rules, if the graph satisfies an intuitive decrease
criterion.

I Definition 2.4. Given patterns p and q which do not contain _, we define the embeddeding
preorder on P written p� q by the following rules

pi � q ⇒ node(p1, p2) � q for i = 1, 2
p1 � q1 ∧ p2 � q2 ⇒ node(p1, p2) � node(q1, q2)
p1 � q1 ∧ p2 � q2 ⇒ node(p1, p2) � node(q1, q2)

With � as the reflexive closure of �.

The preorder � can be used to verify a structural decrease in values: if t : B(p), u : B(q)
in a common context and p � q, then the maximum size of normal forms of t is strictly
greater that the maximum size of normal forms in u. This explains why we must forbid _ in
the definition of �, as a term can be simultaneously typed in B(node(_,_)) and B(_) (and
so no decrease is possible).

Non termination can intuitively be traced to cycles in the dependency graph. We wish to
consider termination on terms with erased pattern arguments and type annotations.

3 Operational Semantics and the Main Theorem

Rewriting needs to be performed over terms with erased pattern annotations. The problem
with the naïve definition of rewriting arises when trying to match on patterns. Take the rule

f node(α, β) (Node x y) � Leaf

In the presence of this rule, we wish to have, for instance, the reduction

f _ (Node (g x) (h x)) � Leaf

where g and h are arbitrary defined symbols. However, there is no substitution θ such that
node(α, β)θ = _. There are two ways to deal with this. Either we take subtyping into account

RTA’11
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when performing matching, or we erase the pattern arguments when performing reduction.
We adopt the second solution, which has the advantage of requiring fewer reductions, and is
closer to practice in languages with dependent type annotations (see for example McKinna
[30]). Symmetrically, we erase pattern abstractions as well.

I Definition 3.1. We define the set of erased terms Trm|�| as:

t, u ∈ Trm|�| := x | f | λx.t | t u | Leaf | Node

Where x ∈ X and f ∈ F .
Given a term t ∈ Trm, we define the erasure |t| ∈ Trm|�| of t as:

|x| = x

|f | = f

|λx :T.t| = λx.|t|
|λα.t| = |t|
|t u| = |t| |u|
|t p| = |t|
|Leaf | = Leaf
|Node | = Node

An erased term can intuitively be thought of as the compiled form of a well typed term.

I Definition 3.2. An erased term t head rewrites to a term u if there is some rule l � r ∈ R
and some substitution σ from X to terms in Trm|�| such that

|l|σ = t ∧ |r|σ = u

We define β-reduction �β as

λx.t u �β t{x 7→ u}

And we define the reduction � as the closure of head-rewriting and β-reduction by term
contexts. We then define �∗ and �+ as the symmetric transitive and transitive closure of �,
respectively.

We can now express our termination criterion. We need to consider the strongly connected
components, or SCCs of the typed dependency graph. A strongly connected component of a
graph G is a full subgraph such that each node is reachable from all the others.

I Definition 3.3. Let G be the typed dependency graph for R and let G1, . . . ,Gn be the SCCs
of G. Suppose that for each Gi, there is a simple projection ιi : Σ → N which to f ∈ Σ
associates an integer 1 ≤ ιif ≤ k (with k the number of recursive arguments of f).

We say that R passes the simple projection criterion for ι if

For each 1 ≤ i ≤ n and each rule f ](p1, . . . , pn) � g](q1, . . . , qm) in Gi, we have pιi
f
� qιig .

For each cycle in Gi, there is some rule f ](p1, . . . , pn) � g](q1, . . . , qm) such that

pιi
f
� qιig

I Theorem 3.4. (Main theorem)
Suppose that there is ι such that R passes the simple projection criterion for ι. Then for

every Γ, t, T such that Γ ` t :T ,

|t| ∈ SNR
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g](leaf) � c]

c] � app]

c] � g](node(leaf, leaf))

Figure 3 Dependency graph of Example 1

The proof of this theorem uses classic computability methods, and can be found in the
online version, from the authors homepage. Let us give two examples of the application of
this technique.

