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—— Abstract

The goal of this paper is to show consistency techniques methods and hybrid stochastic/determin-
istic models to describe biochemical systems and their behaviour through the ordinary differential
equations.
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1 Introduction and problem description

In this paper, we investigate hybrid methods based on simulation of stochastic and determ-
inistic models for biochemical systems, with consistency techniques in ordinary differential
equations to have a preliminary vision on dissimilar methods to simulate different biochemical
systems in Biocham.

2 Background and overview of the existing literature

System biology is an interdisciplinary science, integrating experimental activity and mathem-
atical modeling, which studies the dynamical behaviors of biological systems. An important
problem in the modeling these systems is to characterize the dependence of certain properties
on time and space. One frequently applied strategy is the description of the change of
state variables by differential equations. If only temporal changes are considered, ordinary
differential equations (ODEs) are used; for changes in time and space, partial differential
equations are appropriate [3].

A variety of formalisms for modeling biological systems has been proposed in literature but
in this paper we want to investigate only the consistency techniques in ordinary differential
equations [2] and a new hybrid stochastic and deterministic model for biochemical systems [1].
There are two formalisms for mathematically describing the time behavior of a spatially
homogeneous chemical system: the deterministic approach and the stochastic approach.
The deterministic approach regards the time evolution as a continuous, wholly predictable
process which is governed by a set of coupled, ordinary differential equations (the "reaction-
rate equations"). The stochastic approach regards the time evolution as a kind of random-walk
process which is governed by a single differential-difference equation (the "master equation").
Fairly simple kinetic theory arguments show that the stochastic formulation of chemical
kinetics has a firmer physical basis than the deterministic formulation, but unfortunately the
stochastic master equation is often mathematically intractable [7].

There is also a way to make exact numerical calculations within the framework of the
stochastic formulation without having to deal with the master equation directly. We are
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talking about the Monte Carlo procedure to numerically simulate the time evolution of the
given chemical system. Like the master equation, this "stochastic simulation algorithm'"
correctly accounts for the inherent fluctuations and correlations that are necessarily ignored
in the deterministic formulation. Moreover this algorithm never approximates infinitesimal
time increments dt by finite time steps At. The feasibility and utility of the simulation
algorithm are demonstrated by applying it to several well-known model chemical systems,
including the Lotka model, the Brusselator, and the Oregonator [7].

3 Goal of the research

How we have explained in the previous section, the ordinary differential equations (ODEs)
play a crucial role in the deterministic model. A first order (ODE) system O is a system of
the form
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In [2] the author uses the vector representation u () = f(t,u(t)) or more simply u =
f(t,u). At this point, there are two assumptions:

(1) the function f is sufficiently smooth;
(2) the existence and uniqueness of a solution.

Now, given an initial condition u(tg) = uo and for the second assumption, the solution of O
is a function s* : R — R? satisfying O and the initial condition s*(tg) = ug.

Although for some classes of ODEs the solution can be represented in closed form,
most ODE systems cannot be solved explicitly [2]. The discrete variable method aim at
approximating the solution s*(t) of any ODE system, not over a continuous range of ¢,
but only at some points tg, t1, ..., t;,. This method include one-step methods and multi-step
methods; in general these methods do not guarantee the existence of a solution within a
given bound.

The interval analysis method instead, was introduced by Moore [16] in 1966. These methods
provide numerically reliable enclosures of the exact solution at points tg, t1, ..., t;,. To achieve
the result, they typically apply a one-step Taylor interval method and make extensive use of
automatic differentiation to obtain the Taylor coefficients[2].

The major problem of interval analysis methods on ODE systems is the explosion of the
size of resulting boxes at point tg, t1, ..., t,,. For the author, there are two reasons for this
explosion: at first this method has a tendency to accumulate errors from point to point,
second the approximation of an arbitrary region by a box (wrapping effect) may introduce
considerable loss of accuracy after a number of steps.

For all these reasons, in[17, 2] they show how to provide a unifying framework to
extend traditional numerical techniques to intervals providing reliable enclosures. The first
contribution is to extend explicit and implicit, one-step and multi-step methods to intervals.
The second one is to generalize interval techniques into a two-step process: a forward process
(to compute an enclosure) and a backward process (to reduce this enclosure).
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4  Current status of the research

The stochastic effects play an important role in biological processes leading to an increase
in stochastic modelling attempts. The main problem related to the stochastic simulations
regards times and computations which are very expensive [1].

The stochastic models have gained considerable attention when experiments conducted at
the level of single cells showed the existence of a non-negligible level of noise in intracellular
processes, like transcriptions and translation [4]. The dynamics of a stochastic system
is described by the chemical master equation and in the 1976 Gillespie devised two exact
algorithms to numerically simulate the stochastic time evolution of coupled chemical reactions,
which are equivalent to solving the chemical master equation [7]. Only recently, modifications

to the original chemical master equation have been proposed to further speed up simulations.

