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Computational Geometry and its Evolution

The field of computational geometry is concerned with the design, analysis, and implementa-
tion of algorithms for geometric problems, which arise in a wide range of areas, including
computer graphics, CAD, robotics computer vision, image processing, spatial databases, GIS,
molecular biology, and sensor networks. Since the mid 1980s, computational geometry has
arisen as an independent field, with its own international conferences and journals.

In the early years mostly theoretical foundations of geometric algorithms were laid and
fundamental research remains an important issue in the field. Meanwhile, as the field ma-
tured, researchers have started paying close attention to applications and implementations
of geometric algorithms. Several software libraries for geometric computation (e.g. LEDA,
CGAL, CORE) have been developed. Remarkably, this emphasis on applications and imple-
mentations has emerged from the originally theoretically oriented computational geometry
community itself, so many researchers are concerned now with theoretical foundations as
well as implementations.
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Seminar Topics

The emphasis of the seminar was on presenting the recent developments in the field as well
as identifying new challenges. We have identified a few broad topics, listed below, that cover
both theoretical and practical issues in computational geometry and that we believe are some
of the most interesting subareas in the field.

Theoretical foundations of computational geometry lie in combinatorial geometry and
its algorithmic aspects. They are of an enduring relevance for the field, particularly the
design and the analysis of efficient algorithms require deep theoretical insights.

Various applications such as robotics, GIS, or CAD lead to interesting variants of the
classical topics originally investigated, including convex hulls, Voronoi diagrams and
Delaunay triangulations, and geometric data structures. For example, Voronoi diagrams
and nearest-neighbor data structures under various metrics have turned out to be useful
for many applications and are being investigated intensively.

Because of applications in molecular biology, computer vision, geometric databases, shape
analysis has become an important topic. Not only it It raises many interesting geometric
questions ranging from modeling and reconstruction of surfaces to shape similarity and
classification, but it has also led to the emergence of the so-called field computational
topology.

In many applications the data lies in very high dimensional space and typical geometric
algorithms suffer from the curse of dimensionality. This has led to extensive work on
dimension-reduction and embedding techniques.

Massive geometric data sets are being generated by networks of sensors at unprecedented
spatial and temporal scale. How to store, analyze, query, and visualize them has
raised several algorithmic challenges. New computational models have been proposed to
meet these challenges, e.g., streaming model, communication-efficient algorithms, and
maintaining geometric summaries.

Implementation issues have become an integral part of the research in computational
geometry. Besides general software design questions especially robustness of geometric
algorithms is important. Several methods have been suggested and investigated to make
geometric algorithms numerically robust while keeping them efficient, which lead to
interaction with the field of computer algebra, numerical analysis, and topology.

Participants

53 researchers from various countries and continents attended the meeting. This high number
shows the strong interest of the community for this event. The feedback from participants
was very positive.

Dagstuhl seminars on computational geometry have been organized since 1990, lately
in a two year rhythm. They have been extremely successful both in disseminating the
knowledge and identifying new research thrusts. Many major results in computational
geometry were first presented in Dagstuhl seminars, and interactions among the participants
at these seminars have led to numerous new results in the field. These seminars have also
played an important role in bringing researchers together and fostering collaboration. They
have arguably been the most influential meetings in the field of computational geometry.

A session of this Seminar was dedicated to our dear friend Hazel Everett, deceased on
July 20th, 2010.
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The place itself is a great strength of the Seminar. Dagstuhl allows people to really meet
and socialize, providing them with a wonderful atmosphere of a unique closed and pleasant
environment, which is highly beneficial to interactions.

Therefore, we warmly thank the scientific, administrative and technical staff at Schloss

Dagstuhl!
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3 Overview of Talks

3.1 Computing the depth of an arrangement of axes-parallel rectangles
in parallel

Helmut Alt (FU Berlin, DE)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Helmut Alt
Joint work of Alt, Helmut; Hagerup, Torben; Scharf, Ludmila

We consider the problem of determining the depth of an arrangement of axes parallel
rectangles in the plane, i.e., the highest number of rectangles intersecting in one point.
Sequentially, standard procedures have quadratic runtime since the size of the arrangement
is quadratic in the number of rectangles. However, O(nlogn) algorithms are known for this
problem.

We design parallel algorithms for this problem. We consider a structure related to interval
trees which is traversed top-down level by level propagating and adjusting the information
belonging to the interval associated to a node from parent to child. We obtain a parallel
runtime of O(log?n) with a total of O(n log n) operations or a parallel runtime of O(logn)
with O(n{1 4 ¢)) operations for any constant & > 0.

3.2 Memory-constrained algorithms
Tetsuo Asano (JAIST — Nomi, JP)

License © @ ( Creative Commons BY-NC-ND 3.0 Unported license
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Main reference T. Asano, W. Mulzer, and Y. Wang, “Constant-Work-Space Algorithm for a Shortest Path in a
Simple Polygon,” Invited talk, Proc. 4th International Workshop on Algorithms and Computation,
WALCOM, Dhaka, Bangladesh, 2010, LNCS 5942, pp.9-20.s
URL http://dx.doi.org/10.1007/978-3-642-11440-3_2

