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Abstract
Transaction Logic is an extension of classical logic that gracefully integrates both declarative
and procedural knowledge and has proved itself as a powerful formalism for many advanced ap-
plications, including modeling robot movements, actions specification, and planning in artificial
intelligence. In a parallel development, much work has been devoted to various theories of de-
feasible reasoning. In this paper, we unify these two streams of research and develop Transaction
Logic with Defaults and Argumentation Theories, an extension of both Transaction Logic and
the recently proposed unifying framework for defeasible reasoning called Logic Programs with
Defaults and Argumentation Theories. We show that this combination has a number of interest-
ing applications, including specification of defaults in action theories and heuristics for directed
search in artificial intelligence planning problems. We also demonstrate the usefulness of the
approach by experimenting with a prototype of the logic and showing how heuristics expressed
as defeasible actions can significantly reduce the search space as well as execution time and space
requirements.
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1 Introduction

Transaction logic (abbr., T R) [5, 2] is a general logic for representing knowledge base dynamics.
Its model and proof theories cleanly integrate declarative and procedural knowledge and the
logic has been employed in domains ranging from reasoning about actions [3], to knowledge
representation [1], AI planning [5], workflow management and Web services [14], and general
knowledge base programming [4]. Defeasible reasoning is another important paradigm, which
has been extensively studied in knowledge representation, policy specification, regulations,
law, learning, and more [6, 11, 12].

In this paper we propose to combine T R with defeasible reasoning and show that the
resulting logic language has many important applications. This new logic is called Transaction
Logic with Defaults and Argumentation Theories (or T RDA) because it extends T R in the
direction of the recently proposed unifying framework for defeasible reasoning called logic
programming with defaults and argumentation theories (LPDA) [17]. Along the way we define
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a well-founded semantics [16] for T R, which, to the best of our knowledge, has never been
done before.

We show that the combined logic enables a number of interesting applications, such as
specification of defaults in action theories and heuristics for pruning search in search-intensive
applications such as planning. We also demonstrate the usefulness of the approach by
experimenting with a prototype of T RDA and showing that heuristics expressed as defeasible
actions can drastically prune the search space together with the execution time and space
requirements.

This paper is organized as follows. Section 2 motivates reasoning with defaults in T R
with an example. Section 3 provides background on Transaction Logic to make the paper
self-contained. Section 4 extends T R by incorporating defeasible reasoning. Section 5
specializes the logic developed in Section 4 by defining a useful argumentation theory that
extends Generalized Courteous Logic Programs (GCLP) [12] and Section 7 summarizes the
paper and outlines future work.

2 Motivating Example

In this section, we give an example that illustrates the advantages of extending Transaction
Logic with defeasible reasoning.

The syntax of T RDA is similar to that of standard logic programming except for the fact
that literals in the rule bodies are connected via the serial conjunction, ⊗, which specifies
an order of action execution. For instance, pickup(block1)⊗ puton(block1, block2) says that
the action pickup(block1) is to be executed first and the action puton(block1, block2) second.
The set of predicate symbols of the program is partitioned into:

a set of fluents, which are facts stored in database states or derived propositions that do
not change the state of the database; and
a set of actions, which represent actions that change those states.

In addition to the user defined predicate symbols, there are built-in actions called elementary
transitions for basic manipulation of states. These include delete(f) and insert(f) for every
ground fluent f . Examples of such elementary transitions include delete(on(block1, block0)
and insert(clear(block0).

As usual in defeasible reasoning, rules in T RDA can be tagged with terms. For instance,
the move rule in the example below is tagged with the termmvrule(Block, To). The predicate
!opposes is used to specify that some rules are incompatible with others. The predicate
!overrides specifies that some actions have higher priority than other actions.

