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Abstract
We investigate and implement a model of typed streaming I/O. Each type determines a language
of traces analogous to regular expressions on strings, and programs are modelled by certain
monotone functions on these traces. We show that sequential composition forms a lax braided
monoid in the category of types and programs. This lax braided structure allows programs to
be represented diagrammatically using Joyal and Street’s string diagrams in 3D space. Mono-
tone functions over traces cannot be executed efficiently, so we present an equivalent monoidal
category of transducers. We demonstrate that transducers can be executed efficiently, theoret-
ically by showing that programs with diagrams embedded in the plane can be executed in O(1)
space, and experimentally by an implementation in the Agda dependently typed functional lan-
guage. Agda supports machine-assisted proof: we have mechanically verified that the transducer
implementation and the I/O model form lax braided monoidal categories.
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1 Introduction

1.1 Semantics

There are many models of streaming I/O, such as Kahn’s dataflow networks [22] and Mil-
ner’s [26] and Hoare’s [16] process models. In these models, streams are stateless, for example
a stream might be given the type Byteω, and a consumer is allowed to read a Byte from such
a stream at any time.

To motivate the use of stateful streams, consider a typical Java program which consumes
a steam of data:

Iterator<A> stream = ...;
while (stream.hasNext()) { A a = stream.next(); ... }

The contract for using an Iterator<A> stream is that hasNext is called, and depending on
its value the stream is either terminated, or next can be called, and the stream’s contract
is back to its initial state:
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Bool A
true

false

a

In Java, such contracts are enforced dynamically; they are enforced statically by systems of
typestates [9]. Typestates are modelled as automata, and so come with the usual definition
of sequential composition. We will write T & U for the sequential composition of T and U ;
a typical member is given by concatenating a member of T with a member of U . There is
a matching notion of sequential composition of functions on traces, and so we investigate
monoidal categories. There has been work on formal models of computation over stateful
streams, notably session types [17] and games models [4, 18]. These models emphasise the
concurrent, rather than sequential, composition of streams, for example in games models
T ⊗ U is modelled by interleaving.

This paper provides the first categorical model for typed streaming I/O with a monoidal
structure for sequential composition. We will show that this category has lax braided [8]
structure (§2.5), and so has a dataflow presentation as string diagrams in three dimen-
sions (§2.6). Braided monoidal categories are common in mathematical physics [5]; it is
surprising that they also come up in the setting of streaming.

1.2 Pragmatics

This paper grew from an attempt to provide an I/O library for the Agda [1] dependently
typed functional programming language. Since Agda compiles to Haskell [3], it is possible
to link against Haskell’s lazy I/O model. Unfortunately, lazy I/O does not respect Agda’s
semantics. Consider:

hello1 [] = putStr "Hello" hello2 xs = putStr "Hello"
hello1 (x : xs) = putStr "Hello"

Agda includes a mechanized proof assistant, in which it is routine to prove that hello1 and
hello2 are extensionally equivalent. Unfortunately, executing these programs using Haskell
lazy I/O (main = getContents >>= hello*) results in hello1 blocking waiting for input,
and hello2 immediately printing "Hello". Kiselyov [23] has proposed an alternative to lazy
I/O: the iteratee model; Millikin [25] has written a good introduction to the topic. Iteratees
are similar to transducers [24] or resumptions [15]. Similar to this, we present a streamlined
process model and show that processes are equivalent to functions over traces (§3.1).

We give a characterization of the regular functions on streams, which can be executed
in O(1) space. We show (§3.2) that regular programs can be presented as planar dataflow
diagrams. We provide an implementation of processes as an Agda library (§3.3) that links
processes against the Haskell I/O library, and verify experimentally that our implementation
of a simple wc program runs in constant space. We have used Agda to mechanically validate
many of the theorems in this paper. This verification is of the I/O library implementation,
not just its model, and caught some corner case buffering bugs. This is the first mechanical
verification of the categorical structure of an I/O library.
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2 Semantics

2.1 Types
We model stateful types as the grammar:

T
ν::= I | Σ(a :A)Ta

I is the unit type and Σ(a : A)Ta is a sum type, where A is a set1, and T is an A-indexed
family of types. Types are defined coinductively, that is each type can be viewed as a
(possibly infinitely deep and infinitely wide) tree, where each node is either: an I node, with
no children, or a Σ(A) node, with A-indexed children. We indicate that the grammar of
types is to be interpreted coinductively by the annotation ν::= ; we will annotate inductive
grammars by µ::= . For example, the type: 〈Bool〉 def= Σ(b : Bool) I has tree representation:

