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Abstract
This report documents the programme and the outcomes of Dagstuhl Seminar 11201 Constraint
Programming meets Machine Learning and Data Mining. Our starting point in this seminar was
that machine learning and data mining have developed largely independently from constraint
programming till now, but that it is increasingly becoming clear that there are many opportunities
for interactions between these areas: on the one hand, data mining and machine learning can
be used to improve constraint solving; on the other hand, constraint solving can be used in data
mining in machine learning. This seminar brought together prominent researchers from both
communities to discuss these opportunities.
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Goal of the Seminar
Over the past two decades the fields of constraint programming, machine learning and data
mining have become well-established research fields within computer science. They have
contributed many foundational techniques that are routinely applied in real-life scientific
and industrial applications. At the same time, awareness has grown that constraints can be
very useful during mining and learning, and also that machine learning and data mining may
allow one to automatically acquire constraints from data.

Both the data mining and machine learning communities have been interested in constraint-
based mining and learning, that is, the use of constraints to formalize mining and learning
problems. Examples are the specification of desirable properties of patterns to be mined,
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or clusters to be found. The task of the data mining or machine learning system is to
generate all patterns or to compute the optimal clustering satisfying the constraints. A
wide variety of constraints for local pattern mining, clustering and other machine learning
problems exist and they have been implemented in an even wider range of specific data
mining and machine learning systems for supporting such constraints. Some of these methods
are based on mathematical programming techniques, such as linear programming or quadratic
programming; other problems, however, cannot be modeled using these techniques. So far,
the machine learning and data mining communities have been unable to develop general
solvers that are applicable to a wide range of machine learning and data mining problems.

On the other hand, the artificial intelligence community has studied several types of
constraint-satisfaction solvers. The most general systems are now gathered in the area of
constraint programming. In constraint programming, the user specifies the model, that is, the
set of constraints to be satisfied and constraint solvers generate solutions. Thus, the goals
of constraint programming and constraint based mining and learning are similar; it is only
that constraint programming targets any type of constraint satisfaction problem, whereas
constraint-based mining and learning specifically targets data mining and machine learning
applications. Therefore, it is surprising that despite the similarities between these two
endeauvours, the two fields have evolved independently of one another, and also, that – with
a few recent exceptions – constraint programming tools and techniques are not yet applied to
data mining and machine learning, and, vice versa, that problems and challenges from data
mining and machine learning have not yet been taken up by the constraint programming
community. Exploring the possibilities for exploiting constraint programming in data mining
and machine learning was one goal of this seminar.

The second goal was to study the use of machine learning and data mining in constraint
programming. Practitioners of constraint programming have to formulate explicitly the
constraints that underly their application. This is often a difficult task. Even when the
right constraints are known, it can be challenging to formalize them in such a way that
the constraint programming system can use them efficiently. This raises the question as to
whether it is possible to (semi)- automatically learn such constraints or their formulations
from data and experience. Again, some initial results in this direction exist, but we are away
from a complete understanding of the potential of this approach.

In this seminar, we aimed at bridging the gap between these two fields by investigating, on
the one hand, how standard constraint-programming techniques can be used in data mining
and machine learning, and on the other hand, how machine learning and data mining can
contribute to constraint programming. Therefore, this workshop brought together researchers
in the areas of constraint programming, machine learning and data mining to discuss these
issues, to identify interesting opportunities and challenges for research, and to consolidate
and strengthen a promising line of research.

Seminar Organization
Given the various backgrounds of the participants, the seminar started with several in-
troductory presentations. The focus was first on constraint programming and the use of
machine learning and data mining in constraint programming; Helmut Simonis provided an
introduction of constraint programming, while Barry O’Sullivan presented the possibilities
for using machine learning and data mining in constraint programming.

Subsequently, the focused moved to data mining and machine learning and the possibilities
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for using constraint solvers in data mining and machine learning. Bart Goethals provided an
introduction to data mining; subsequently, Ian Davidson discussed uses of constraint solving
in clustering, Dan Roth uses of solvers in inference problems, Siegfried Nijssen uses of solvers
in pattern mining, and Tijl De Bie uses of solvers in statistical machine learning.

The remainder of the program consisted of a mix of technical presentations as well as
meetings of discussion groups, each of which focused in more detail on the various possibilities
for combining machine learning, data mining and constraint programming.

The topics of the discussion groups were determined after discussion at the first day of
the seminar and were the following:

declarative data mining, to discuss questions regarding the use of constraint programming
solvers and declarative modelling to solve data mining problems;
programming languages for machine learning, to discuss questions regarding the develop-
ment of languages specifically for machine learning;
applications, to discuss applications in which machine learning, data mining and constraint
programming can be used;
challenges, to discuss the possibilities for setting up benchmark problems –both real-life
and artificial– that can be used to determine the success of combining machine learning,
data mining and constraint programming;
learning to solve, to discuss the use of machine learning and data mining to improve the
efficiency and quality of constraint solving;
learning constraints, to discuss the use of machine learning and data mining to learn
appropriate models from examples.