Following the standard convention in Logic Programming, we will be using alphanumeric
symbols that begin with an uppercase letter to denote variables. Alphanumeric symbols that
begin with lowercase letters will denote constant, function, and predicate symbols.
I Example 2.1 (Block world planning). This example illustrates the use of defeasible reasoning
for heuristic optimization of planning in the blocks world. The T RDA program below is
designed to build pyramids of blocks that are stacked on top of each other so that smaller
blocks are piled up on top of the bigger ones. The construction process is non-deterministic
and several different blocks can be chosen as candidates to be stacked on top of the current
partial pyramid. The heuristic uses defeasibility to give priority to larger blocks so that
higher pyramids would tend to be constructed.1

1 For more information on planning with T R see [5].
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164 Transaction Logic with Defaults and Argumentation Theories

In this example, we represent the blocks world using the fluents on(x, y), which say that
block x is on top of block y; isclear(x), which says that nothing is on top of block x; and
larger(x, y), which says that the size of x is larger than the size of y. The action pickup(X,Y )
lifts the block X from the top of block Y and the action putdown(X,Y ) puts it down on
top of block Y . These actions are specified by the second and third rules, respectively.
The action move(X,From, To), specified by the first rule, moves block X from its current
position on top of block From to a new position on top of block To. This action is defined
by combining the aforementioned actions pickup and putdown, if certain preconditions are
satisfied. The stacking action (not included in the program) then uses the move action to
construct pyramids.

The key observation here is that at any given point several different instances of the
rule tagged with move_action might be applicable and several different moves might be
performed. The predicate !opposes stipulates that two different move-actions for different
block are considered to be in conflict (because only one action at a time is allowed).

@mv_rule(Block,To) move(Block,From,To) :-
(on(Block,From) ∧ larger(To,Block)) ⊗
pickup(Block,From) ⊗ putdown(Block,To).

pickup(X,Y) :- (isclear(X) ∧ on(X,Y)) ⊗
delete(on(X,Y)) ⊗ insert(isclear(Y)).

putdown(X,table) :- (isclear(X) ∧ not on(X,Z))
⊗ insert(on(X,table)).

putdown(X,Y) :- (isclear(X) ∧ isclear(Y) ∧ not on(X,Z))
⊗ delete(isclear(Y)) ⊗ insert(on(X,Y)).

!opposes(move(B1,F1,T1),move(B2,F2,T2)) :- B1 6= B2.

Various heuristics can be used to improve construction of plans for building pyramid of
blocks. In particular, we can use preferences among the rules to cut down on the number of
plans that need to be looked at. For instance, the following rule says that move-actions that
move bigger blocks are preferred to move-action that move smaller blocks—unless the blocks
are moved down to the table surface.

!overrides(mv_rule(B2,To), mv_rule(B1,To)) :- larger(B2,B1) ∧ To 6= table.

Consider the following configuration of blocks:

on(blk1,blk4). on(blk2,blk5). on(blk3,table). on(blk4,table).
on(blk5,table). isclear(blk1). isclear(blk2). isclear(blk3).
larger(blk2,blk1). larger(blk3,blk1). larger(blk3,blk2).
larger(blk4,blk1). larger(blk5,blk2). larger(blk2,blk4).

Although, both blk1 and blk2 can be moved on top of blk3, moving blk2 has higher
priority because it is larger.

For moving blocks to the table surface, we use the opposite heuristic, one which prefers
unstacking smaller blocks:

!overrides(mv_rule(B2,table), mv_rule(B1,table)) :- larger(B1,B2).

In our example, this makes unstacking blk1 and moving it to the table surface preferable
to unstacking blk2, since the former is a smaller block. This blocks the opportunity to then
move blk4 on top of blk2 and subsequently put blk1 on top of blk4. These preference
rules can be applied to a pyramid-building program like this:



Paul Fodor and Michael Kifer 165

stack(0,Block).
stack(N,X) :- N>0 ⊗ move(Y,_,X) ⊗ stack(N-1,Y) ⊗ on(Y,X).
stack(N,X) :- (N>0 ∧ on(Y,X)) ⊗ unstack(Y) ⊗ stack(N,X).
unstack(X) :- on(Y,X) ⊗ unstack(Y) ⊗ unstack(X).
unstack(X) :- isclear(X) ∧ on(X,table).
unstack(X) :- (isclear(X) ∧ on(X,Y) ∧ Y 6= table) ⊗ move(X,_,table).
unstack(X) :- on(Y,X) ⊗ unstack(Y) ⊗ unstack(X).