Bool

true

false

which can be viewed as the tree unfolding of the graph:

Bool b

In general, the character type 〈A〉 is:

A
a 〈A〉 def= Σ(a :A) I

The iterator character type 〈A〉∗ is:

Bool A
true

false

a

〈A〉∗ def= Σ(b : Bool)Tb
Ttrue

def= Σ(a :A) 〈A〉∗

Tfalse
def= I

The stream character type 〈A〉ω is:

A a 〈A〉ω def= Σ(a :A) 〈A〉ω

As these examples show, types can be viewed as (potentially infinite state) automata, where
the only acceptor is I.

I Theorem 1. Types are in one-to-one correspondence with minimal deterministic automata
where every acceptor is a sink state.

1 For readers who care about cardinality, let A range over a universe of small sets, and let the set of
types be a large set.
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2.2 Traces
Since types are automata, we can look at their languages. Define the transition relation on
types and the language of a type:

Σ(a :A)Ta
b−→ Tb (b ∈ A) L(T ) = { a1 · · · an | T

a1−→ · · · an−→ I }

Following [29], we will call the elements of this set complete traces of T . Equivalently, we
can present the complete traces as a grammar:

t
µ::= ε | a · t

together with a type judgement t : XT :

ε : XI
a ∈ A t : XTa

a · t : XΣ(a :A)Ta
We can also define the language of (potentially incomplete) traces as:

T (T ) = { a1 · · · an | ∃U . T
a1−→ · · · an−→ U }

or equivalently as a type judgement t : T :

ε : T
a ∈ A t : Ta

a · t : Σ(a :A)Ta
We are interested in incomplete traces, because we will view programs as functions from
input traces to output traces. If we only recorded complete traces, then every program has
an equivalent program which blocks waiting for its input to complete.

2.3 Categories
We have discussed our model of types as languages of traces, and now consider our model
of programs as functions on traces. For any function f : T (T )→ T (U), define:

f is monotone whenever t ≤ u implies f(t) ≤ f(u), where ≤ is prefix order, and
f respects completion whenever t is complete implies f(t) is complete.

Monotonicity is a standard requirement for trace models, for example [22], as it expresses
that a program must commit to its output. Respecting completion is a termination property.
This leads us to our first category of functions over traces. Tr is the category with:

Objects are types.
Morphisms f :T → U are monotone functions f :T (T )→ T (U) which respect completion.
Identity and composition are as expected.

It turns out that we will use two other conditions on functions in Sections 2.4 and 2.5.
Define:

f reflects completion whenever f(t) is complete implies t is complete, and
f is strict whenever f(ε) = ε.

We can then define three subcategories of Tr, all with the same objects:
in RTr, morphisms reflect completion,
in STr, morphisms are strict, and
in RSTr, morphisms reflect completion and are strict.

It is routine to verify that identity and composition preserve monotonicity, respecting com-
pletion, reflecting completion, and strictness, and so form categories.

I Theorem 2. Tr, RTr, STr and RSTr are categories.

Proof. Mechanically verified [19]. J
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2.4 Monoidal structure
Since types are automata, they come equipped with a monoidal action: sequential composi-
tion. We define the type T & U by tree substitution :

I & U
def= U (Σ(a :A)Ta) & U

def= Σ(a :A) (Ta & U)

This is the usual definition of composition of automata, replacing any moves to the acceptor
in T by a move to the initial state of U , for example:

Bool A

Bool B

true

false

a

true

false

a

〈A〉∗ & 〈B〉∗

It is easy to check that on types, & forms a monoid with unit I. To define the action of
& on morphisms, we first define concatenation of traces: given t : T and u : U , we define
t _ u : T & U . If t is complete, the definition is as expected:

ε _ u
def= u (a · t) _ u

def= a · (t _ u)

We cannot, however, use this definition when t is incomplete, as it does not typecheck;
instead we define:

t _ u
def= t when t is incomplete

Given t : T & U , we define frontT (t) : T and backT (t) : U as:

frontI(t) def= ε

frontΣ(a:A) Ta
(ε) def= ε

frontΣ(a:A) Ta
(a · t) def= a · frontTa

(t)

backI(t) def= t

backΣ(a:A) Ta
(ε) def= ε

backΣ(a:A) Ta
(a · t) def= backTa

(t)

