
Yet Another Characterization of Strong
Equivalence∗

Alexander Bochman1 and Vladimir Lifschitz2

1 Holon Institute of Technology, Israel
2 University of Texas at Austin, USA

Abstract
Strong equivalence of disjunctive logic programs is characterized here by a calculus that operates
with syntactically simple formulas.

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.3 Deduction and Theorem
Proving

Keywords and phrases Strong equivalence, logic program

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.11

1 Introduction

Logic programs Π1 and Π2 are said to be strongly equivalent to each other if, for every logic
program Π, the program Π1 ∪ Π has the same stable models as Π2 ∪ Π [4]. The study of
strong equivalence is important because we learn from it how one can simplify a part of a
logic program without looking at the rest of it. Characterizations of strong equivalence of
logic programs that allow us to establish it more easily than by using the definition directly
are given in [4], [6], and [7].

According to the main theorem of the first of these papers, grounded programs are
strongly equivalent to each other iff the equivalence between them can be proved in the logic
of here-and-there HT—the extension of intuitionistic propositional logic obtained by adding
to it the axiom schema

F ∨ (F → G) ∨ ¬G. (1)

This statement assumes that grounded rules are viewed as alternative notation for proposi-
tional formulas. Specifically, a disjunctive rule

A1; . . . ; Ak;not Ak+1; . . . ;not Al ← Al+1, . . . , Am,not Am+1, . . . ,not An (2)

(n ≥ m ≥ l ≥ k ≥ 0), where each Ai is an atom, is identified with the propositional formula

Al+1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An → A1 ∨ · · · ∨Ak ∨ ¬Ak+1 ∨ · · · ∨ ¬Al. (3)

In the special case when each rule of the program has the form (2) without negation in
head (l = k), strong equivalence can be characterized by a calculus that operates with such
rules directly, without rewriting them as propositional formulas [8]. This fact shows that

∗ This work was partially supported by the National Science Foundation under Grant IIS-0712113.

© Alexander Bochman and Vladimir Lifschitz;
licensed under Creative Commons License NC-ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 11–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.11
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


12 Yet Another Characterization of Strong Equivalence

under some conditions strong equivalence can be described in terms of derivations that do
not involve syntactically complex expressions, such as (1).

In this note we show that results of [1, Chapter 5] give us, implicitly, a calculus similar to
the one proposed in [8], slightly more general (negation in the head is allowed) and slightly
simpler (an inference rule with many premises is replaced by a rule with one premise). In
this modification of the calculus from [8], derivable objects are “flat implications”—arbitrary
formulas of the form (3). Negation in the head is important because it is needed to encode
the choice construct, frequently used in answer set programming [3]. For instance, the choice
rule

{p} ← q,not r

can be thought of as shorthand for

p;not p← q,not r.

2 Calculus of Flat Implications

A flat implication is a propositional formula of the form C → D, where C is a conjunction
of literals (possibly the empty conjunction >), and D is a disjunction of literals (possibly
the empty disjunction ⊥).

In the description of the calculus of flat implications CFI below, A is an atom; L is a
literal; C, C1, C2 are conjunctions of literals; D, D1, D2 are disjunctions of literals; N is a
disjunction of negative literals.

The calculus consists of two axiom schemas

A→ A, (4)

A ∧ ¬A→ ⊥ (5)

and three inference rules: cut

C1 → D1 ∨ L L ∧ C2 → D2

C1 ∧ C2 → D1 ∨D2
,

regularity
A ∧ C → N

C → N ∨ ¬A
,

and the structural rule
C → D

C1 → D1

where each member of C is a member of C1
and each member of D is a member of D1.

Theorem. A flat implication I is derivable from a set Π of flat implications in CFI iff I

is derivable from Π in HT.

In Section 4 we will show that this theorem is essentially a restatement of [1, Theo-
rem 5.36].

Corollary. For any sets Π1, Π2 of flat implications, the following conditions are equivalent:
Π1 is strongly equivalent to Π2,



Alexander Bochman and Vladimir Lifschitz 13

in the calculus of flat implications, each element of Π1 can be derived from Π2, and each
element of Π2 can be derived from Π1.

The main feature of CFI that distinguishes it from the calculus proposed in [8] is the
regularity rule, which takes advantage of the availability of negation in the heads of rules.

3 Examples

Example 1. We would like to verify that in the presence of the choice rule {p}, the rule
p← q can be replaced by the constraint ← q,not p. In other words, we want to show that
the program

{p}
p← q

is strongly equivalent to
{p}
← q,not p.

According to the corollary above, it is sufficient to derive in the calculus of flat implications

(a) q ∧ ¬p→ ⊥ from q → p;
(b) q → p from > → p ∨ ¬p and q ∧ ¬p→ ⊥.

Part (a):

1. q → p (assumption).
2. p ∧ ¬p→ ⊥ (axiom).
3. q ∧ ¬p→ ⊥ (by cut from 1 and 2).