Running this program by the interpreter described in [9] shows that the above preferences
drastically reduce the number of plans that need to be considered—sometimes to just one
plan. These experiments are described in Section 6. �

3 Serial-Horn Transaction Logic

In this section we describe a subset of Transaction Logic called serial-Horn T R. This subset
has been shown to be sufficiently expressive for many applications, including planning,
workflow management, and action languages [5].

The syntax of T R is derived from that of standard logic programming. The alphabet
of the language LT R of T R contains an infinite number of constants, function symbols,
predicate symbols, and variables. The atomic formulas have the form p(t1, ..., tn), where
p is a predicate symbol, and ti are terms (variables, constants, function terms). However,
unlike standard logic programming, predicate symbols are partitioned into fluents and
actions. Fluents are predicates whose execution does not change the state of the database,
while actions are predicates that can change the state of the database. Fluents are further
partitioned into base fluents and derived fluents. Base fluents correspond to the classical base
predicates in relational databases; they represent stored data and may be inserted or deleted.
Derived fluents correspond to derived predicates, which represent database views. An atomic
formula p(t1, ..., tn) will be also called a fluent or an action atomic formula depending on
whether p is a fluent or an action symbol. Furthermore, if p is a derived or base fluent
symbol then p(t1, ..., tn) is said to be a derived or base fluent atomic formula. An expression
is ground if it does not contain any variables.

The symbol neg will be used to represent the explicit negation (also called “strong”
negation) and not will be used for default negation, that is, negation as failure. A fluent
literal is either an atomic fluent or has one of the negated forms: negα, notα, notnegα,
where α is a fluent atomic formula. An action literal is an action atomic formula or has the
form notα, where α is a action atomic formula. Literals of the form negα, where α is an
action, are not allowed. Atoms of the form negnot alpha are also not allowed.

A database state is a set of ground base fluents. All database states are assumed to be
consistent, meaning that they cannot have both f and neg f , for any base fluent f .

Transaction Logic distinguishes a special sort of actions, called elementary transitions or
elementary updates. Intuitively, an elementary transition is a “builtin” action that transforms
a database from one state into another. All other actions are defined via rules using elementary
transitions and fluents. In this paper, elementary transitions are deletions and insertions
of base fluents. Formally, an elementary state transition is an action atomic formula of the
form insert(f) or delete(f), where f is a ground base fluent or has the form neg g, where g
is a ground base fluent. For any given database state D,

insert(f) causes a transition from D to the state D ∪ {f} \ {neg f}; and
delete(f) causes a transition from D to D \ {f} ∪ {neg f}.
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In addition to the classical connectives and quantifiers, T R has new logical connectives:

⊗ - the sequential conjunction
♦ - the modal operator of hypothetical execution

The formula φ ⊗ ψ represents an action composed of an execution of φ followed by an
execution of ψ, while the formula ♦φ is an action of hypothetically testing whether φ can be
executed at the current state, but no actual state changes takes place. In procedural terms,
executing delete(on(blk1, table))⊗ insert(on(blk1, blk2)) means “first delete on(blk1, table)
from the database, and then insert on(blk1, blk2).” The current database state changes as
a result. In contrast, ♦move(blk1) is only a “hypothetical” execution: it checks whether
move(blk1) can be executed in the current state, but regardless of whether it can or not the
current state does not change.

The semantics of Transaction Logic is such that when f1 and f2 are fluents, f1 ⊗ f2 is
equivalent to f1 ∧ f2 and ♦f to f . Therefore, when no actions are present, T R reduces to
classical logic. This also explains our use of ∧ in Example 2.1 where it could have been
replaced with ⊗ without changing the meaning (but, the uses of ⊗ in the Example 2.1
cannot be replaced with ∧ without changing the meaning).

I Definition 1 (Serial goal). Serial goals are defined recursively as follows:

If P is a fluent or an action literal then P is a serial goal. Note that fluent literals can
contain both not and neg , and action literals can contain not .
If P is a serial goal, then so are notP and ♦P .
If P1 and P2 are serial goals then so are P1 ⊗ P2 and P1 ∧ P2. �

I Definition 2 (Serial rules). A serial rule is an expression of the form: H : − B. where
H is a not -free literal and B is a serial goal. We will be dealing with two classes of serial
rules:

Fluent rules: In this case, H is a derived fluent of the form f or a fluent literal of the
form neg f and B = f1 ⊗ ...⊗ fn, where each fi is a fluent literal (and thus ⊗ could be
replaced with ∧).
Action rules: In this case, H must be an atomic action formula, while the body of the
rule, B, is a serial goal.