We will often elide the types from front and back. From concatenation and projection,
we can define the action of & on morphisms. Given f : T → U and g : T ′ → U ′, define
f & g : T & T ′ → U & U ′ as:

(f & g)(t) def= f(front(t)) _ g(back(t))

Unfortunately, this is not a monoid on Tr, as it is not a functor, for which we would need:

(f1; g1) & (f2; g2) = (f1 & f2); (g1 & g2)

This fails for morphisms (of type 〈Bool〉 → 〈Bool〉):

f1(t) def= g2(t) def= t f2(t) def= g1(t) def= true · ε lhs(ε) = true · true · ε 6= true · ε = rhs(ε)

To show functoriality, it is sufficient to show:
g1 reflects completion, or
f1 respects completion, and f2 is strict.

I Theorem 3. RTr, STr and RSTr are monoidal categories.

Proof. Mechanically verified [19]. J
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2.5 Lax braided structure
We can define a family of morphisms:

swap : T & U → U & T swap(t) def= back(t) _ front(t)

Unfortunately, swap does not form a symmetry, as this would require swap(swap(t)) = t,
which is only true (for non-I types) when t is complete:

swap(swap(t)) = ε when t is incomplete

The problem is that swap has to buffer the front of the input until the the input is complete.
We will discuss this form of space usage in Section 3.2.

We have shown that swap is not a symmetry, and in fact it is it not even an isomorphism.
For example, for swap : 〈Bool〉& U → U & 〈Bool〉 we have, for any f :

f(swap(true · ε)) = f(ε) = f(swap(false · ε))

and so f cannot be the inverse of swap.
Categories in which swap is an isomorphism have been studied in depth: they are braided

monoidal categories, and have applications in mathematical physics, as surveyed, for ex-
ample, by Baez and Stay [5]. Braided monoidal categories can be regarded as the categorical
version of braid groups, where every braiding has an inverse. Positive braid monoids [10]
drop this requirement; their categorical equivalent, lax braided monoidal categories have only
recently been investigated by Day et al. [8], see Figures 2–3.

We will see that RSTr is a lax braided monoidal category. Unfortunately, RTr and STr
are not lax braided, as swap is not natural, for which we need:

(f & g); swap = swap; (g & f)

To see that reflecting completion without strictness is not enough to guarantee naturality,
consider:

f(t) def= t g(t) def= a · t lhs(ε) = ε 6= a · ε = rhs(ε)

To see that strictness without reflecting completion is not enough, consider, for any complete
t 6= ε, incomplete u 6= ε and complete s:

f(t) def= t g(t) def=
{
ε if t = ε

s otherwise lhs(t _ u) = s _ t 6= s = rhs(t _ u)

Naturality of swap can be shown when f respects completion, and g is strict and reflects
completion.

I Theorem 4. RSTr is a lax braided monoidal category.

Proof. Mechanically verified [19]. J

2.6 String diagrams
Braided monoidal categories have an associated graphical language of string diagrams, as
shown by Joyal and Street [20]. String diagrams have been used in various guises for quite
some time now and we refer the reader to Baez and Stay [5] or Selinger [27] up to date
surveys of graphical languages.

CSL’11
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words

bytes

back

report

encode

〈Byte〉∗
〈Byte〉∗

〈Nat〉〈Byte〉∗ 〈Nat〉

〈Nat〉
〈Char〉∗

〈Byte〉∗

Figure 1 Example dataflow diagram.

Such diagrams are often used to represent the dataflow of programs, for example in Kahn
networks [22]. An example dataflow program is shown in Figure 1: a simple wc program,
which counts the number of bytes and the number of words in an input stream. (We draw
diagrams flowing from top to bottom in line with Baez and Stay rather than Selinger).

The categorical structure of such dataflow diagrams is well-known: they form a sym-
metric monoidal category, with combinators shown in Figure 2. It is routine to verify that
dataflow graphs up to isomorphism satisfy the properties given in Figures 3 and 4, which
are the defining equations of a (strict) symmetric monoidal category. Joyal and Street
have shown that not only are these equations sound, but they are also complete for graph
isomorphism [20, Thm. 2.3], as discussed by Selinger [27, Thm. 3.12].