The most important methods involve the averaging over fast reactions [8], application of
quasi-steady-state theory [9], grouping together reactions that occur in fast succession [10].

Another strategy is to model those processes that either involve large number of particles
or have fast rates, in a deterministic way, keeping stochastic the remaining ones [1]. There
are two recent algorithms to simulate biochemical systems in such hybrid framework that
have been proposed [11, 12]. In both cases, the main idea is to first predict the time in which
a stochastic event should occur and then evolve the system of ordinary differential equations.
At specific instant in time, the system is updated, and it is checked whether the stochastic
event has to be performed or not. Instead in [1] the authors propose a rigorous mathematical
ground for hybrid stochastic and deterministic modelling in a natural way. There are three
different algorithms: the direct hybrid method, the first reaction hybrid method and the
next reaction hybrid method. The main difference between the first two approaches and
the second one is essentially one: they are based on a prediction correction heuristic for the
realization of the stochastic part that can be seen as an approximation to the simultaneous
solution of the system of ODEs which in [1] are precisely calculated.

Consider N chemical species Sq, ..., Sy involved in M reactions Ry, ..., Ry;. Chemical
species are modelled in terms of number of molecules X (t) = (X1 (t), ...,
Xn(t)). The reaction rate for each reaction R; is specified by a so-called propensity function
a; = a;(X(t),t), which is equal to the product rate constant ¢; and the number of possible
combinations of reactant molecules involved in reaction R;. Once a reaction R; is performed,
the number of molecules for each species is updated according to the state change vector v;,
ie., X(t) < X(t) +v; [1].

The deterministic model is based on the law of mass action, where a system of coupled
ordinary differential equations (ODEs) is established for the time evolution of the number of
molecules X (t) € RY

M
LX) =Y v (X(0).0) 1)

with some initial value X (to) € RY. While the system should be described as a vector
of integers, this model needs real values for X (¢). This is however acceptable under the
assumption of large number of molecules (X;(¢) >> 1) so that the relative error can be
neglected [1].

The stochastic model is based on physical laws and the idea that chemical reactions
are essentially random processes, the stochastic formulation of chemical reactions is given
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in terms of a Markov jump process X (t) € NV [13]. Its characterization is based on the
probability a;(X (t),t)dt of a reaction R; occurring in the next infinitesimal time interval
[t,t + dt]. Denoting by Tj(t) the time at which reaction R; first occur after ¢, this amounts
to write that

P[T;(t) € [t,t + dt]| X (t)] = a; (X (1), t)dt. (2)

In [1] the authors consider a partition of the reactions Ry, ..., Ry into those modelled
stochastically (labeled with index j € §) and those modelled deterministically (labeled with
index j € D). Now we can write the evolution equation for X (¢) € RN which is given by the
following hybrid system

dX () =Y vja;(X(t),t)dt + > v;dN;(t) (3)

JjED jeS
To partition the reactions the authors suggest some methods:

run a fully stochastic realization and analyze the frequencies/propensities of each reaction;
use biological insight (i.e. in [1] the authors say that seems reasonable to model gene
regulatory parts stochastically, while metabolic reactions deterministically);

for each reaction choose adaptively between two approaches using a criterion based on
the number of the molecules and its propensity function.

To check if the algorithms based on hybrid model (direct hybrid method, first and
next reaction methods) obtained good results they tested them in a intracellular growth of
bacteriophage T7 derived by [14]. From the experiment appears that the hybrid simulations
are about 100 times as fast as the fully stochastic ones without compromising the results
accuracy (fig. 1).
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Figure 1 Hybrid kinetics for the bacteriophage T7 model (reaction Ri, Rz, R3 and R4 modelled
stochastically, reactions Rs and Re modelled deterministically) compared to the the reference fully
stochastic model (based on 10* realizations) [1].

5  Preliminary results accomplished

The goal is to implement in Biocham some techniques to realize hybrid simulation, combining
different kinds and different nature models, in a qualitative and quantitative optical, with
discrete and continue dynamics. The solution is to provide the specific language with a
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multi level description mechanism for the modelization; the second step is to distinguish in
the formalism, the common characteristics from the details. At last we want to specify the
criteria to change, during the simulation, the formalism.

6 Open issues and expected achievements

The importance of precise analysis to study and comprise biological phenomena involve
different kind of models. On the one hand, it is necessary to describe some parts in a
rigorous and accurate numerical method (for example methods based on ordinary differential
equations or stochastic methods). On the other hand, the lack of evidence, drives the analysis
on purely qualitative models (boolean or discrete models).
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