The seminar was concluded with plenary presentations in which the results of the discussion
groups were summarized.

The intention is to publish the results of the seminar in an edited book.

11201



64 11201 – Constraint Programming meets Machine Learning and Data Mining

2 Table of Contents

Executive Summary
Luc De Raedt, Siegfried Nijssen, Barry O’Sullivan, Pascal Van Hentenryck . . . . 61

Overview of Talks
Fast Algorithms for Finding Extremal Sets
Roberto Bayardo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Declarative Experimentation
Hendrik Blockeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Discovering knowledge by combining primitives in the constraint programming
framework
Bruno Cremilleux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bayesian network learning with cutting planes
James Cussens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Continuous Optimization – Problems and successes
Tijl De Bie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Reinforced Adaptive Large Neighborhood Search
Yves Deville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Two combinatorial optimization problems in Machine Learning
Pierre Dupont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Data Uncertainty and Constraint Programming Models
Carmen Gervet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Sequence Classification in High Dimensional Predictor Space
Georgiana Ifrim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Using and Learning Constraints in Inductive Process Modeling
Pat Langley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Search and Black-Box Constraint-Programming Solvers
Laurent Michel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

MIME: Discovering Interesting Patterns Visually and Interactively
Sandy Moens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Constraint programming for Itemset Mining
Siegfried Nijssen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Integrations of Machine Learning and Data Mining in Constraint Satisfaction
Barry O’Sullivan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Constrained Conditional Models: Integer Linear Programming Formulations for
Natural Language Understanding
Dan Roth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Gecode – an open constraint solving library
Christian Schulte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Lifelong learning in Constraint Solving
Michele Sebag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Luc De Raedt, Siegfried Nijssen, Barry O’Sullivan, and Pascal Van Hentenryck 65

A Constraint Seeker: Finding and Ranking Global Constraints from Examples
Helmut Simonis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

APOPCALEAPS: Automatic Pop Composer And Learner of Parameters
Jon Sneyers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

MiniZinc – Towards a standard CP modelling language
Guido Tack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

On Learning Constraint Problems
Christel Vrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Working Groups
Declarative Data Mining
Siegfried Nijssen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Learning Constraint Satisfaction Problems
Luc De Raedt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Learning in Constraint Solvers
Barry O’Sullivan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

11201



66 11201 – Constraint Programming meets Machine Learning and Data Mining

3 Overview of Talks

3.1 Fast Algorithms for Finding Extremal Sets
Roberto Bayardo (Google Inc. – Mountain View, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Bayardo, Roberto; Panda, Biswanath
Main reference Roberto J. Bayardo, Biswanath Panda, “Fast Algorithms for Finding Extremal Sets,” Proc. of 11th

SIAM International Conference on Data Mining (SDM’11), pp. 25–34.
URL http://siam.omnibooksonline.com/data/papers/089.pdf#page=1

Identifying the extremal (minimal and maximal) sets from a collection of sets is an important
subproblem in the areas of data-mining and satisfiability checking. For example, extremal
set finding algorithms are used in the context of mining maximal frequent itemsets, and for
simplifying large propositional satisfiability instances derived from real world tasks such as
circuit routing and verification. We describe two new algorithms for the task and detail their
performance on real and synthetic data.

Each algorithm leverages an entirely different principle one primarily exploits set cardin-
ality constraints, the other lexicographic constraints. Despite the inherent difficulty of this
problem (the best known worst-case bounds are nearly quadratic), we show that both these
algorithms provide excellent performance in practice, and can identify all extremal sets from
multi-gigabyte itemset data using only a single processor core. Both algorithms are concise
and can be implemented in no more than a few hundred lines of code.

3.2 Declarative Experimentation
Hendrik Blockeel (K.U. Leuven, BE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Main reference Hendrik Blockeel, Joaquin Vanschoren, “Experiment Databases: Towards an Improved
Experimental Methodology,” in 11th European Conf. on Principles and Practice of Knowledge
Discovery in Databases (PKDD’07), pp. 6–17, 2007

URL http://dx.doi.org/10.1007/978-3-540-74976-9_5

Data mining and machine learning are highly experimental scientific areas: many results
are backed up with empirical data. With the current state of the art, to find the answer to
certain experimental questions or testing experimental hypotheses, one needs to specify the
experiments in a completely procedural way.