In a braided monoidal category, Figure 4 is replaced by Figure 5. This is accompanied
by a matching change in the interpretation of diagrams; rather than graph isomorphism, we
consider equivalence in three dimensional space. It is routine to verify that string diagrams
up to isotopy2 satisfy the properties given in Figures 3 and 5, which are the defining equations
of a (strict) braided monoidal category. Again, Joyal and Street have shown that not only
are these equations sound, but they are also complete for isotopy [20, Thm. 3.7], as discussed
by Selinger [27, Thm. 3.7].

In string diagrams, swap is interpreted as a left-over-right crossing, and so has an inverse
right-over-left crossing. In a lax braided monoidal category, the requirement that swap has
an inverse is dropped, and we are left with the equations presented in Figure 3. This provides
us with a graphical language of a lax braided monoidal category: we conjecture that this
graphical language is sound and complete.
I Conjecture 2.1. A well-formed equation between morphisms in the language of lax braided
monoidal categories follows from the axioms of lax braided monoidal categories if and only
if it holds in the graphical language up to isotopy in 3 dimensions.

Proof sketch. Given Joyal and Street’s results, it is enough to show that the equational
theory of a braided monoidal category is a conservative extension of the equational theory

2 More precisely, progressive isotopy of smooth string diagrams in three dimensions, see Joyal and
Street [20].
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··· ··· ··· ··· ··· ··· ···

G

f ··· G H

H

··· ··· ··· ··· ··· ··· ···

id G;H swapG⊗Hf

Figure 2 Combinators of a (strict) symmetric monoidal category.

··· ··· ···

···

G G G

···

··· ··· ···

··· ···

G G

H H

I I

··· ···

··· ··· ··· ···

G H G H

I J I J

··· ··· ··· ···

··· ··· ···

G G G

··· ··· ···

··· ··· ··· ··· ··· ···

G H I G H I

··· ··· ··· ··· ··· ···

G;id G id;G

id⊗G G G⊗id (G⊗H)⊗I G⊗(H⊗I)

(G;H);I G;(H;I)
(G⊗H);(I⊗J) (G;I)⊗(H;J)

= =

= = =

= =

··· ··· ··· ···

G H

··· ··· ··· ···

H G

··· ··· ··· ···

··· ··· ··· ··· ··· ···

··· ··· ···

··· ··· ··· ··· ··· ···

··· ··· ··· ··· ··· ···

··· ··· ···

··· ··· ··· ··· ··· ···

··· ···

··· ···

··· ···

··· ···
(G⊗H);swap swap;(H⊗G)

(swap⊗id);(id⊗swap) swap

(id⊗swap);(swap⊗id) swap

swap id

swap id

=

=

=

=

=

Figure 3 The equations of a (strict) lax braided monoidal category

··· ··· ···

··· ···

··· ··· ···
swap;swap id

=

Figure 4 Symmetry

··· ··· ···

··· ···

··· ··· ···

swap;swap−1 id

=

··· ··· ···

··· ···

··· ··· ···

swap−1;swap id

=

Figure 5 Braiding
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of a lax braided monoidal category. That is, given any two morphisms f and g in the free
lax braided monoidal category over a given signature, if f =B g then f =L g (where =B is
the theory of a braid, and =L is the theory of a lax braid). In the case without generating
morphisms, this problem collapses to the case of showing that the free positive braid monoid
embeds into the free braid group, which was shown by Garside [10]3.

Let w range over wiring morphisms (that is, morphisms without generators) and p range
over planar morphisms (that is, morphisms without swap). Define a stratified morphism
to be one of the form: w0; p1;w1; . . . ; pn;wn such that if pi;wi =L w; f for some w, then
w =L id, and if wi; pi+1 =L p; f for some p, then p =L id. Now, if we can show that:

every morphism can be stratified up to =L,
stratified terms are a normal form for =B , and
Conjecture 3.4 of Selinger [27],

then we can prove our conjecture. Assume morphisms f and g in the free lax braided mon-
oidal category, such that f =B g. Stratify each of them to get f =L w0; f1;w1; . . . ; fn;wn
and g =L v0; g1; v1; . . . ; gb;wn. Since these are normal forms for =B , we have: vi =B wi
and fi =B gi. Each vi =L wi from Garside [10]. Since fi =B gi, we have that fi and gi are
isotopic as string diagrams in three dimensions, so Selinger’s conjecture implies fi =L gi.
The result then follows. J

We leave the full proof of this conjecture as future work. If this conjecture is true, it provides
a powerful, and unexpected, proof technique for equivalence of streaming programs: draw
the dataflow diagrams for the programs as string diagrams in three dimensions, and check
that an isotopy exists. Isotopies can often be checked “by eye”, so this technique would
allow many routine rewiring steps in a proof to be elided.