In this talk I will introduce algorithms with limited work space, which are desired for
applications to highly functional hardware such as scanners, digital cameras, and Android
cellular phones. One extreme set of memory- constrained algorithms have been studied
under the name of log-space algorithms which use only O(logn) bits for their work space.
This talk starts with a simple example of a memory-constrained algorithms based on a
general paradigm for designing such algorithms. Then, it is extended to a problem on image
processing, where work space of square root of an input size is more realistic. A practically
efficient algorithm with work space of O(y/nlogn) bits is given for a problem of extracting
an interesting region in a given color image.
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3.3 Rips complexes for Shape Reconstruction
Dominique Attali (GRIPSA Lab — Saint Martin d’Héres, FR)
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Main reference D. Attali, A. Lieutier and D. Salinas, “Vietoris-Rips complexes also provide topologically correct
reconstructions of sampled shapes,” Proc. 27th Ann. Sympos. Comput. Geom., Paris, France,
June 13-15 2011
URL http://hal.archives-ouvertes.fr/hal-00579864/en/

We associate with each compact set X of R™ two real-valued functions cx and hx defined on
R* which provide two measures of how muchl the set X fails to be convex at a given scale.
First, we show that, when P is a finite point set, an upper bound on cp(t) entails that the
Rips complex of P at scale r collapses to the Cech complex of P at scale r for some suitable
values of the parameters ¢t and r. Second, we prove that, when P samples a compact set X,
an upper bound on hyx over some interval guarantees a topologically correct reconstruction
of the shape X either with a Cech complex of P or with a Rips complex of P. Regarding the
reconstruction with Cech complexes, our work compares well with previous approaches when
X is a smooth set and surprisingly enough, even improve constants when X has a positive
p-reach. Most importantly, our work shows that Rips complexes can also be used to provide
topologically correct reconstruction of shapes. This may be of some computational interest
in high dimension.

3.4 The Height of a Homotopy
Erin Moriarty Wolf Chambers (St. Louis University, US)
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In our paper in CCCG 2009, we examined the problem of computing the height of a homotopy.

This can be phrased as a very combinatorial problem, and indeed has been studied in at
least one very different context, submodular percolation. We proved several properties of
homotopies that obtain the minimum height value, but were unable to completely characterize
or compute the minimum height homotopy. More recently, new work has been completed to
compute an O(logn) approximation, but again no exact algorithms or hardness results are
known. We will survey known results and techniques for this problem.

3.5 A Generalization of Kakeya’'s Problem
Otfried Cheong (KAIST — Daejeon, KR)

License @ @  Creative Commons BY-NC-ND 3.0 Unported license
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Given a not necessarily finite family F' of line segments, we show that the smallest-area
convex figure P such that every segment in F' can be translated to lie in P can always be
chosen to be a triangle.

This generalizes the result by Pal from 1921 for the case where F' contains a unit-length
segment of every possible orientation.
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Our result can be rephrased as follows: Given a convex figure P, there is always a triangle
T of area at most the area of P such that for every possible direction, the width of T" in that
direction is not less than the width of P in that direction.

We also given an algorithm that computes the smallest-area triangle as above when the
input F is a set of n line segments in time O(nlogn).

3.6 Star Trek Replicators via Staged Assembly
Erik D. Demaine (MIT — Cambridge, US)
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Tile self-assembly is an intriguing approach to manufacturing desired shapes with nano-scale
feature size. A recent direction in this theory allows the use of multiple stages—operations
performed by the experimenter, such as mixing two self-assembling systems together. This
flexibility transforms the experimenter from a passive entity into a parallel algorithm, and
vastly reduces the number of distinct parts required to construct a desired shape, possibly
making the systems practical to build. The staged-assembly perspective also enables the
possibility of additional operations, such as adding an enzyme that destroys all tiles with a
special label. By enabling destruction in addition to the usual construction, we can perform
tasks impossible in a traditional self-assembly system, such as replicating many copies of a
given object’s shape, without knowing anything about that shape, and building an efficient
nano computer.

3.7 The Effect of Noise on the Number of Extreme Points
Olivier Devillers (INRIA Sophia Antipolis, FR)
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Joint work of Attali, Dominique; Devillers, Olivier; Goaoc, Xavier
Main reference D. Attali, O. Devillers, X. Goaoc, “The Effect of Noise on the Number of Extreme Points”,
Research Report 7134, INRIA, 2009.
URL http://hal.inria.fr/inria-00438409/

Assume that Y is a noisy version of a point set X in convex position. How many vertices
does the convex hull of Y have, that is, what is the number of extreme points of Y7

We consider the case where X is an (e, x)-sample of a sphere in R? and the noise is random
and uniform: Y is obtained by replacing each point x € X by a point chosen uniformly at
random in some region S(x) of size § around x. We give upper and lower bounds on the
expected number of extreme points in Y when S(z) is a ball (in arbitrary dimension) or an
axis-parallel square (in the plane). Our bounds depend on the size n of X and §, and are
tight up to a polylogarithmic factor. These results naturally extend in various directions
(more general point sets, other regions S(x)...).

We also present experimental results, showing that our bounds for random noise provide
good estimators of the behavior of snap-rounding, that is when Y is obtained by rounding
each point of X to the nearest point on a grid of step 4.
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3.8 Improved Bound for the Union of Fat Triangles
Esther Ezra (New York University, US)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Ezra, Esther; Aronov, Boris; Sharir, Micha
Main reference E. Ezra, B. Aronov, M. Sharir, “Improved Bound for the Union of Fat Triangles,” Proc. 22nd
Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’11), to appear.
URL http://www.cims.nyu.edu/ esther/Publications/fatri.pdf

We show that, for any fixed 6 > 0, the combinatorial complexity of the union of n triangles
in the plane, each of whose angles is at least d, is O(n2*(") log* n), with the constant of
proportionality depending on §. This considerably improves the twenty-year-old bound
O(nloglogn), due to Matousek etal.