Part (b):

1. > → p ∨ ¬p (assumption).
2. q ∧ ¬p→ ⊥ (assumption).
3. ¬p ∧ q → ⊥ (by the structural rule from 2).
4. q → p (by cut from 1 and 3).

Example 2. We would like to verify that the disjunctive program

p; q

← p, q

is strongly equivalent to the nondisjunctive program

p ← not q

q ← not p

← p, q.

It is sufficient to derive in the calculus of flat implications

(a) > → p ∨ q from the formulas

¬q → p, ¬p→ q, p ∧ q → ⊥;

(b) ¬q → p and ¬p→ q from the formulas

> → p ∨ q, p ∧ q → ⊥.

ICLP 2011



14 Yet Another Characterization of Strong Equivalence

Part (a):

1. p ∧ q → ⊥ (assumption).
2. q → ¬p (by regularity from 1).
3. > → ¬p ∨ ¬q (by regularity from 2).
4. ¬q → p (assumption).
5. > → ¬p ∨ p (by cut from 3 and 4).
6. > → p ∨ ¬p (by the structural rule from 5).
7. ¬p→ q (assumption).
8. > → p ∨ q (by cut from 6 and 7).

Part (b):

1. > → p ∨ q (assumption).
2. q ∧ ¬q → ⊥ (axiom).
3. ¬q → p (by cut from 1 and 2).

The derivation of ¬p→ q is similar.

4 Proof of the Theorem

According to [1], a bisequent is an expression of the form

a : b ‖− c : d (6)

where a, b, c, d are finite sets of atoms. Bisequents can be thought of as flat implications in
disguise if we agree to identify (6) with the formula∧

A∈a

A ∧
∧
A∈b

¬A →
∨
A∈c

A ∨
∨

A∈d

¬A.

From [1, Proposition 5.84] we see that, given this convention, stable models of a set Π of flat
implications are identical to the extensions of Π in the sense of [1, Definitions 5.7 and 5.8].

The characterization of strong-extension equivalence of bisequent theories given by [1,
Theorem 5.36] provides a characterization of strong equivalence of sets of flat implications in
terms of a calculus that is almost identical to CFI . The axioms of that calculus are our ax-
ioms (4) and (5) (called in the book positive reflexivity and consistency, see [1, Definitions 3.1
and 3.8]) plus the axiom schema

¬A→ ¬A (7)

(negative reflexivity, see [1, Definition 3.1]). Its inference rules are the inference rules of
CFI (monotonicity, positive cut, negative cut, and C-regularity, see [1, Definition 5.7 and
Section 3.2.5]). It remains to observe that (7) can be derived from (5) by one application of
the regularity rule.

The “only if” part of the theorem can be proved also by noting that all postulates of CFI
can be justified in HT . In fact, the axioms, the cut rule, and the structural rule are even
intuitionistically acceptable. As to the regularity rule, its conclusion can be intuitionistically
derived from its premise and the weak excluded middle axiom ¬A ∨ ¬¬A; the latter is
provable in HT (in the axiom schema (1), take A as F and ¬A as G). This line of reasoning
shows, incidentally, that on the level of flat implications the logic of here-and-there does not
differ from the logic of the weak excluded middle WEM—a fact known from [2].



Alexander Bochman and Vladimir Lifschitz 15

5 Conclusion

There is a certain degree of freedom when we decide which monotonic logic can be viewed
as the basis of the stable model semantics of disjunctive logic programs. From the results
of [4] and [2] we see that each of the systems HT and WEM can play this role; the theorem
presented in this note shows that CFI would do as well.

In [5], the theorem from [4] is extended to logic programs with variables and to a first-
order version of HT . It would be interesting to extend the property of CFI proved above
in a similar way.

6 Acknoweldgements

We are grateful to Fangzhen Lin and to the anonymous referees for useful comments.

References
1 Alexander Bochman. Explanatory nonmonotonic reasoning. World Scientific, 2005.
2 Dick De Jongh and Lex Hendriks. Characterization of strongly equivalent logic programs

in intermediate logics. Theory and Practice of Logic Programming, 3:259–270, 2003.
3 Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. Theory

and Practice of Logic Programming, 5:45–74, 2005.
4 Vladimir Lifschitz, David Pearce, and Agustin Valverde. Strongly equivalent logic pro-

grams. ACM Transactions on Computational Logic, 2:526–541, 2001.
5 Vladimir Lifschitz, David Pearce, and Agustin Valverde. A characterization of strong

equivalence for logic programs with variables. In Procedings of International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 188–200, 2007.

6 Fangzhen Lin. Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In Proceedings of International Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 170–176, 2002.

7 Hudson Turner. Strong equivalence made easy: nested expressions and weight constraints.
Theory and Practice of Logic Programming, 3(4,5):609–622, 2003.

8 Ka-Shu Wong. Sound and complete inference rules for SE-consequence. Journal of Artificial
Intelligence Research, 31:205–216, 2008.

ICLP 2011


	Introduction
	Calculus of Flat Implications
	Examples
	Proof of the Theorem
	Conclusion
	Acknoweldgements