3 Pragmatics

3.1 Processes
One of the major drawbacks of functions on partial traces as a model of streaming I/O is
that they cannot easily be executed directly. Imagine an execution of f after receiving input
t: when a new input symbol a arrives, we need to know the matching output, so we have to
apply f to the new history t · a. This is inefficient in both time (potentially O(n2) rather
than O(n)) and space (potentially O(n) rather than O(1)). Delimited call/cc [28] would
avoid this, at the cost of sophisticated language features.

Therefore, as a move towards an implementation we find it useful to introduce a syntactic
representation of programs as a small language of transducer processes:

S
ν::= inp(a :A)Pa | done P

µ::= S | out aP

In this definition:
inp(a :A)Pa is an input process, A is a set, and P is an A-indexed family of processes,
done is the terminated process, and
out aP is an output process.

Notice that the two levels of grammar define strict processes S and (lazy) processes P .
Laziness here refers to not being reliant on an input in order to generate output. Also note

3 Thanks to Ross Street for discussions on this topic, and for pointing us to Garside’s work.
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the coinductive annotation on the grammar of strict processes, and the inductive annotation
on P , which ensures that there are no infinite sequences of output actions.

The type rules for processes are given coinductively:

done : I → I

Pa : Ta → U for all a ∈ A
inp(a :A)Pa : Σ(a :A)Ta → U

a :A P : T → Ua

out aP : T → Σ(a :A)Ua

Note that since there are no infinite sequences of output actions, well=typed processes
respect completion.

We can define4 the operation of composition on processes � as (in order):

P � out aQ def= out a (P � Q)
inp(a :A)Pa � Q

def= inp(a :A) (Pa � Q)
out aP � inp(b :B)Qb

def= P � Qa

done� Q
def= Q

P � done def= P

The identity processes for this composition are:

idI = done idΣ(a:A)Ta
= inp(a :A) out a idTa

This leads us to a category of processes. Pr has:
Objects are types.
Morphisms P : T → U are processes.
Identity and composition are id and �.

We have already defined the strict processes. A process reflects completion when it can be
typed with an additional side-condition on the type rule for input:

Pa : Ta → U for all a ∈ A
inp(a :A)Pa : Σ(a :A)Ta → U

(U 6= I)

We can then define three subcategories of Pr, all with the same objects:
in RPr, processes reflect completion,
in SPr, processes are strict, and
in RSPr, processes reflect completion and are strict.

We can define a sequential composition operator P &Q on typed processes as (in order):

P & out bQ def= out b (P &Q) if P : T → I

done &Q
def= Q

inp(a :A)Pa &Q
def= inp(a :A) (Pa &Q)

out aP &Q
def= out a (P &Q)

This definition is straightforward except for the first clause in which a process that has
completed its output will not block immediate output from Q.

4 Some care is required to ensure that this definition is well formed, since it uses a mix of induction and
coinduction. This has been mechanically verified [19].

CSL’11
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The lax braided structure on processes is given by the swapT,U process defined (in order):

swapI,U
def= idU

swapT,I
def= idT

swapT,U
def= swapT,U (ε)

swapI,I(u) def= outu done
swapI,Σ(a:A)Ua

(u) def= inp(a :A) out a swapI,Ua

swapΣ(a:A)Ta,U (u) def= inp(a :A) swapTa,U (u · a)

out ε P def= P

out (u · a)P def= outu out aP

This process explicitly maintains a buffer u of actions which are output after its input has
completed.

I Theorem 5.
1. Pr is a category.
2. RPr and SPr are monoidal categories.
3. RSPr is a lax braided monoidal category.