3.9 Exact Solutions and Bounds for General Art Gallery Problems
Sandor Fekete (TU Braunschweig, DE)
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Joint work of Fekete, Sdndor; Kroller, Alexander; Schmidt, Christiane; Kamphans, Tom; Baumgartner, Tobias
Main reference Proceedings of the STAM-ACM Workshop on Algorithm Engineering and Experiments
(ALENEX’10), pp. 11-22.
URL http://www.siam.org/proceedings/alenex/2010/alx10__002_ baumgartnert.pdf

The classical Art Gallery Problem asks for the minimum number of guards that achieve
visibility coverage of a given polygon. This problem is known to be NP-hard, even for very
restricted and discrete special cases. For the general problem (in which both the set of possible
guard positions and the point set to be guarded are uncountable), neither constant-factor
approximation algorithms nor exact solution methods are known. We present a primal-dual
algorithm based on linear programming that provides lower bounds on the necessary number
of guards in every step and (in case of convergence and integrality) ends with an optimal
solution. We describe our implementation and give results for an assortment of polygons,
including non-orthogonal polygons with holes.

3.10 Range Queries in Distributed Networks
Jie Gao (SUNY - Stony Brook, US)

License @ @ ( Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Gao, Jie; Sarkar, Rik

Consider mobile targets moving in a plane and their movements being monitored by a network
such as a field of sensors. We develop distributed algorithms for in-network tracking and
range queries for aggregated data (for example returning the number of targets within any
user given region). Our scheme stores the target detection information locally in the network,
and answers a query by examining the perimeter of the given range. The cost of updating
data about mobile targets is proportional to the target displacement.
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The key insight is to maintain in the sensor network a function with respect to the target
detection data on the graph edges that is a differential one-form such that the integral of
this one-form along any closed curve C gives the integral within the region bounded by C.

3.11 Intersection patterns of convex sets
Xavier Goaoc (INRIA Lorraine, FR)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Colin de Verdi¢re, Eric; Ginot, Grégory; Goaoc, Xavier
Main reference Eric Colin de Verdiere, Gregory Ginot, Xavier Goaoc, “Helly numbers of acyclic families,”
arXiv:1101.6006v2
URL http://arxiv.org/abs/1101.6006

The Helly number of a family of sets (with empty intersection) is the size of its largest
inclusion-wise minimal sub-family with empty intersection. We show how techniques from
homology theory lead to fairly general conditions under which the Helly number of a family
can be bounded.

Our typical result is along the following lines: "if F' is a family of sets in R? such that
the intersection of any subfamily has at most r connected components, each of which is a
homology cell then the Helly number of F is at most r(d+1)". This result can be generalized
so as to imply, in a unified way, bounds on Helly numbers in geometric transversal theory
that had previously been studied by ad hoc techniques.

3.12 On Path Quality in Sampling-Based Motion Planning
Dan Halperin (Tel Aviv University, IL)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Angela Enosh, Angela; Halperin, Dan; Nechsushtan, Oren; Raveh, Barak
Main reference (1) Raveh-Enosh-Halperin, A Little More, a Lot Better: Improving Path Quality by a

Path-Merging Algorithm, IEEE Trans. on Robotics, 27/2, 2011, pp 365-371.
(2) Nechushtan-Raveh-Halperin, Sampling-Diagram Automata: A Tool for Analyzing Path Quality
in Tree Planners, WAFR 2010.

URL http://acg.cs.tau.ac.il/projects

Sampling-based motion planners are a central tool for solving motion-planning problems in a
variety of domains, but the theoretical understanding of their behavior remains limited, in
particular with respect to the quality of the paths they generate (in terms of path length,
clearance, etc.). We prove, for a simple family of obstacle settings, that the popular dual-tree
planner Bi-RRT may produce low-quality paths that are arbitrarily worse than optimal with
modest but significant probability, and overlook higher-quality paths even when such paths
are easy to produce. At the core of our analysis are probabilistic automata designed to reach
an accepting state when a path of significantly low quality has been generated.

Complementary experiments suggest that our theoretical bounds are conservative and
could be further improved. We also present a method to improve path quality by merging
an arbitrary number of input motion paths into a hybrid output path of superior quality, for
a broad and general formulation of path quality. Our approach is based on the observation
that the quality of certain sub-paths within each solution may be higher than the quality of
the entire path.
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3.13 Algorithms for Persistent Homology
Michael Kerber (IST Austria — Klosterneuburg, AT)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
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Persistent homology is a quickly-growing area of research in the analysis of topological spaces.
One reason for its success is the existence of an efficient algorithm to solve the problem using
Gaussian elimination. I will present two recent results in this context. First, I show a simple
optimization technique of the default algorithm that avoids column operations on roughly
half of the columns.

This yields both significant practical improvements, and provides new insights on the
complexity of persistence for certain special cases.

Second, I will present a divide-and-conquer approach to compute persistence based on
rank computations of submatrices instead of Gaussian elimination.

The algorithm only outputs homology classes with persistence larger than a given threshold,
and permits an output-sensitive complexity analysis. In particular, using a Monte-Carlo
algorithm for rank computation and assuming that the number of returned classes is log-
arithmic in the input size, an quadratic algorithm for persistence computation is achieved,
modulo logarithmic factors.

3.14 Polygonal paths of bounded curvature
David G. Kirkpatrick (University of British Columbia — Vancouver, CA)

License @ @ (@ Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Kirkpatrick, David G.; Polishchuk, Valentin

In one of the seminal papers [Dubins57] in non-holonomic motion planning, L.E. Dubins
developed a strong characterization of minimum length curves of bounded curvature joining
fixed initial and final configurations (specified by position and direction): in the absence of
obstacles, such paths consist of two (possibly degenerate) circular arcs joined by either a
straight line segment or a third circular arc. Dubins’ original proof uses advanced calculus;
subsequently the same result was reproved using control-theoretic techniques.