I Example 1. Take the rewrite system given by the signature:

app: ∀αβ.(B(α)→ B(β))→ B(α)→ B(β), c : B(leaf), g :∀α.B(α)→ B(leaf)

We give the rewrite rules:

app → λαβ.λx : B(α)→ B(β).λy : B(α).x y

c→ app node(leaf, leaf) leaf (g node(leaf, leaf)) (Node leaf leaf Leaf Leaf)

g node(α, β) (Nodeα β x y)→ Leaf

g leaf Leaf → c

or, in more readable form with pattern arguments and type annotations omitted:

app → λx.λy.x y

c → app g (Node Leaf Leaf)
g (Node x y) → Leaf

g Leaf → c

It is possible to verify that the criterion can be applied and that in consequence, according to
Theorem 3.4, all well typed terms are strongly normalizing under R∪ β.

Indeed, we may easily check that each of these rules is minimally typed in some context.
Furthermore, we can check that the dependency graph in Figure 3 has no cycles.

One may object that if we inline the definition of app and perform β-reduction on the right-
hand sides of rules we obtain a rewrite system that can be treated with more conventional
methods, such as those performed by the AProVe tool [19] (on terms without abstraction, and
without β-reduction). However this operation can be very costly if performed automatically
and is, in its most naïve form, ineffective for even slightly more complex higher-order programs
such as map, which performs pattern matching and for which we need to instantiate. By
resorting to typing, we allow termination to be proven using only “local” considerations, as
the information encoding the semantics of app is contained in its type.

RTA’11
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i](node(α, β)) � i](α)

i](node(α, β)) � i](β)

f ](node(α, β)) � g](node(α, β))

f ](node(α, β)) � i](node(α, β))

g](node(α, β)) � f ](α)

g](node(α, β)) � i](node(α, β))

g](leaf) � f ](⊥) g](leaf) � h](leaf)h](node(α, β)) � h](α)

Figure 4 The dependency graph for Example 2

However it becomes necessary, if one desires a fully automated termination check on an
unannotated system, to somehow infer the type of defined constants, and possibly perform
an analysis quite similar in effect to the one proposed above. We believe that to this end one
may apply known type inference technology, such as the one described in [14], to compute
these annotated types. In conclusion, what used to be a termination problem becomes a
type inference problem, and may benefit from the knowledge and techniques of this new
community, as well as facilitate integration of these techniques into type-theoretic based
proof assistants like Coq [15].

Let us examine a second, slightly more complex example, in which there is “real” recursion.

I Example 2. Let R be the rewrite system defined by

f (Node x y) → g (i (Node x y)
g (Node x y) → f (i x)

g Leaf → f (h Leaf)
i (Node x y) → Node (i x) (i y)

i Leaf → Leaf
h (Node x y) → h x

Again with the type arguments omitted for readability, and with types f, g :∀α.B(α)→ B(_),
h : ∀α.B(α) → B(⊥) and i : ∀α.B(α) → B(α). Every equation can be typed in the con-
text Γ = x : B(α), y : B(β). The system with full type annotations is given in the ap-
pendix (or in the online version). The dependency graph is given in Figure 4, and has as
SCCs the full subgraphs of GR with nodes

{
i](node(α, β)) � i](α), i](node(α, β)) � i](β)

}
,{

f ](node(α, β)) � g](node(α, β), g](node(α, β) � f ](α)
}
and

{
h](node(α, β)) � h](α)

}
re-

spectively.
Taking ιs = 1 for every SCC and every symbol s ∈ Σ, it is easy to show that every SCC

respects the decrease criterion on cycles. For example, in the cycle

f ](node(α, β)) � g](node(α, β))� g](node(α, β)) � f ](α)

we have node(α, β) � node(α, β) and node(α, β) � α, so the cycle is weakly decreasing with
at least one strict decrease.

We may then again apply the correctness theorem to conclude that the erasure of all
well-typed terms are strongly normalizing with respect to R∪ β.

Note that the minimality condition is important: otherwise one could take

f :∀αβ.B(α)→ B(β)→ B(_)
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with the rule

f node(leaf, leaf) leaf x y � f leaf leaf y y

This rule can be typed in the context x : B(node(leaf, leaf)), y : B(leaf), but not minimally
typed, as the variables x and y do not have type B(α) for some variable α, and passes the
termination criterion: the dependency graph is without cycles, as node(leaf, leaf) does not
unify with leaf. However, this system leads to the non terminating reduction f Leaf Leaf �
f Leaf Leaf.

4 Comparison, future work

Several extensions of dependency pairs to different forms of higher-order rewriting have
been proposed, first for applicative systems (variables may appear in application position,
but there are no λ-abstractions) [19, 35, 3] and subsequently for more expressive systems
including λ-abstractions [27, 8]. For the frameworks that do not handle the presence of
bound variables, the usual approach is to defunctionalize (also called lambda-lifting) [16, 23]
which is a whole program transformation which yields operationally equivalent terms for a
given rewrite system.