This makes the process of setting up experiments and interpreting the results very error-
prone. We believe it should be possible to describe questions or hypotheses declaratively, and
let the computer set up the right experiments. To make this possible, a formal language for
experimental questions or hypotheses is required. We expect that elements from constraint
programming will play a major role in such a language. In this talk we will discuss a number
of issues that arise in languages for declarative experimentation, and point out the links with
constraint-based data mining.
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3.3 Discovering knowledge by combining primitives in the constraint
programming framework

Bruno Cremilleux (Université de Caen, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Boizumault, Patrice; Crémilleux, Bruno; Khiari, Mehdi; Loudni, Samir; Métivier, Jean-Philippe
Main reference Patrice Boizumault, Bruno Crémilleux, Mehdi Khiari, Samir Loudni, Jean-Philippe Métivier,

“Discovering Knowledge using a Constraint-based Language,” Dagstuhl Preprint Archive,
arXiv:1107.3407v1 [cs.LG]

URL http://arxiv.org/abs/1107.3407v1

Discovering pattern sets or global patterns is an attractive issue from the pattern mining
community in order to provide useful information. By combining local patterns satisfying
a joint meaning, this approach produces patterns of higher level and thus more useful for
the end-user than the usual and well-known local patterns, while reducing the number of
patterns. In parallel, recent works investigating relationships between data mining and
constraint programming (CP) show that the CP paradigm is a nice framework to model
and mine such patterns in a declarative and generic way. In this talk, we present a set of
primitives which enables us to define queries addressing patterns sets and global patterns.

We provide several examples of such queries. The usefulness to propose a declarative
approach is highlighted by the example of the clustering based on associations. We express
the primitives in the CP framework by using numeric constraints and set constraints. Then
a CP solver performs a sound and complete resolution of the queries. Finally, we discuss of
the implementation of our approach.

References
1 L. De Raedt, T. Guns, and S. Nijssen. Constraint Programming for Itemset Mining. In

ACM SIGKDD Int. Conf. KDD’08, Las Vegas, Nevada, USA, 2008.
2 L. De Raedt, T. Guns, and S. Nijssen. Constraint programming for data mining and

machine learning. In Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-
10), pages 1671–1675, 2010.

3 M. Khiari, P. Boizumault, and B. Crémilleux. Local constraint-based mining and set
constraint programming for pattern discovery. In From Local Patterns to Global Models
(LeGo-09), ECML/PKDD-09 Workshop, pages 61–76, Bled, Slovenia, 2009.

4 M. Khiari, P. Boizumault, and B. Crémilleux. Constraint programming for mining n-ary
patterns. In 16th Int. Conf. on Principles and Practice of Constraint Programming (CP’10),
volume 6308 of LNCS, pages 552–567. Springer, 2010.

3.4 Bayesian network learning with cutting planes
James Cussens (University of York, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© James Cussens
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The problem of learning the structure of Bayesian networks from complete discrete data
with a limit on parent set size is considered. Learning is cast explicitly as an optimisation
problem where the goal is to find a BN structure which maximises log marginal likelihood
(BDe score). Integer programming, specifically the SCIP framework, is used to solve this
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optimisation problem. Acyclicity constraints are added to the integer program (IP) during
solving in the form of *cutting planes*. Finding good cutting planes is the key to the success
of the approach—the search for such cutting planes is effected using a sub-IP. Results show
that this is a particularly fast method for exact BN learning.

3.5 Continuous Optimization – Problems and successes
Tijl De Bie (University of Bristol, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
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URL http://www.tijldebie.net

Continuous optimization (or mathematical programming), and convex optimization in partic-
ular [1], has had a profound impact on certain areas of machine learning research in the past
decade [2, 3]. This talk is intended to provide an overview of the reasons for these successes,
as well as some of the limitations.

The focus of the talk is on similarities with constraint programming as a largely declarative
way of formulating search problems through large parameter spaces.

References
1 Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press (2004).
2 Kristin Bennet and Emilio Parrado-Hernandez. The interplay of optimization and machine

learning research. Journal of Machine Learning Research 7 (2006).
3 Tijl De Bie. Deploying SDP for machine learning. Proceedings of the 15th European Sym-

posium on Artificial Neural Networks (ESANN 2007), Bruges, April 2007.

3.6 Reinforced Adaptive Large Neighborhood Search
Yves Deville (Université Catholique de Louvain, BE)

Joint work of Mairy, Jean-Baptiste; Deville, Yves; Van Hentenryck, Pascal
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Large Neighborhood Search (LNS) is a hybrid search paradigm that combines local search
(LS) and constraint programming (CP). At each step of LNS, a subset of variables of the
current solution are relaxed. The potential solutions of the relaxed problems form the
neighborhood. CP is used to solve the relaxed problem and tries to find a neighbor improving
the current solution.

The CP part has a search limit. If no improving solution is found, the current solution
is unchanged. In LNS, one has to fix the size of the relaxed fragment and the search limit.
These two parameters are crucial in LNS. One has also to decide how the relaxed variables
are chosen. Usually, a random selection is performed.

In this talk, we report preliminary results on applying reinforcement learning in LNS.
Reinforcement learning is also used to guide the selection of the variables to relax at each
LNS step.
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MA: MIT Press, 1998.

3.7 Two combinatorial optimization problems in Machine Learning
Pierre Dupont (UC Louvain-la-Neuve, BE)
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In this talk we present two classical ML problems which can be formulated as combinatorial
optimization problems. The open question is to which extent constraint programming could
help to better address them.