Proof. Mechanically verified [19]. J

In order to show that our transducer processes accurately represent our model, we show
equivalences of categories. Given a morphism P : T → U in Pr we give a morphism [[P ]] :
T → U in Tr as follows:

[[done]](ε) def= ε

[[out aP ]](t) def= a · [[P ]](t)
[[inp(a :A)Pa]](ε) def= ε

[[inp(a :A)Pa]](b · t) def= [[Pb]](t)

On traces, define t u−→ t′ as:

t
ε−→ t

t
u−→ t′

a · t a·u−→ t′

that is, whenever t can be partitioned into a prefix u and suffix t′. On morphisms, define:

f
t/u−→ f ′ whenever s t−→ s′ implies f(s) u−→ f ′(s′)

This allows us to view morphisms as (possibly infinite state) transducers [24]: f responds to
input t by producing output u and changing state to f ′. Given a strict morphism f :T → U ,
define the strict process (|f |)sT : T → U as:

(|f |)sI
def= done

(|f |)sΣ(a:A) Ta

def= inp(a :A) out t (|f ′|)sT where f a/t−→ f ′

Given a morphism f : T → U , define the process (|f |)T : T → U as:

(|f |)T

def= out t (|f ′|)sT where f ε/t−→ f ′

We can show that (|·|) and [[·]] are inverses and respect categorical structure, and so form
equivalences.
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I Theorem 6. (|·|) and [[·]] form equivalences:
1. Tr and Pr as categories.
2. RTr and RPr as monoidal categories.
3. STr and SPr as monoidal categories.
4. RSTr and RSPr as lax braided monoidal categories.

Proof. Mechanically verified [19]. J

3.2 Space usage
In Section 2.5, we discussed the fact that swap introduces buffering: we will now discuss
space usage more formally.

An online algorithm is one which can be implemented by a multi-tape Turing Machine
where only rightward moves are allowed on the input and output tapes. The space usage
of such an implementation is the space usage of the scratch tapes: for example the identity
function is considered to be in O(1) space. It is routine to show that if f and g can be
implemented in O(1) space, then so can f ; g and f & g. The only constructor of a lax
braided monoidal category to introduce O(n) space usage is swap.

Another way to characterize the space usage is by analogy with regular trees. In our
setting, we are interested in the infinite trees generated by the coinductive definition of types.
A type is regular whenever: {T ′ | T t−→ T ′ } is finite and a morphism is regular whenever:
{ f ′ | f t/u−→ f ′ } is finite It is routine to see that regular types (resp. morphisms) can be
implemented as deterministic finite-state automata (resp. sequential finite-state transducers
[24]), and so can be executed in O(1) space (provided the alphabet can be represented in
O(1) space).

The identity function is regular, and regularity of morphisms is preserved by f ; g, and
f & g, so we can form the subcategory (resp. strict monoidal subcategory) of Tr (resp. RTr,
STr and RSTr) where morphisms are regular.

We can now show that swap is irregular. Consider the type N def= 1.N + 0.I whose
complete traces are of the form 1n0, and whose incomplete traces are of the form 1n. Now,
for any m and n, if (at type N &N):

swap 1m/ε−→ f swap 1n/ε−→ f

then we must have: 01m0 = swap(1m00) = f(00) = swap(1n00) = 01n0 and hence m =
n. Thus there must be infinitely many such f , and so swap is irregular. This argument
is essentially a replay of the Pumping Lemma in the setting of transducers rather than
automata.

Since any plane dataflow graph can be expressed without swap [27], this gives a surprising
method for showing that a function can be implemented in O(1) space: check that its
dataflow diagram is embedded in a plane. Moreover, if Conjecture 2.1 is true, then this
means that planarity only has to hold up to isotopy in three dimensions.

I Theorem 7. Any plane dataflow diagram whose generating morphisms can be implemented
in online O(1) space determines a morphism which can be implemented in online O(1) space.

3.3 Implementation
Agda [1] is a dependently typed functional programming language, which supports mechan-
ical theorem proving. Its core language is similar to that of Coq [2], although it does not
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have a separate language of tactics. It has a compiler to Haskell [3], and a foreign function
interface, which allows calls out to Haskell code.