A transaction base is a finite set of serial rules. �

An existential serial goal is a statement of the form ∃X̄ψ where ψ is a serial goal and
X̄ is a list of all free variables in ψ. For instance, ∃Xmove(X, blk2) is an existential serial
goal. Informally, the truth value of an existential goal in T R is determined over sequences of
states, called execution paths, which makes it possible to view truth assignments in T R’s
models as executions. If an existential serial goal, ψ, defined by a program P, evaluates to
true over a sequence of states D0, . . . Dn, we say that it can execute at state D0 by passing
through the states D1, ..., Dn−1, and ending in the final state Dn. Formally, this is captured
by the notion of executional entailment, which is written as: P,D0, . . . Dn |= ψ. Further
details on T R can be found in [5] and [2].
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4 Defeasibility in Transaction Logic

In this section we define a form of defeasible Transaction Logic, which we call Transaction
logic with defaults and argumentation theories (T RDA). The development was inspired by
our earlier work on logic programming with argumentation theories, which did not support
actions [17]. Language-wise, the only difference between T RDA and serial T R is that the
rules in T RDA are tagged.

I Definition 3 (Tagged rules). A tagged rule in the language T RDA is an expression of
the form: @r H : − B. where the tag r of a rule is a term. The head literal, H, and the
body of the rule, B, have the same restrictions as in Definition 2.
A serial T RDA transaction base P is a set of rules, which can be strict or defeasible. �

I Definition 4 (Transaction formula). A transaction formula in the language T RDA is a
literal, a serial goal, a tagged or an untagged serial rule. �

We note that the rule tag in the above definition is not a rule identifier: several rules can
have the same tag, which can be useful for specifying priorities among sets of rules.

Strict rules are used as definite statements about the world. In contrast, defeasible rules
represent defaults whose instances can be “defeated” by other rules. Inferences produced
by the defeated rules are “overridden.” We assume that the distinction between strict and
defeasible rules is specified in some way: either syntactically or by means of a predicate (in
this paper, we consider strict rules to be non-tagged rules, as in Definition 2).

I Definition 5 (Rule handle). Given a tagged rule, the term handle(r,H) is called the
handle of that rule. �

T RDA transaction bases are used in conjunction with argumentation theories, which are
sets of rules that define conditions under which some rule instances in the transaction base
may be defeated by other rules. The argumentation theory and the transaction base share
the same set of fluent and action symbols.

I Definition 6 (Argumentation theory). An argumentation theory, AT, is a set of strict
serial rules. We also assume that the language of T RDA includes a unary predicate,
$defeatedAT, which may appear in the heads of some rules in AT but not in the transaction
base. A T RDA P is said to be compatible with AT if $defeatedAT does not appear in
any of the rule heads in P, �

The rules AT are used to specify how the rules in P get defeated. This is usually done
using special predicates defined in T RDA, such as !opposes and !overrides used in
our example. For the purpose of defining the semantics, we assume that the argumentation
theories AT are grounded. This grounding can be done by appropriately instantiating the
variables and meta-predicates in AT.

Although Definition 6 imposes almost no restrictions on the predicate $defeatedAT,
practical argumentation theories are likely to require that it is executed hypothetically,
i.e., that its execution does not change the current state. This is certainly true of the
argumentation theories used in this paper.

I Definition 7 (Herbrand universe and base). The Herbrand universe of T RDA, denoted
U , is the set of all ground terms built using the constants and function symbols of the
language of T RDA. The Herbrand base, denoted B, is the set of all ground not -free
literals that can be constructed using the language of T RDA. �
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The key concept underlying the semantics of T R and T RDA is that of execution paths,
which are sequences of database states. The truth assignment in T R is done using path
structures, which are mappings from paths of states.