Regular grammar induction aims at learning a formal regular language from sets of
positive and negative strings. Learning a regular grammar is classically restated as the
minimal DFA consistency problem: finding a minimal deterministic finite state machine
accepting all positive strings and rejecting all negative ones.

We briefly describe the search space of this problem, present standard state-merging
techniques and sketch the key properties of the winning algorithm of the recent Stamina
competition.

Many supervised classification problems are characterized by a very large number (p)
of features, but only a limited number (n) of samples. Transcriptome analysis from DNA
microarray data is a typical example.

In such a small n big p setting, the risk of overfitting a classification model to the training
sample is particularly present.

Feature selection aims at reducing, sometimes drastically, the number of actual features
on which the classifier is effectively built.

The simplest approach selects top-ranked features according to a relevance index, such as
the mutual information between each input feature and the response variable.

Such an approach is particularly efficient from a computational viewpoint but it is
univariate and hence lacks to model the dependence between various features. A more
advanced alternative aims at selecting a subset of maximally relevant but minimally redundant
features.

Finding the optimal feature subset is computationally hard and typical approximations
relies on a greedy search with no global optimum guarantee.

References
1 D. Angluin, On the complexity of minimum inference of regular sets, Information and

Control 39 (1978), 337–350.
2 F. Coste and J. Nicolas, How considering incompatible state mergings may reduce the DFA

induction search tree, Grammatical Inference, ICGI’98 (Ames, Iowa), Lecture Notes in
Artificial Intelligence, no. 1433, Springer Verlag, 1998, pp. 199–210.

3 P. Dupont, B. Lambeau, C. Damas, and A. van Lamsweerde, The QSM algorithm and its
application to software behavior model induction, Applied Artificial Intelligence 22 (2008),
77–115.
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3.8 Data Uncertainty and Constraint Programming Models
Carmen Gervet (German University in Cairo, EG)
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The classical CP framework has been extended in the past 10 years to address ill-defined,
uncertain real-world optimisation problems. Extensions include probabilistic models, quanti-
fied models, interval data models. Each tackles different aspects of data uncertainty, due to
data errors, incompleteness, forecasting and aims at ensuring that the problem is faithfully
represented with what is known for sure about the data. The solution sought vary from
robust solutions, to reliable solutions and covering set solutions. In all cases, the model
does have a great impact on the algorithm complexity, and new approaches have to be
implemented.

We summarize existing approaches and introduce a novel approach based on a new
definition of the confidence interval .
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3.9 Sequence Classification in High Dimensional Predictor Space
Georgiana Ifrim (University College Cork, IE)
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In this talk I present a framework for sequence classification where we build linear classifiers
on a rich but very high dimensional feature space. I present an optimisation algorithm
based on coordinate gradient-descent coupled with branch-and-bound to efficiently build
such classifiers.

Furthermore, I discuss accuracy, interpretability and scalability of this learning framework.
This technique can be applied to any classification problem where the input data can be
represented in symbolic form as a sequence of tokens (e.g., text, biological sequences, time
series).
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3.10 Using and Learning Constraints in Inductive Process Modeling
Pat Langley (ASU – Tempe, US)
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Most research on computational knowledge discovery has focused on descriptive models
that only summarize data and utilized formalisms developed in AI or statistics. In contrast,
scientists typically aim to develop explanatory models that make contact with background
knowledge and use established scientific notations. In this talk, I present an approach to
computational discovery that encodes scientific models as sets of processes that incorporate
differential equations, simulates these models’ behavior over time, uses background knowledge
to guide construction of model structures, and fits the model structures to time-series data. I
illustrate this framework on data and models from a number of fields but focusing on aquatic
ecosystems. One important form of background knowledge – constraints – is used to rule out
implausible model structures. I also report an extension that learns new constraints based
on the success and failure of candidate models. In closing, I discuss intellectual influences on
the work and directions for future research.

This talk describes joint work at Stanford University and ISLE with Kevin Arrigo, Stuart
Borrett, Matt Bravo, Will Bridewell, and Ljupco Todorovski under funding from the National
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Science Foundation. The URL http://www.isle.org/process/ includes a list of publications
on inductive process modeling.
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3.11 Search and Black-Box Constraint-Programming Solvers
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Constraint Programming Tools traditionally rely on the combination of a modeling and a
search component to solve challenging combinatorial optimization problems. Advances in
modeling are often aimed at delivering stronger propagation and filtering algorithms while
progress on the search components focus on declarative control abstractions that deliver
clear, modular and reusable search procedures.

The purpose of this talk is to review the state of the art and recent advances in search.
In particular, it illustrates how control abstractions like non- deterministic tryall, selectors,
explorers, controllers and labeling heuristics found in the COMET language are instrumental
in delivering simple, elegant and fully reusable search procedures.

The talk reviews how such abstractions can be used to build classic generic search
procedures found in black-box constraint-programming solvers. It discusses in details a recent
addition: activity-based search, the idea of using the activity of variables during propagation
to guide the search. ABS is compared experimentally to impact-based search and the WDeg
heuristics on a variety of benchmarks to illustrate its robustness and performance.