The transducer process language and type system discussed in Section 3.1 is implemented
as an Agda library. It is linked against the Haskell I/O monad, and compiles to simple
pipes from standard input to standard output. The implementation allows us to verify
experimentally that regular programs run in constant space, for example the wc program
from Figure 1 can word count 29Mb of data (1M lines of XML) in 120k heap, with 22k live:

head -1000000 h_sapiens.xml | WC +RTS -A50k -M120k -s
29294872 1339150

16,796,509,664 bytes allocated in the heap
477,860,144 bytes copied during GC

22,112 bytes maximum residency (1 sample(s))
32,512 bytes maximum slop

Many of the theorems in this paper have been mechanically verified, which shows correctness
not just of the model Tr, but also of its implementation in Pr. This proof of correctness
caught some subtle bugs, for example in the definition of P &Q there is a clause:

P & out bQ def= out b (P &Q) if P : T → I

This clause was originally not present, which causes subtle buffering errors in the corner case
where P ’s output has completed even though its input has not. For unit testing to catch
this bug, a test harness would be required which supports mocking an I/O library to allow
testing with incomplete traces. Such mock libraries are difficult to construct, which in turn
makes unit testing of I/O-bound programs difficult.

In summary, we have provided an executable library of streaming I/O, together with a
mechanically verified proof of its categorical structure. This is the first such library.

4 Related work

Our model is based on monotone functions over traces, and so is strongly related to Kahn
dataflow networks [22]. Kahn networks are for streams of type Aω, and so do not support
a notion of stream termination, or concatenation of streams. The main difference between
Kahn’s model and ours is that we require streams to be consumed in left-to-right order, that
is a function of type f : T & U → V must consume all of its T input before consuming any
of its U input.

Games models [4, 18] have a similar structure to our model: arenas are (essentially)
automata with additional structure, and strategies are (essentially) transducers. Games,
however, are designed to have symmetric monoidal structure, rather than braided monoidal
structure, since the tensor on types is an interleaving rather than a sequencing of automata.
Games models are also compact closed, since they have a dualising action ·⊥. This corres-
ponds to the bidirectional nature of strategies in a game: a morphism f : T → U supports
input on the right and output on the left, as well as the left-to-right communication allowed
by our model.

Session types [17] also provide a bidirectional extension of the types considered here. We
can define the first-order output-only sessions in our system as:

end def= I ![A].T def= Σ(a :A)T ⊕{`i : Ti}
def= Σ(a : {`1, . . . , `n})Ua where U`i

def= Ti

Session types do support a notion of terminated session, and so could support a sequential
composition operator, but this has not been investigated. Moreover, much of the work on
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session types has been in the context of processes rather than functions, with the exception
of recent work by Gay and Vasconcelos [11]. There has been no work on categorical session
models. Linear logic [14] has symmetric monoidal structure, which has been generalized to
the non-commutative case (up to cyclic permutations) by Yetter [30]. Kiselyov’s iteratees [23]
provide a similar model to our transducer process model, although they also support impure
iteratees and exceptions. The more fundamental difference between the models is output,
which in Millikin’s [25] notation is: Yield(Chunk[~b])[~a]. Here, an iteratee is being built with
input type A, and output type U ; it is outputting ~b, and also returning the unconsumed
input ~a. In our terms, this is a process of type 〈A〉∗ → 〈B〉∗ & 〈A〉∗, that is iteratees are
given by the state transformer construction applied to processes. A similar syntactic model
for stream processing is provided by Ghani et al. [12], and has been generalized to arbitrary
coinductive datatypes [13].

5 Future work

Cyclic graphs are modelled categorically as traced monoidal categories [21], as discussed by
Selinger [27]. Braided traced categories are well-known, but it is not immediately obvious
what the right notion of lax braided traced category is. Cyclic graphs would allow modelling
of recursive dataflow programs, although there may be a requirement that only contraction
maps (with respect to an appropriate metric on traces) can be made cyclic.

Games models and session types are naturally bidirectional, so there exist duals for
all types; categorically games form compact closed categories. It is not obvious how to
generalize the notion of autonomous category from the braided to the lax braided setting.
Compact closed categories are monoidal closed, where T ⇒ U is defined to be T⊥⊗U . This
should extend to a higher order sequential model, where T⊥ & U is a type for programs
which consume all their arguments before producing any results.

There is a natural improvement order on functions, given pointwise by prefix order,
for example swap; swap ≤ id. Such an improvement order would make our category a 2-
category. These come with natural minimal and maximal elements, for example the the
maximal natural transform of type T → T is the identity function, and the minimal natural
transform is a “delay” function that returns ε on any incomplete input, and acts as the
identity on complete input. Moreover, Tr comes with the right combinators to form a
category with finite products, but the equations are only satisfied up to two-cells, for example
〈f, g〉;π2 ≤ g. This may be given an interesting restriction category structure [7] or form a
variant of a cartesian bicategory [6].
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