I Definition 8 (Path and Split). A path of length k, or a k-path, is a finite sequence of
states, π = 〈D1 ... Dk〉, where k ≥ 1. A split of π is any pair of subpaths, π1 and π2, such
that π1 = 〈D1 ... Di〉 and π2 = 〈Di ... Dk〉 for some i (1 ≤ i ≤ k). If π has a split π1, π2
then we write π = π1 ◦ π2. �

We extend the well-founded semantics for logic programing [16] to T RDA using a definition
in the style of [13]. In the following, we use the usual three truth values t, f , and u, which
stand for true, false, and undefined, respectively. We also assume the existence of the following
total order on these values: f < u < t.

I Definition 9 (Partial Herbrand interpretation). A partial Herbrand interpretation
is a mapping H that assigns f , u, or t to every formula L in B. A partial Herbrand
interpretation H is consistent relative to an atomic formula L if it is not the case
that H(L) = H(negL) = t. H is consistent if it is consistent relative to every formula.
H is total if, for every ground not -free formula L (other than u), either H(L) = t and
H(negL) = f or H(L) = f and H(negL) = t. �

Partial Herbrand interpretations are used to define path structures, which tell which
ground atoms (fluents or actions) are true on what paths. Path structures play the same role
in T RDA as that played by the classical semantic structures in classical logic. The semantic
structures of T RDA are mappings from paths to partial Herbrand interpretations.

I Definition 10 (Herbrand Path Structure). A partial Herbrand Path Structure is a
mapping I that assigns a partial Herbrand interpretation to every path subject to the
following restrictions:

1. For every ground base fluent-literal d and every database state D:
I(〈D〉)(d) = t, if d ∈ D;
I(〈D〉)(d) = f , if d 6∈ D;
I(〈D〉)(d) = u, otherwise

2. I(〈D1,D2〉)(insert(p)) = t if D2 = D1 ∪ {p} \ {neg p} and p is a ground fluent-literal;
I(〈D1,D2〉)(insert(p)) = f , otherwise.

3. I(〈D1,D2〉)(delete(p)) = t if D2 = D1 \ {p} ∪ {neg p} and P is a ground fluent-literal;
I(〈D1,D2〉)(delete(p)) = f , otherwise. �

Without loss of generality, while defining the semantics of T RDA we will consider ground
rules only. This is possible because all variables in a rule are considered to be universally
quantified, so such rules can be replaced with the set of all of their ground instantiations.

We assume that the language includes the special propositional constants: uπ and tπ, for
each path π. Informally, tπ is a propositional transaction that is true precisely over the path
π and false on all other paths; uπ is a propositional transaction that has the value u over π
and is false on all other paths.

I Definition 11 (Truth valuation in path structures). Let I be a path structure, π a path, L a
ground not -free literal, and let F , G ground serial goals We define truth valuations with
respect to the path structure I as follows:

If p is a not -free literal then I(π)(p) is already defined because I(π) is a Herbrand
interpretation, by definition of I.
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For any path π:
I(π)(tπ) = t and I(π′)(tπ) = f , if π′ 6= π;
I(π)(uπ) = u and I(π′)(uπ) = f , if π′ 6= π.
If φ and ψ are serial goals, then I(π)(φ⊗ψ) = max{ min(I(π1)(φ), I(π2)(ψ))|π = π1 ◦π2}
.
If φ and ψ are serial goals then I(π)(φ ∧ ψ) = min(I(π)(φ), I(π)(ψ)).
If φ is a serial goal then I(π)(notφ) =∼ I(π)(φ), where ∼ t = f , ∼ f = t, and ∼ u = u.
If φ is a serial goal and π = 〈D〉, where D is a database state, then
I(π)(♦φ) = max{I(π′)(φ) | π′ is a path that starts at D}
I(π)(♦φ) = f , otherwise.
For a strict serial rule F :-G,
I(π)(F :-G) = t iff I(π)(F ) ≥ I(π)(G).
For a defeasible rule @r F :-G,
I(π)(@r F:- G) = t iff
I(π)(F ) ≥ min ( I(π)(G), I(〈D0〉)(not ♦ $defeated(handle(r, F )))),
where D0 is the first database in the path π.