3.12 MIME: Discovering Interesting Patterns Visually and Interactively
Sandy Moens (University of Antwerp, BE)
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Pattern mining is concerned with discovering interesting patterns from data. Formalizing
interestingness, however, is notoriously difficult, as it is inherently subjective. We propose
to discover subjectively interesting patterns. In our system, users can visually browse
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through data and patterns. To assist users in identifying interesting patterns, a toolbox of
interestingness measures and algorithms for mining and post-processing are provided. All
statistics can be combined in interconnected views, and results of actions in one view can be
directly used in others. All information is computed on-the-fly, where priority is given to
what is currently shown to the user, while off-screen results are calculated in the background.

By making the process interactive, we enable the user to combine their subjective notion
of interestingness, and background knowledge, with a wide variety of objective measures in
order to easily mine the most interesting patterns. Basically, we enable the user to become
an essential part of the mining algorithm, by allowing the construction of patterns, deciding
what algorithms to run and how to analyze what patterns in detail.
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3.13 Constraint programming for Itemset Mining
Siegfried Nijssen (K.U. Leuven, BE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Siegfried Nijssen

Joint work of Nijssen, Siegfried; Guns, Tias; De Raedt, Luc
Main reference Tias Guns, Siegfried Nijssen, Luc De Raedt, “Itemset mining: A constraint programming

perspective,” Artif. Intell., 175(12–13): 1951–1983 (2011)
URL http://dx.doi.org/10.1016/j.artint.2011.05.002

The field of data mining has become accustomed to specifying constraints on patterns of
interest. A large number of systems and techniques has been developed for solving such
constraint-based mining problems, especially for mining itemsets. The approach taken in
the field of data mining contrasts with the constraint programming principles developed
within the artificial intelligence community. While most data mining research focuses on
algorithmic issues and aims at developing highly optimized and scalable implementations
that are tailored towards specific tasks, constraint programming employs a more declarative
approach. The emphasis lies on developing high-level modeling languages and general solvers
that specify what the problem is, rather than outlining how a solution should be computed,
yet are powerful enough to be used across a wide variety of applications and application
domains.

Here we present a declarative constraint programming approach to data mining.
More specifically, we show that it is possible to employ off-the-shelf constraint program-

ming techniques for modeling and solving a wide variety of constraint-based itemset mining
tasks, such as frequent, closed, discriminative, and cost-based itemset mining. In particular,
we develop a basic constraint programming model for specifying frequent itemsets and show
that this model can easily be extended to realize the other settings. This contrasts with
typical procedural data mining systems where the underlying procedures need to be modified
in order to accommodate new types of constraint, or novel combinations thereof. Even
though the performance of state-of-the-art data mining systems outperforms that of the
out-of-the-box constraint programming approach on some standard tasks, we show that
by developing specialized CP systems, it is possible to overcome most of the differences
in efficiency. Furthermore, we show that there exist problems where the out-of-the-box
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constraint programming approach already leads to significant performance improvements
over state-of-the-art methods in data mining and leads to new insights into the underlying
data mining problems. Many such insights can be obtained by relating the underlying search
algorithms of data mining and constraint programming systems to one another. We provide
an illustration of the approach on a problem in bioinformatics and finally discuss a number
of interesting new research questions and challenges raised by the declarative constraint
programming approach to data mining.
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3.14 Integrations of Machine Learning and Data Mining in Constraint
Satisfaction

Barry O’Sullivan (University College Cork, IE)
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Constraint programming can be divided very crudely into modeling and solving. Modeling
defines the problem, in terms of variables that can take on different values, subject to
restrictions (constraints) on which combinations of variables are allowed. Solving finds values
for all the variables that simultaneously satisfy all the constraints. However, the impact of
constraint programming has been constrained by a lack of “user-friendliness”. Constraint
programming has a major “declarative” aspect, in that a problem model can be handed
off for solution to a variety of standard solving methods. These methods are embedded in
algorithms, libraries, or specialized constraint programming languages. To fully exploit this
declarative opportunity however, we must provide more assistance and automation in the
modeling process, as well as in the design of application-specific problem solvers. Automated
modelling and solving in constraint programming presents a major challenge for the artificial
intelligence community. Artificial intelligence, and in particular machine learning, is a
natural field in which to explore opportunities for moving more of the burden of constraint
programming from the user to the machine. This talk presents technical challenges in the
areas of constraint model acquisition, formulation and reformulation, synthesis of filtering
algorithms for global constraints, and automated solving. We also present the metrics by
which success and progress can be measured.
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3.15 Constrained Conditional Models: Integer Linear Programming
Formulations for Natural Language Understanding