All the techniques cited above, when applied to Example 1, where we may replace the
rule app→ λx.λy.x y with the rule app x y → x y (which does not involve bound variables),
generate a dependency graph with cycles. For example, in Sakai & Kusakari [35], using the
so-called “dynamic approach” the dependency graph is:

c[] � g[] c[] � app[g, Node[Leaf,Leaf]] g[Leaf] � c[]

app[x, y] � x[y]

It is of course possible to prove that there are no infinite chains for this problem (the
criterion is complete), but we have not much progressed from the initial formulation!

Using the so-called “static approach” from the same paper, which is based on computability
(as is our framework), we obtain the following graph:

c[] � g[z] c[] � app[g, Node[Leaf,Leaf]] g[Leaf] � c[]

RTA’11
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However it is not possible to prove that there are no infinite chains for this problem, as
there is one! Therefore the criterion presented in the present paper allows a finer analysis of
the possible calls.

The termination checking software AProVE, which used methods drawn in part from Giesl
et al [19] succeeds in proving termination of Example 1, by using an analysis involving the
computation of variable instances and symbolic reduction. As noted previously, our approach
does not need such an expensive analysis as the information required is already contained in
the type information. However it seems that such an analysis may be used to infer the type
annotations required in our framework. At the moment it is unclear how the typing approach
precisely compares to these techniques. More investigation is clearly needed in this direction.

AProVE can also easily prove termination of the second rewrite system (Example 2).
However semantic information needs to be inferred (for example a polynomial interpretation
needs to be given) when trying to well-order the cycle

f (Node x y) � g (i (Node x y))� g (Node x y) � f (i x)

This information is already supplied by our type system (through the fact that i is of
type ∀α.B(α)→ B(α)), and therefore it suffices to consider only syntactic information on
the approximated dependency graph. The subterm criterion by Aoto and Yamada [3] is
insufficient to treat this example.

Work by Bove and Capretta [12] allows one to use dependent types to encode functions
that terminate for complex reasons, using functions which can be shown to be structurally
recursive. While the theoretical power of this approach is stronger than that of ours, it not
possible to give a straightforward encoding of our type-based framework using this approach,
due to the presence of subtyping. Note also that our criterion applies to open terms with
erased arguments, whereas the Bove-Capretta method does not.

The framework described here is only the first step towards a satisfactory type-based
dependency pair framework using refinement types. We intuitively consider a “type level”
first-order rewrite system, use standard techniques to show that that system is terminating,
and show that this implies termination of the object level system. More work is required to
obtain a satisfactory “dependency pairs by typing” framework.

Our work seems quite orthogonal to the size-change principle [28], which suggests we
could apply this principle to treat cycles in the typed dependency graph, as a more powerful
criterion than simple decrease on one indexed argument.

It is clear that the definitions and proofs in the current work extend to other first-order
inductive types like lists, Peano natural numbers, etc. We conjecture that this framework
can be extended to more general positive inductive types, like the type of Brower ordinals
[9]. These kinds of inductive types seem to be difficult to treat with other (non type-based)
methods.

For now types have to be explicitly given by the user, and for complete automation of
our criterion it is necessary to infer the type annotations. Notice that trivial annotations
(return type always B(_)) can very easily be infered automatically. Some work on automatic
inference of type-level annotations has been carried out by Chin et al . [14] which considers
annotations in the language of linear arithmetic, and by Barthe, Gregoire and Pastawski
[6] for a more restricted language of size-types. We believe that inference of explicit type
information in the terms is quite feasible with current state-of-the-art methods, for example
those used for inferring the type of functional programs using GADTs [33].

We only consider matching on non-defined symbols, though an extension to a framework
with matching on defined symbols seems feasible if we add some conversion rule to our type
system.
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We believe that refinement types are simply an alternative way of presenting the depen-
dency pair method for higher-order rewrite systems. It is the occasion to draw a parallel
between the types community and the rewriting community, by emphasizing that techniques
used for the inference of dependent type annotations (for example work on liquid types [34]),
may in fact be used to infer information necessary for proving termination and (we believe)
vice-versa. It may also be interesting in the case of a programming language for the user to
supply the types as documentation, in what some call “type directed programing”.
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