We will write I, π |= φ and say that φ is satisfied on path π in the path structure I if
I(π)(φ)=t.
We will say that a path structure I is total if, for every path π and every serial goal φ,
I(π)(L) is either t or f . �

I Definition 12 (Model of a transactional formula). A path structure, I, is a model of a
transaction formula φ if I, π |= φ for every path π. In this case, we write I |= φ and say
that I is a model of φ or that φ is satisfied in I. A path structure I is a model of a set of
formulas if it is a model of every formula in the set. �

I Definition 13 (Model of T RDA). A path structure I is a model of a T RDA transaction
base P if all rules in P are satisfied in I (i.e., I |= R for every R ∈ P). Given a T RDA

transaction base P, an argumentation theory AT, and a path structure M, we say that M
is a model of P with respect to the argumentation theory AT, written as M |= (P,AT), if
M |= P and M |= AT. �

Like classical logic programs, the Herbrand semantics of serial-Horn T R can be formu-
lated as a fixpoint theory [3]. In classical logic programming, given two Herbrand partial
interpretations σ1 and σ2, we write σ1 � σ2 if all not -free literals that are true in σ1 are
also true in σ2 and all not -literals that are true in σ2 are also true in σ1. Similarly, for
partial interpretations, σ1 ≤ σ2 if all not -free literals that are true in σ1 are also true in σ2
and all not -literals that are true in σ1 are also true in σ2.

I Definition 14 (Order on Path Structures). If M1 and M2 are partial Herbrand path
structures, then M1 �M2 if M1(π) �M2(π) for every path, π. Similarly, we write
M1 ≤M2 if M1(π) ≤M2(π) for every path, π. A model M of P is minimal with respect
to � iff for any other model, N, of P, we have that N � M implies N = M. The least
model of P is a minimal model that is unique (if it exists). �

It is well-known that in ordinary logic programming any set of Horn rules always has a
least model. In [5], it is shown that every positive serial-Horn T R program has a unique
least total model. Theorem 15, below, shows that this property is preserved by serial
not -free T R programs, but in this case the model might be a partial path structure. Serial
not -free programs are more general than the positive T R programs because the undefined
propositional symbol uπ for some path π may occur in the bodies of the program rules.
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I Theorem 15 (Unique Least Partial Model for serial not -free T R programs). If P is a
not -free T RDA program, then P has a least Herbrand model, denoted LPM(P).2 �

Next we define well-founded models for T RDA by adapting the definition from [13]. First,
we define the quotient operator, which takes a T RDA program P and a path structure I
and yields a serial-Horn T R program P

I . Despite what one might have been expecting, this
adaptation is rather subtle.

I Definition 16 (Quotient). Let P be a set of T RDA rules and I a path structure for P.
The T RDA quotient of P by I, written as P

I , is defined through the following sequence of
steps:

1. First, each occurrence of every not - literal of the form notL in P is replaced by tπ
for every path π such that I(π)(notL) = t and with uπ for every path π such that
I(π)(notL) = u.

2. For each labeled rule of the form @r L:-Body obtained in the previous step, replace
it with rules of the form: L:- t〈Dt〉 ⊗ Body for each database state Dt such that
I(〈Dt〉)(not (♦ $defeated(handle(r, L)))) = t, and rules of the form L:-u〈Du〉 ⊗
Body for each database stateDu such that I(〈Du〉)(not (♦ $defeated(handle(r, L))))
= u.

3. Remove the labels from the remaining rules. The resulting set of rules is the quotient P
I .

�

Note that in Step 1 of the above definition of the quotient each occurrence of notL is
replaced with different tπ and uπ for different π’s, so every rule in P may be replaced with
several (possibly infinite number of) not -free rules. All combinations of replacements for the
not - literals in the body of the rules have to be used. Only the π’s where I(π)(notL) = f
are not used, which effectively means that the rule instances that correspond to those cases
are removed from consideration. Also note that, the T RDA quotient of a T RDA transaction
base P with respect to an argumentation theory AT (the program union P ∪ AT) for any
path structure I, P ∪AT

I , is a negation-free T R program, so, by Theorem 15, it has a

unique least Herbrand model, LPM(P ∪AT
I ).

We will now give the definition for the immediate consequence operator Γ. For compatib-
ility with the classical notations in logic programming, we will use the set representation of
Herbrand models: I+ = {L | L ∈ I is a not -free literal}, I− = {L | L ∈ I is a not -literal}
and I = I+ ∪ I−.