We revisit bounded-curvature in the context of polygonal paths (paths consisting of a
sequence of straight line segments) and formulate a natural notion of bounded-curvature
for such paths. While polygonal paths clearly violate curvature bounds in sufficiently small
neighbourhoods, our notion still manages to capture the less restrictive constraint that
they “do not turn too sharply”. We present an elementary and purely geometric proof of a
characterization result, analogous to that of Dubins, for minimum length polygonal paths
satisfying our bounded curvature property. This not only provides a discrete analogue of
continuous motion of bounded curvature, but it also gives a fundamentally new proof of
Dubins’ original result as a limiting case of our constructions.
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3.15 VC Dimension of Visibility
Rolf Klein (Universitit Bonn, DE)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Rolf Klein
Main reference A. Gilbers and R. Klein, “A New Upper Bound For the VC-Dimension of Visibility Regions,” Proc.
27th ACM Symp. on Computational Geometry (SoCG’11), pp.380-386.
URL http://doi.acm.org/10.1145/1998196.1998259

We lower the upper bound for the VC dimension of visibility in simple polygons from 23 to
14.

3.16 The complexity of Ham-Sandwich cuts in high dimension
Christian Knauer (Universitit Bayreuth, DE)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Christian Knauer

We study a canonical decision problem arising from the Ham-Sandwich cut theorem. We show
it to be W[1]-hard (and NP-hard) if the dimension is part of the input. This is done by an
fpt-reduction (which is actually a ptime-reduction) from the d-SUM problem. Our reduction
also implies that the problem cannot be solved in time n°® unless the Exponential-Time
Hypothesis (ETH) is false.

3.17 On the topology of plane algebraic curves
Sylvain Lazard (INRIA - Nancy, FR)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Sylvain Lazard
Joint work of Lazard, S.; Bouzidi, Y.; Cheng, J.; Penaranda, L.; Pouget, M.; Rouillier, F.; Tsigaridas, E.

I will present some recent results on the computation of the topology of planar algebraic
curves. Our approach is based on a rectangular decomposition of the plane, instead of the
standard CAD, which has the advantage of being oblivious to degenerate configurations. It
is also based on a new algorithm for computing the critical points of the input curve. We
first decompose the corresponding system into subsystems according to the number of roots
(counted with multiplicities) in vertical lines, as presented by Gonzalez-Vega and Necula
in 2002. We then show how these systems can be efficiently solved by computing their
lexicographic Grobner bases and Rational Univariate Representations. We also show how
this approach can be performed using modular arithmetic, while remaining deterministic.
We finally demonstrate that our approach yields a substantial gain of a factor between 1 to
200 on curves of degree up 40 compared to state-of-the-art implementation.
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3.18 The Phsyarum Computer
Kurt Mehlhorn (MPI fir Informatik - Saarbriicken, DE)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Kurt Mehlhorn

Physarum is a slime mold. It was observed over the past 10 years that the mold is able to solve
shortest path problems and to construct good Steiner networks (Nakagaki-Yamada-Toth,
Tero-Takagi-et al). In a nutshell, the shortest path experiment is as follows: A maze is built
and the mold is made to cover the entire maze. Food is then provided at two positions s and
t and the evolution of the slime is observed. Over time, the slime retracts to the shortest
s-t-path.

A mathematical model of the slime’s dynamic behaviour was proposed by Tero-Kobayashi-
Nakagaki.

Extensive computer simulations confirm the experimental findings; the slime retracts
to the shortest path. We (joint work with Vincenzo Bonifaci, Girish Varma) have recently
proved convergence.

I will start with a video showing the mold in action. Then I review the mathematical
model, explain the computer simulation, and run some computer experiments. Next, I will
discuss how we formulated the right conjecture based on computer experiments. Finally, I
will briefly discuss the convergence proof.

3.19 Recent Progress on Some Covering Tour Problems
Joseph S. Mitchell (SUNY — Stony Brook, US)

License @ @ ® Creative Commons BY-NC-ND 3.0 Unported license
© Joseph S. Mitchell
Joint work of Mitchell, Joseph S.; Arkin, E.; Polishchuk, V.; Yang, S.

We give some recent results on some covering tour problems:

(1) We answer the question initially posed by Arik Tamir at the Fourth NYU Computa-
tional Geometry Day (March, 1987):

“Given a collection of compact sets, can one decide in polynomial time whether there
exists a convex body whose boundary intersects every set in the collection?”

We prove that when the sets are segments in the plane, deciding existence of the convex
stabber is NP-hard. We also show that in 3D the stabbing problem is hard when the sets are
balls. On the positive side, we give a polynomial-time algorithm to find a convex polygonal
transversal (on a given discrete set of vertices) of a maximum number of segments in 2D if the
segments are pairwise-disjoint. Our algorithm also finds a convex stabber of the maximum
number of a set of polygonal pseudodisks in the plane.

The stabbing problem is related to “convexity” of point sets and polygons, measured as
the minimum distance by which the points/polygons must be shifted in order that there is a
convex stabber.