Dan Roth (University of Illinois at Urbana-Champaign, USA)
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Intelligent Information Access and Extraction suggest significant challenges for Natural
Language analysis. Tasks of interest include semantic role labeling (determining who did what
to whom, when and where), information extraction (identifying events, entities and relations),
transliteration of names, and textual entailment (determining whether one utterance is a
likely consequence of another). A computational approached to these challenges often involves
assigning values to sets of interdependent variables and thus frequently necessitate performing
global inference that accounts for these interdependencies. This talk presented research on
Constrained Conditional Models (CCMs), a framework that augments probabilistic models
with declarative constraints as a way to support such decisions. We presented a framework
we introduced a few years ago, formulating decision problems in NLP as Integer Linear
Programming problems, but focused on new algorithms for training these global models
using indirect supervision signals. Learning models for structured tasks is difficult partly
since generating supervision signals is costly. We showed that it is often easy to obtain a
related indirect supervision signal, and discussed several options for deriving this supervision
signal, including inducing it from the world’s response to the model’s actions. Our learning
framework is “Constraints Driven” in the sense that it allows and even gains from global
inference that combines statistical models with expressive declarative knowledge (encoded as
constraints), modeled via Constrained Conditional Models. Experimental results showed the
significant contribution of easy-to-get indirect supervision on several NLP tasks including
information extraction, Transliteration and Textual Entailment.
See also the tutorial from NAACL’10:
http://l2r.cs.uiuc.edu/%7Edanr/Talks/ILP-CCM-Tutorial-NAACL10.ppt.
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3.16 Gecode – an open constraint solving library
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Gecode is a widely used toolkit for developing constraint-based systems and applications.
Gecode provides a constraint solver with state-of-the-art performance while being modular
and extensible. Gecode is: open (documented interfaces support tasks from modeling to
implementing new variables, constraints, search engines, ...), free (MIT license), portable
(standard C++), accessible (extensive tutorial and reference documentation, efficient (excel-
lent performance, has won the 2008-2010 MiniZinc challenges in all categories), and parallel
(exploits today’s multi- core hardware).

The talk provides an overview of what Gecode is, what one can do with it, and what are
the basic ideas behind its architecture.

3.17 Lifelong learning in Constraint Solving
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The goal is to allow any user to eventually get top performance from his constraint solver.
This goal is reached by customizing the solver to the user’s problem instance distribution,
using the computer idle time to launch exploratory experiments on the user’s problem,
observing the results and learning the most appropriate tunings of the heuristic portfolio.

This approach can be viewed as an instance of Meta-Learning problem, with the difference
that many descriptive features have been proposed in the CP literature to characterize the
problem to solve and the current search state [4]. The novelty compared to the state of the
art (e.g.

CPHydra, [5]) is that the computer does not require a set of problems, representative of
the user’s activity, to be available beforehand.

Instead, the computer uses an exploration/exploitation approach (lifelong learning) to
gradually become an expert into the user’s problem distribution.

Experimental validation suggests that Continuous Search can design efficient mixed
strategies after considering a moderate number of problem instances.
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3.18 A Constraint Seeker: Finding and Ranking Global Constraints
from Examples
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The global constraint catalog provides a valuable repository of global constraint information
for both researchers in the constraint field and application developers searching for the right
modelling abstraction. The catalog currently describes over 350 constraints on more than
2800 pages. This wealth of information is also its main weakness.

For a novice (and even for an experienced) user it can be quite challenging to find a
particular constraint, unless the name in the catalog is known. As a consistent naming
scheme (like the naming scheme for chemical compounds http://en.wikipedia.org/wiki/
IUPAC_nomenclature, for example) does not exist in the constraint field, and different
constraint systems often use incompatible names and argument orders for their constraints,
there is no easy way to deduce the name of a constraint and the way its arguments are
organized from its properties. The catalog already provides search by name, or by keywords,
and provides extensive cross-references between constraints, as well as a classification by the
required argument type. All of these access methods can be helpful, but are of limited use if
one does not know too much about the constraint one is looking for.

The Constraint Seeker (http://seeker.mines-nantes.fr) provides another way of finding
constraint candidates, sorted by potential relevance, in the catalog.

The user provides positive and/or negative ground instances for a constraint, and the
tool provides a ranked list of possible candidates which match the given examples.

Besides introducing the Constraint Seeker as an application, we want to illustrate the
power of meta data and meta programming in the context of future constraints platforms.
We use meta data for explicitly describing different aspects of global constraints such as
argument types, restrictions on the arguments, typical use of a constraint, symmetries w.r.t.
the arguments of a constraint, links between constraints (e.g. implication, generalisation). The
electronic version of the global constraint catalog provides such information in a systematic
way for the different global constraints. The Constraint Seeker illustrates the fact that
the same meta data can be used for different purposes, unlike ad-hoc code in a procedural
language which is designed for a specific (and unique) usage and a single system.
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3.19 APOPCALEAPS: Automatic Pop Composer And Learner of
Parameters
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APOPCALEAPS is a system for automatic pop music generation and learning, implemented
in CHRiSM [1]. CHRiSM is a new programming language, combining features of the existing
languages CHR [2] and PRISM [3]. It is a high-level rule-based formalism for probabilistic-
logic learning, allowing a powerful mix of domain-specific constraints and probabilistic
inference. The current implementation of CHRiSM is based on the K.U.Leuven CHR system
in B-Prolog. The user interface of APOPCALEAPS was made using fltk; its output is
rendered using LilyPond.