I Definition 17 (T RDA immediate consequence operator). The incremental consequence
operator, Γ, for a T RDA transaction base P with respect to the argumentation theory
AT takes as input a path structure I and generates a new path structure: Γ(I) =def

LPM

(
P ∪AT

I

)
Suppose I∅ is the path structure that maps each path π to the empty Herbrand interpretation
in which all propositions are undefined (i.e., for every path π and every literal L, we have
I∅(π)(L) = u).

2 All proofs can be found in our technical report [10].
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The ordinal powers of the immediate consequence operator Γ are defined inductively as
follows:

Γ↑0(I∅) = I∅;
Γ↑α(I∅) = Γ(Γ↑α−1(I∅)), for α a successor ordinal;
Γ↑α(I∅)(π) = ∪β<αΓ↑β(I∅)(π), for every path π and α a limit ordinal. �

The operator Γ is monotonic with respect to the ≤ order relation when P and AT are fixed
(see [10]). Because Γ is monotonic, the sequence {Γ↑n(I∅)} (Γ↑0(I∅), Γ↑1(I∅), Γ↑2(I∅), . . .)
has a least fixed point and is computable via transfinite induction.

I Definition 18 (Well-founded model). The well - founded model of a T RDA transaction
base P with respect to the argumentation theory AT, written as WFM(P,AT), is defined
as the limit of the sequence {Γ↑n(I∅)}. �

I Theorem 19 (Correctness of the Constructive T RDA Least Model). WFM(P,AT) is the
least model of the program (P,AT).

The next theorem shows that T RDA programs under the well - founded semantics reduce
to ordinary T R programs under the same well - founded semantics. In conclusion, T RDA

can be implemented using ordinary transaction logic programming systems that support the
well - founded semantics.

I Theorem 20 (T RDA Reduction). WFM(P,AT) coincides with the well - founded model
of the T R program P′ ∪AT, where P′ is obtained from P by changing every defeasible rule
(@r L:- Body) ∈ P to the plain rule L:-not (♦ $defeated(handle(r, L)) )⊗ Body and
removing all the remaining tags.

5 The GCLP T R Argumentation Theory

We present here a particularly interesting argumentation theory which extends GCLP—
generalized courteous logic programs [12]—to T R under the T RDA framework. The infer-
ences claimed in the discussion of the planning example in Section 2 assumed that particular
argumentation theory. We will call this argumentation theory GCLP T R. As any argument-
ation theory in our framework, GCLP T R defines a version of the predicate $defeated
using various auxiliary concepts. We define these concepts first.

The user-defined predicates !opposes and !overrides are relations specified over
rule handles. They tell the system what rule instances are in conflict with each and which
rule instances are preferred over other rules.

The predicate $defeated is defined indirectly in terms of the predicates !opposes
and !overrides. In the following definitions the variables R and S are assumed to range
over rule handles, while the implicit current state identifier D is assumed to range over
the possible database states. A rule is defeated if it is refuted or rebutted by some other
rule, assuming that the first rule is defeasible and the second rule is not compromised or
disqualified. We will define these notions shortly, but first we explain them informally. A
rule is refuted if a higher-priority rule implies a conclusion that is incompatible with the
conclusion implied by the refuted rule, A rule rebuts another rule if the two rules assert
conflicting conclusions and there is no way to resolve the conflict. A rule is compromised if
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it is defeated by some other rule, and a rule disqualified if that rule refutes itself.

$defeated(R) : − $refutes(S, R) ∧ not$compromised(S).
$defeated(R) : − $rebuts(S, R) ∧ not$compromised(S).
$defeated(R) : − $disqualified(R).
$refutes(R, S) : − $conflict(R, S) ∧ !overrides(R, S).
$conflict(R, S) : − $candidate(R),$candidate(S),!opposes(R, S).

(1)

A rule R rebuts another rule S if the two rules assert conflicting conclusions, but neither
rule is “more important” than the other, i.e., no preference can be inferred between the
two rules. This intuition can be expressed in several different ways, but we selected the one
below, which mimics the definition in [17].

$rebuts(R, S) :- $candidate(R) ∧ $candidate(S) ∧ (2)
!opposes(R, S) ∧ not$compromised(R) ∧
not$refutes(__ , R) ∧ not$refutes(__ , S).