(2) Watchman routes in polygons with holes: We prove a lower bound of Q(logn) on
approximation, from SET-COVER. We also give an O(logn)-approximation algorithm for
the capae that a certain “bounded perimeter assumption” holds.
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3.20 Natural Neighbor Interpolation Based Grid DEM Construction
Using a GPU

Thomas Molhave (Duke University, US)

License © @  Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Beutel, Alex; Mglhave, Thomas; Agarwal, Pankaj K.
Main reference Natural Neighbor Interpolation Based Grid DEM Construction Using a GPU. Alex Beutel,
Thomas Malhave, Pankaj K. Agarwal. GIS ’10: Proceedings of the 18th ACM SIGSPATIAL
International Symposium on Advances in Geographic Information Systems, 2010.
URL http://dx.doi.org/10.1145/1869790.1869817

With modern LiDAR technology the amount of topographic data, in the form of massive
point clouds, has increased dramatically.

One of the most fundamental GIS tasks is to construct a grid digital elevation model
(DEM) from these 3D point clouds. In this paper we present a simple yet very fast algorithm
for constructing a grid DEM from massive point clouds using natural neighbor interpolation
(NNT). We use a graphics processing unit (GPU) to significantly speed up the computation.
To handle the large data sets and to deal with graphics hardware limitations clever blocking
schemes are used to partition the point cloud. For example, using standard desktop computers
and graphics hardware, we construct a high-resolution grid with 150 million cells from two
billion points in less than thirty-seven minutes. This is about one-tenth of the time required
for the same computer to perform a standard linear interpolation, which produces a much
less smooth surface

3.21 Tight bounds for epsilon-nets
Janos Pach (EPFL — Lausanne, CH)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
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According to a well known theorem of Haussler and Welzl (1987), any range space of bounded
VC-dimension admits an e-net of size O (% log %) Using probabilistic techniques, Pach and
Woeginger (1990) showed that there exist range spaces of VC-dimension 2, for which the
above bound is sharp. The only known range spaces of small VC-dimension, in which the
ranges are geometric objects in some Euclidean space and the size of the smallest e-nets is

superlinear in %, were found by Alon (2010). In his examples, the size of the smallest e-nets

is Q (%g(%)), where ¢ is an extremely slowly growing function, closely related to the inverse
Ackermann function.

We show that there exist geometrically defined range spaces, already of VC-dimension
2, in which the size of the smallest e-nets is §2 (% log %) We also construct range spaces
induced by axis-parallel rectangles in the plane, in which the size of the smallest e-nets is

Q (% log log %) By a theorem of Aronov, Ezra, and Sharir (2010), this bound is tight.
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3.22 Double Permutation Sequences and Arrangements of Planar
Families of Convex Sets

Richard Pollack (New York University, US)

License @ @ @ Creative Commons BY-NC-ND 3.0 Unported license
© Richard Pollack

We (re)introduce Double Permutation Sequences, which provide a combinatorial encoding of
arrangements of convex sets in the plane. We also recall the notion of a topological affine
plane and several (some new) of its properties.

In particular, that there is a universal topological affine plane P (i.e. any finite arrangement
of pseudolines is isomorphic to some arrangement of finitely many lines of P).

All of this work is joint with Jacob E. Goodman and some involves numerous other people,
among whom are Raghavan Dhandapani, Andreas Holmsen, Shakhar Smorodinsky, Rephael
Wenger, and Tudor Zamfirescu.

3.23 Shortest Paths in Time-Dependent FIFO Networks
Joerg-Ruediger Sack (Carleton University — Ottawa, CA)

License @ @ (& Creative Commons BY-NC-ND 3.0 Unported license
© Joerg-Ruediger Sack
Main reference F.Dehne, M.T.Omran, and J.-R.Sack, “Shortest paths in time-dependent FIFO networks,”
Algorithmica, to appear

In this talk, we study the time-dependent shortest paths problem for two types of time-
dependent FIFO networks. First, we consider networks where the availability of links, given
by a set of disjoint time intervals for each link, changes over time. Here, each interval is
assigned a non-negative real value which represents the travel time on the link during the
corresponding interval.

The resulting shortest path problem is the time-dependent shortest path problem for
availability intervals, which asks to compute all shortest paths to any (or all) destination
node(s) d for all possible start times at a given source node s. Second, we study time-
dependent networks where the cost of using a link is given by a non-decreasing piece-wise
linear function of a real-valued argument.

Here, each piece-wise linear function represents the travel time on the link based on the
time when the link is used. The resulting shortest paths problem is the time-dependent
shortest path problem for piece-wise linear functions which asks to compute, for a given
source node s and destination d, the shortest paths from s to d, for all possible starting times.

We present an algorithm for both problems which improve significantly on the previously
known algorithms.
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3.24 Can Nearest Neighbor Search be Simple and always Fast?
Raimund Seidel (Universitit des Saarlandes, DE)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Raimund Seidel

We show that any method for nearest neighbor search that is simple, in the sense that the
only operations involving query points are distance to site comparisons, cannot be fast on
all inputs. In particular we show that any such methods can be forced to make n — 1 such
comparisons for some input, where n ist the number of sites.

3.25 From joints to distinct distances and beyond: The dawn of an
algebraic era in combinatorial geometry

Micha Sharir (Tel Aviv University, IL)

License © @ ( Creative Commons BY-NC-ND 3.0 Unported license
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In November 2010 the earth has shaken, when Larry Guth and Nets Hawk Katz posted a
nearly complete solution to the distinct distances problem of Erdds, open since 1946. The
excitement was twofold:

(a) The problem was one of the most famous problems, as well as one of the hardest
nuts in the area, resisting solution in spite of many attempts (which only produced partial
improvements).

(b) The proof techniques were algebraic in nature, drastically different from anything
tried before.

The distinct distances problem is to show that any set of n points in the plane determine
Omega(n/+/logn) distinct distances.

(Erd6s showed that the grid attains this bound.) Guth and Katz obtained the lower
bound Omega(n/logn).