The goal of the APOPCALEAPS project is to create a personal automatic music generator.
The user creates music, selects the examples that are good according to his or her taste, and
then these selected examples are used as a training set for learning. After several iterations,
the result is a music generator that produces personalized music.
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3.20 MiniZinc – Towards a standard CP modelling language
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MiniZinc arose as a response to the extended discussion at CP’06 of the need for a standard
modelling language for CP. Since 2006, MiniZinc and its ecosystem have grown and matured
considerably. Today, in addition to several CP solvers that handle MiniZinc (through the
FlatZinc solver interface language), there is support for SMT, SAT, and MIP solvers as well.
This makes MiniZinc an ideal candidate language for experimentation and model exchange.

The talk consists of an introduction to the MiniZinc language using example models,
a quick overview of the compilation and execution approach, and the current plans for
MiniZinc’s future.
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3.21 On Learning Constraint Problems
Christel Vrain (Université d’Orleans, FR)
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Main reference Arnaud Lallouet, Matthieu Lopez, Lionel Martin, Christel Vrain, “On Learning Constraint

Problems,” Proc. 22nd IEEE Int’l Conf. on Tools with Artificial Intelligence (ICTAI’10), pp. 45–52,
2010.

URL http://dx.doi.org/10.1109/ICTAI.2010.16

We address the problem of learning constraint models expressed in a higher level language.
For learning it, we use Inductive Logic Programming and we develop a new search strategy
to tackle the problem.

We start from the observation that some novice users have difficulties to model with
constraints and it would be desirable to provide them tools that help them to come with a
constraint model by using only the informal knowledge they have on their problem.

Often users can provide examples and counter-examples for the problem to solve or answer
questions about it. But often the problems they tackled in the past were not exactly the
same but only similar. For example, it may happen that the user has solved the 4-queens
and 5-queens problem but wants to solve n-queens.

How to reuse this knowledge to provide a general model?
In this work, we learn a high level model in a first-order logic language retaining some of

the features of middle-level constraint modeling languages like Minizinc. The user provides
some historical data and the model is learned by ILP techniques. We found that existing
ILP learners were subject to blind search and we had to provide a new bidirectional learning
algorithm to find solutions.

Then the model is transformed into a CSP through a rewriting phase which also takes as
input the actual variables of the new problem to solve. Experiments have been conducted on
graph coloring, timetable and jobshop scheduling and n-queens.

References
1 Arnaud Lallouet, Matthieu Lopez, Lionel Martin, Christel Vrain: On Learning Constraint

Problems. ICTAI (1) 2010: 45-52
2 Matthieu Lopez, Lionel Martin, Christel Vrain: Learning Discriminant Rules as a Minimal

Saturation Search. ILP 2010: 146-157

4 Working Groups

4.1 Declarative Data Mining
Siegfried Nijssen (K.U. Leuven, BE)
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The aim of this working group was to consider how declarative approaches to problem solving,
such as constraint programming, may be used to improve the principles and practice of data
mining. The discussion started by compiling a list of questions:

What is a declarative approach to data mining?
What is currently missing in declarative solvers if we wish to use them in data mining?
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Which data mining problems are good candidates for a declarative approach to data
mining?
Is there a catalog of data mining problems that could give constraint programmers a
better idea what the challenges are?
What are expected benefits of a declarative approach data mining approach?

Subsequently, these questions were addressed in the further discussion.
Improved flexibility and easiness were identified as main reasons for declarative data

mining. Declarative data mining should allow to implement new data mining tasks with only
a small number of lines of code, hence making the implementation of new data mining tasks
easier. Furthermore, declarative data mining system should ideally be compositional. This
would make it possible to combine data mining tasks in novel ways, making data mining
more flexible.

A declarative data mining language would be a language that allows to express what a
data mining task is, and would decouple this from how the data mining task is solved. Hence,
it was argued that such a language could be solver independent, where the Zinc language
was mentioned as an example from the constraint programming community. A solver would
ideally process a model in the language automatically, but the model may also be used a
starting point for manual tuning.

A topic that attracted extensive discussion was how easy would be to make such an
approach sufficiently efficient. It was argued that declarative approaches have been successful
in the database community as any statement written down in a language such as (traditional)
SQL will always be executed in polynomial time. This is not the case for statements written
in a constraint programming language. It was argued that a library should be constructed
that makes clear the complexity of the primitives in a language, such that users have a clear
idea how to model problems efficiently. Convex optimization in machine learning was used
as an example: certain mathematical operations are known to be more efficient than others,
and hence machine learning researchers focus on using these.