The important difference here compared to [17] is that we are dealing with state-changing
actions and so all tests for refutation, rebuttal, and the like, must be hypothetical. This is
reflected in the definition of a rule candidate. We say that a rule instance is a candidate
if its body is hypothetically true in the current database state. The other two rules in the
group below specify the symmetry of !opposes and the fact that literals H and negH are
in conflict with each other.

$candidate(R):- body(R, B)⊗ ♦call(B). (3)
!opposes(X, Y ) :- !opposes(Y, X). (4)

!opposes(handle(__ , H), handle(__ , neg H)). (5)

A rule is compromised if it is defeated, and it is disqualified if it transitively refutes itself.
Here the predicate $refutestc denotes the transitive closure of $refutes.

$compromised(R) :- $refuted(R) ∧ $defeated(R).
$disqualified(X) :- $refutestc(X, X).
$refutestc(X, Y ) :- $refutes(X, Y ).
$refutestc(X, Y ) :- $refutestc(X, Z) ∧ $refutes(Z, Y ).

(6)

As in [17], one can define other versions of the above argumentation theory, which differ
from the above in various edge cases. However, defining such variations is tangential to the
main focus of the present paper.

6 Implementation, evaluation and related work

We implemented an interpreter for T RDA in XSB 3 and tested it on a number of examples,
including Example 2.1. The goal of these tests was to demonstrate how preferential heuristics
can be expressed in T RDA and to evaluate their effects on the efficiency of planning. Table
1 shows how the preferential heuristics of Example 2.1 fare in our tests. We can see that
the number of plans being searched decreases dramatically and so does the time and space.

3 http://xsb.sourceforge.net/

http://xsb.sourceforge.net/
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Table 1 Planing in blocks world with and without preferential heuristics

World size No heuristics Preferential heuristics

30 blocks
Plans 4060 28
Time(sec.) 2.390 0.438
Space(kBs) 3730 90

40 blocks
Plans 9880 38
Time(sec.) 7.000 1.219
Space(kBs) 8562 120

50 blocks
Plans 19600 48
Time(sec.) 17.109 2.938
Space(kBs) 16347 150

However, the time spent on generation of all those plans is not proportional to their number
because our implementation takes advantage of sharing of partially constructed plans among
the different searches due to tabling [9] even without the heuristics.

Although a great number of works deal with defeasibility in logic programming, few have
goals similar to ours: to lift defeasible reasoning from static logic programming to a logic for
expressing knowledge base dynamics, such as T R. As far as the actual chosen approach to
defeasible reasoning is concerned, this work is based on [17], and extensive comparison with
other works on defeasible reasoning can be found there. Although our work is not about
planning but rather about a general language for declarative programming with defeasible
actions, the closest works that we can possibly compare with are the works on planning
with preferences. T RDA is quite different from [15] in that it is a full-fledged logic that
combines both declarative and procedural elements, while [15] is geared towards specifying
preferences over planning solutions.Whereas T RDA deals with infinite domains and allows
function symbols, the approach in [15] considers only planning with complete information on
finite domains and deterministic actions. Thus, although the two approaches have common
applications in the area of planning, they target different knowledge representation scenarios.
Both the temporal and the choice preferences presented in [7]can be expressed in the T RDA

framework, although due to the difference in the semantics the exact relationship needs
further study. The framework [8] for planning with cost preferences assigns a numeric cost
to each action and plans with the minimal cost are considered to be optimal. Clearly, this
work uses a completely different type of preferences and tackles a different and very specific
problem in planning, which we do not address.

7 Conclusions

This paper proposes a theory of defeasible reasoning in Transaction Logic, an extension
of classical logic for representing both declarative and procedural knowledge. This new
logic, called T RDA, extends our prior work on defeasible reasoning with argumentation
theories from static logic programming to a logic that captures the dynamics in knowledge
representation. We also extend the Courteous style of defeasible reasoning [12] to incorporate
actions, planning, and other dynamic aspects of knowledge representation. We believe that
T RDA can become a rich platform for expressing heuristics about actions. The paper also
makes a contribution directly to the development of Transaction Logic itself by defining the
well-founded semantics for it and for its T RDA extension—a non-trivial adaptation of the
classical well-founded semantics of [16].
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