Algebraic techniques of this nature were introduced into combinatorial geometry in 2008,
by the same pair Guth and Katz. At that time they gave a complete solution to another
(less major) problem, the so-called joints problem, posed by myself and others back in 1992.

Since then these techniques have led to several other developments, including an attempt,
by Elekes and myself, to reduce the distinct distances problem to an incidence problem
between points and lines in 3-space. Guth and Katz used this reduction and gave a complete
solution to the reduced problem.

One of the old-new tools that Guth and Katz bring to bear is the Polynomial Ham
Sandwich Cut, due to Stone and Tukey (1942). T will discuss this tool, including a “1-line”
proof thereof, and its potential applications in geometry. One such application, just noted
by Matousek, is an algebraic proof of the classical Szemerédi-Trotter incidence bound for
points and lines in the plane.

In the talk I will review all these developments, as time will permit.

Only very elementary background in algebra and geometry will be assumed.
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3.26 Fixed Points of the Restricted Delaunay Triangulation Operator
Jonathan Shewchuk (Univ. of California — Berkeley, US)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
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Consider the problem of reconstructing an unknown smooth 2-manifold ¥ embedded in three
dimensions from a set of points S sampled from the surface. It is well known that if the
point sample is sufficiently dense, then the restriction of the Voronoi diagram of S to the
surface ¥ dualizes to a triangulation that is homeomorphic to 3. This triangulation is called
the restricted Delaunay triangulation of S with respect to 3. What if we take the restricted
Delaunay triangulation of S with respect to this triangulation? And then repeat with the
new triangulation? I show that the iteration always "converges" to a "fixed point," that is, a
fixed set of triangles; and that for sufficiently dense samples, this set of triangles is likely
to be a particularly nice reconstruction of ¥. Best of all, the idea works equally well for
2-manifolds embedded in much higher-dimensional spaces.

3.27 The potential to improve the choice: List coloring for geometric
hypergraphs

Shakhar Smorodinsky (Ben Gurion University — Beer Sheva, IL)

License @ @ (& Creative Commons BY-NC-ND 3.0 Unported license
© Shakhar Smorodinsky
Joint work of Smordinsky, Shakhar; Cheilaris, Panagiotis; Sulovsky, Marek

Given a hypergraph H = (V, ), a coloring of its vertices is said to be conflict-free if for every
hyperedge S € £ there is at least one vertex whose color is distinct from the colors of all
other vertices in S.

This notion has been studied for several geometric hypergraphs and in various generaliza-
tions.

We study the list version of this notion:

In this version we are interested in the minimum number k& = k(H) such that if each
vertex v is associated with a set of colors L, of size k then one can pick a color for each
vertex v from its “list" L, such that the resulting coloring is conflict-free. Denote this number
by ch(H) (the conflict free “choice" number of H) It is easy to see that the minimum number
of colors needed for a conflict-free coloring of H is bounded by ch(H).

Let C be some absolute constant. We prove that for hypergraphs H with n vertices which
are hereditarily C' colorable (in the non-monochromatic sense) we have ch(H) = O(logn)
and this bound is asymptotically tight. More over, we show that one can color the vertices of
such a hypergraph from lists of size O(logn) such that the maximum color in any hyperedge
is unique. The proof is constructive and uses a suitable potential function for constructing
such coloring and analyzing the size of lists needed.
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3.28 Shapely Measures, and Measures on Shapes: The story of the
Kernel distance

Suresh Venkatasubramanian (University of Utah, US)

License © @  Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Joshi, Sarang; Kommaraju, Raj Varma; Phillips, Jeff M.; Venkatasubramanian, Suresh
Main reference S.C. Joshi, R.V. Kommaraju, J.M. Phillips, S. Venkatasubramanian, ”Comparing Distributions
and Shapes using the Kernel Distance,” Proc. 27th ACM Symp. on Computational Geometry,
2011, pp. 47-56.
URL http://doi.acm.org/10.1145/1998196.1998204

There are many ways to compute a distance between probability measures. However, if
the underlying domain of the measures itself carries a metric, then the standard way to
compare probability measures in a way that respects this is via the earthmover distance (or
the transportation distance). This is a popular distance, especially in computer vision, but
is expensive to compute.

There are also many ways to compare shapes, using methods from computational geometry,
topology, and differential geometry. But these distances are all expensive to compute, are
limited in important ways, and are difficult to use for applications that involve analyzing
collections of shapes, rather than just pairs.

It turns out that there is a single mechanism that makes comparing distributions over
metrics easy, and makes comparing (noisy) shapes (even surfaces) easy. It uses a kernel-based
method to embed distributions (or shapes) in an (infinite-dimensional) Hilbert space, so that
distance computation is a matter of computing the induced Hilbertian metric.

In this talk, T will describe algorithms for (i) estimating this "kernel distance" approx-
imately and efficiently, (ii) computing sparse representations of shape s that are close to
the original under the kernel distance, (iii) comparing shapes under rigid transformations
using the kernel distance. I'll also briefly mention applications in the realm of clustering and
metaclustering.