The working group was concluded with a discussion on problems involving probabilistic
and/or soft constraints. Many probabilistic inference problems in machine learning are hard
to solve exactly and would require inexact solvers or solvers based on sampling. From a
constraint programming perspective addressing such problems is still a challenge.

4.2 Learning Constraint Satisfaction Problems
Luc De Raedt (K.U. Leuven, BE)
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This working group discussed how machine learning techniques could help to improve
constraint programming. A constraint satisfaction problem is usually defined as a triplet
(V, D, C), with V the variables, D the domain of the variables and C the constraints. In
addition, there can be a preference function f that specifies which solutions are to be
preferred.

The working group concluded that there were at least two possible roles for machine
learning. The first role is for learning the model of the problem, that is, the triple (V, D, C)
and possible the preference function f from data. The most direct task is that of learning
the constraints C from data, that is, from possible assignments to the variables V that
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satisfy the constraints. This is essentially a task that is akin to that of concept-learning.
Learning constraints has been addressed within the database and inductive logic programming
communities. Several variations on the task can be imagined: learning from positives only,
learning from positive as well as negative examples, active learning (where the learner may ask
questions), and learning soft constraints. Learning soft constraints would typically involves
the learning of the weights or parameters of the constraints, though also the structure might
be learned. This setting is akin to that of learning probabilistic models. As an alternative
to learning soft constraints, one might learn the preference function f from examples of
the form assignment x is better than assignment y. This is known in the machine learning
literature as preference learning.

The second role for machine learning is to learn how to improve the performance of
the solvers using experience, that is, speed-up learning. In this case it is usually assumed
that the model (V, D, C) is given and passed runs of the solver are used to learn additional
constraints or heuristics. This role for machine learning was extensively discussed in the
talk by Michele Sebag. One can basically use deductive as well as inductive techniques for
speed-up learning. Inductive techniques would gather data from previous test-runs and learn
constraints or heuristics in a similar way as above, the key difference being that the learned
hypotheses have to be tested against the model rather than against the data. On the other
hand, deductive techniques would employ methods of explanation based learning to analyse
traces and proofs and deductively obtain constraints that are implied by the given model.

4.3 Learning in Constraint Solvers
Barry O’Sullivan (University College Cork, IE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Barry O’Sullivan

This working group discussed how machine learning techniques could be used to improve
the constraint solving process and, in particular, how machine learning techniques could
be employed in the design and development of constraint solvers. The group discussed the
opportunities for applying machine learning at a variety of levels, such as:

solving specific problem instances, e.g. how can machine learning be used to solve a
specific instance of a class of CSPs.
designing portfolios of constraint solvers, building on existing approaches such as SATzilla
(runtime prediction), CPhydra (case-based reasoning), ACME (solver selection as classi-
fication).
lifelong learning, e.g. how can constraint solving experience be generalised and applied in
an automated way?
using learning to exploit problem structure, e.g. neighborhood identification for large-
neighbourhood search methods.
solver configuration, e.g. inspired by the MultiTAC system which parameterizes con-
straints solvers in terms of search heuristics, propagators, etc. Which technology should
be used and when?

The key challenges for applying learning to solver design/development are: to identify the
appropriate learning task that defines an appropriate success metric; to define an appropriate
set of features to represent the training data; to select an appropriate distribution of
scenarios/problem instances to use as training data; and, to select an appropriate learning
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method. As evidenced in these working notes, there has been some progress in these areas.
However, many rather mundane, but complex, challenges remain, e.g. on what basis should
we claim that one solving procedure is better than another? Clearly solving time is important,
but so is robustness if that solver must solve many instances within a problem class, or across
several classes.

Many interesting opportunities for classification were discussed. For example, one can
frame a classification task around the identification of “good” vs “bad” search trees to inform
a randomized search algorithm which uses restarts. If a search tree is considered “bad” the
algorithm should restart. A related discussion considered the opportunities for reinforcement
learning to react to the context defined at a node during search. For example, should the
problem be decomposed, should we propagate the state? These are all complex challenges
which experienced constraint programmers deal with, and which could be aided by the
appropriate use of machine learning.

Many researchers were interested in the use of learning for designing new search heuristics.
There are many opportunities to gather statistics during search which can be used as training
data for credit assignment methods and rule learners (both symbolic and numeric) upon
which new heuristics can be learned.

A key concern for constraint programmers is to learn how to store and add constraints from
dead-ends, often referred to as nogood learning. Challenges here relate to the identification,
generalization, and forgetting of nogoods.

Finally, there was a long discussion about the use of learning for problem decomposition.
An interesting question is how to generalize branching on assignments to branching on
constraints. Machine learning can help us learn from past experience about the utility of
solving particular problems using stream-lining constraints whereby a decision is made to
impose a constraint that solutions should have specific structure. Similarly, machine learning
can help learn grammars for composing interesting constraints.

In conclusion there was agreement that research at the interface between machine learning
and constraint solving offered considerable promise and had the potential to yield many
high-impact and valuable techniques.
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