3.29 Kasteleyn and the Number of Crossing-Free Matchings and
Cycles on a Planar Point Set

Emo Welzl (ETH Ziirich, CH)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
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In 1967 Piet Kastelyn showed how to count the number of perfect matchings in a planar
graph, simply by looking at the determinant of an appropriate skew symmetric variant of the
adjacency matrix. Raimund Seidel observed an extremal combinatorics implication, namely
that a planar graph on n vertices has at most V6" perfect matchings (via the so-called
Hadamard bound). We show how, for a planar set P of n points, that can be used to relate
the number, sc(P), of crossing-free straight-line spanning cycles (simple polygonizations)
of P to the number of triangulations, tr(P), of P: sc(P) < 8V/12 tr(P). We conjecture,
though, that this can be significantly improved, actually to sc(P) = O(c¢™)tr(P) for some
constant ¢ < 1.
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3.30 Computing the Frechet Distance Between Folded Polygons
Carola Wenk (Univ. of Texas at San Antonio, US)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Cook, Atlas F. IV; Driemel, Anne; Har-Peled, Sariel; Sherette, Jessica; Wenk, Carola;

We present the first results showing that the Frechet distance between non-flat surfaces can be
approximated within a constant factor in polynomial time. Computing the Frechet distance
for surfaces is a surprisingly hard problem. It is not known whether it is computable, it has
been shown to be NP-hard, and the only known algorithm computes the Frechet distance for
flat surfaces (Buchin et al.). We adapt this algorithm to create one for computing the Frechet
distance for a class of surfaces which we call folded polygons. Unfortunately, if extended
directly the original algorithm no longer guarantees that a homeomorphism exists between
the surfaces. We present three different methods to address this problem. The first of which
is a fixed-parameter tractable algorithm.

The second is a polynomial-time approximation algorithm which approximates the
optimum mapping. Finally, we present a restricted class of folded polygons for which we can
compute the Frechet distance in polynomial time.

3.31 Triangular Meshes: Registration and GPU-based Distance
Computation

Nicola Wolpert (Hochschule fir Technik — Stuttgart, DE)

License © @ (& Creative Commons BY-NC-ND 3.0 Unported license
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We present two projects with industrial partners. The first one is on the registration of
triangular meshes. The motivation comes from sheet metal forming where after the stamping
process the formed metal has to be compared with the original CAD-data. The main step
here, based on the ICP-algorithm, is to compute the translation and rotation which best
possibly aligns the two meshes.

The second project is called RASAND: Robust Algorithms for Distance Computation of
large moving Triangular Meshes. The motivation comes from the digital mock up process
where early in the construction phase of a mechanical part constructions and motions have
to be evaluated. Mathematically we are given two large triangular meshes, one moving in
discrete steps over time.

The question is to find all time steps and all pairs of triangles that become closer than a
given epsilon. The challenge is the mass data and we are looking for data structures and
algorithms that can answer this question using massively the computing-capability of modern
graphics cards.
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3.32 Cxyz: Isotopic Subdivision Algorithm for Non-Singular Surfaces
Chee K. Yap (New York University, US)
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Joint work of Yap, Chee K.; Long Lin
URL http://cs.nyu.edu/exact/papers/

We consider exact algorithms for isotopic approximating of implicit surfaces given as the
zero set of a C1 real function f(x,y,2).

We focus on (domain) subdivision methods based on numerical predicates because they
tend to have adaptive complexity, locality, and are easy to implement.

Numerical predicates, unlike algebraic or geometric predicates, admits a trade-off between
efficacy (how tight is the bound) and efficiency (how quickly it can be computed); this can
be exploited. The challenge of numerical predicates is how to ensure global correctness.

We describe an algorithm called Cxyz Algorithm (the name derives from the key predicate
Cxyz in the algorithm).

It is a generalization our earlier Cxy algorithm for plane curves.

The algorithm exploits two properties of two previous approaches: non-local isotopy
[Plantinga and Vegter, 2004] and parameterizability [Snyder, 1994].

Our preliminary implementations in Core Library suggest that our algorithm is very
efficient compared to previous methods.

The proof of correctness is quite non-trivial. Termination is guaranteed for non-singular
surface. Following Plantinga-Vegter, we first prove the correctness of a simpler algorithm
called Regular Cxyz, and extend it to the Cxyz Algorithm which involves balancing of boxes.

As in the 2-D case, we need to deal with ambiguity.

A new phenomenon is that the arc connection rules require some global consistency
properties.

We also briefly extend the method to discuss boundary processing, admitting a general
Region-of-Interest (ROI), and anisotropic subdivision (boxes can be half-split, quarter-split
or full-split producing arbitrary aspect ratio boxes).

3.33 Maedian trajectories
Marc van Kreveld (Utrecht University, NL)

License © @® (® Creative Commons BY-NC-ND 3.0 Unported license
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Given a collection of more or less similar trajectories, what would constitute a "middle"
trajectory? We address this problem by constructing a median trajectory from pieces of the
input trajectories, while always staying in the middle. We consider two possible methods.
One is simple, often fails when the trajectories have self-intersections. The other one works
well and uses the concept of homotopy. We motivate our choices, give algorithms, and show
some experimental results.
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4 Open Problems

» Problem 1 (Jack Snoeyink). Solvent Inaccessible Volume, or Nature Abhors a Vacuum:
Given a set S = {By,...,B,} of n balls in 3D, give a very fast method to estimate the
volume of the portion of 3-space that is inaccessible to a ball W that is allowed to be placed
anywhere that it is not intersecting a ball of S. (i.e., give a very fast method to estimate the
volume of an a-hull determined by n balls) The motivating application (solvent-accessibility
for molecules) has balls B; of radii in some range (1-2A), W of radius 1.4A, and density
constraints that no pair of balls is within .8A. One could also fix 2 /3 of the atom positions,
and choose from a fixed set of positions for the rest (using what is known as a rotamer
library). (Danny Halperin mentions the related work he and Mark Overmars had in SoCG’94,
“Spheres, Molecules, and Hidden Surface Removal”.)

» Problem 2 (Shakhar Smorodinsky). Coloring vertices of a simplicial complex: Given a set
P of n points in 3D and a set S of triangles spanned by P, with no two triangles having
their interiors intersecting. How many colors suffice to color P so that no triangle of S is
monochromatic? (This is a natural generalization of the problem of coloring the vertices of a
planar (straight-line) graph, for which the answer is 4 colors always suffice.) Shakhar knows
an upper bound of O(y/n). The conjecture is that a constant or polylog number of colors
suffice. Giinter Rote asked if the special case of a simplicial complex of triangles given by a
tetrahedralization of the convex hull of a set of points may be of interest (even if the points
P are in convex position).

» Problem 3 (Janos Pach). We define the obstacle number, f(G), of a graph G = (V, E) as
the minimum number of obstacles needed in a “representation” of G as a visibility graph
of a set of |V| points in the plane. Let F(n) be the maximum obstacle number of graphs
having n vertices. Clearly, F(n) < (%). Janos knows that F(n) > Q(n/logn). He asks if
there exists an n-vertex graph G having f(G) = (n). He conjectures that “most” graphs
(e.g., random graphs, expanders) have nearly quadratic obstacle number.

» Problem 4 (Janos Pach, and Gabor Tardos). Is it true that for S = {p1,...,p,} C R? one
can always find n/2 points not necessarily in S such that every axis-parallel rectangle that
avoids T contains at most 1000 points of S? (i.e., are n/2 points enough to stab every
rectangle containing at least 1000 elements of S7?)

» Problem 5 (Suresh Venkatasubramanian). (Shout out to cstheory.stackexchange.com) Given
a set S of n points in 2D. Consider the complete graph whose edge weights are the squared
Euclidean distances between pairs of points of S. Is it always possible to find a cut whose
weight is at least 2/3 of the total edge weight? (Note that it is not possible in 3D.)

» Problem 6 (Ferran Hurtado (6.1)). Let S = {p1,...,pn} be a set of n “blue” (not white!)
points in 2D. Let W be a set of “red” points in 2D; these are “witness” points. Define the
“witness Delaunay graph”, WDG(S, W) of S with respect to W that joins blue points p; € S
and p; € S with an edge if and only if there exists a circle through p; and p; whose interior
has no red points of W. Note that WDG(S, () = K,, and WDG(S, S) = Del(S), the usual
Delaunay graph of S. Let f(n) be the number of witness points W that always suffice, and
are sometimes necessary, to make WDG(S, W) = (), for an n-element set S (equivalently, no
pair of blue points have adjacent regions in Vor(S U W), as they have been “surrounded” by
the red witnesses). Note that it always suffice to place a red point interior to each Delaunay

edge of Del(S) in order to “kill” all edges and make W DG(S, W) empty; thus, f(n) < 3n.

Better bounds are known: n < f(n) < (3/2)n, where the lower bound is from (6.1) and the
upper bound from (6.2). Close the gap! The authors of (6.2) conjecture that f(n) =n. Also,
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what can be said algorithmically about computing a smallest set W to “kill” all Delaunay
edges of points S7

(6.1) Witness (Delaunay) Graphs. B. Aronov, M. Dulieu, F. Hurtado. Computational
Geometry: Theory and Applications, Volume 44, Issues 6-7, August 2011, Pages
329-344.

(6.2) O. Aichholzer, R. Fabila-Monroy, T. Hackl, M. van Kreveld, A. Pilz, P. Ramos, B.
Vogtenhuber, Blocking Delaunay triangulations, in: Proc. 22nd Annual Canadian
Conference on Computational Geometry CCCG 2010, Winnipeg, Manitoba, Canada,
2010, pp. 21-24.

» Problem 7 (Boris Aronov). (Posed previously, but still open.) Let K be a convex body in
3D. Consider n translates of K, K1,..., K,. What is the maximum possible number, ¢(n),
of connected components of the set, (K; U---U K,)¢, the complement of the union of the
translates? He knows that Q(n?) < ¢(n) < (5) and conjectures that c¢(n) = ©(n?). (Some
special classes of convex bodies have a linear number of components in the complement of
the union.)

» Problem 8 (Boris Aronov). Let S be a set of n blue points in 2D, and let W be a set of n red
points in 2D. Let D,, be the diametrical disk determined by p,q € S. We want to compute
all m pairs (p,q) for which D,, N W # (. How efficiently can it be done? (O(n?logn), and
possibly O(n?), is easy) Give an output-sensitive algorithm, e.g., taking time O(m + nlogn).

» Problem 9 (Joe Mitchell). The following problem arises in the “Last Byte” column of Peter
Winkler in CACM in 2010. Given n points in 2D, can they always be covered by n disjoint
unit disks (“pennies”)? The answer is “yes” for n = 10 (by a simple probabilistic method
argument), for n = 11, and for n = 12. It is not known for n = 13. Janos mentions that
there is a paper (by physicists) showing that for n > 50 there are configurations of points for
which coverage by n disjoint disks is not possible. There remains a gap between 12 and 50.

» Problem 10 (Pankaj Agarwal). Let P be a set of n points in %2, and let D be a set of m
disks in 2. We are given a positive integer k. Our goal is to pick a subset R C P of k points
in order to maximize the number of disks that are “double-stabbed” (i.e., that contain at
least 2 points of R). THe problem is known to be NP-hard. No nontrivial approximation
is known. (The related problem of minimizing the size of R in order that every disk is
double-stabbed has an O(log OPT')-approximation, by Chekuri, Clarkson, and Har Peled.
The abstract set version is known not to have any nontrivial approximation algorithm.)
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