
Relative Completeness for Logics of Functional
Programs
Bernhard Reus 1 and Thomas Streicher 2

1 University of Sussex,
Brighton BN1 9QH, UK
bernhard@sussex.ac.uk

2 TU Darmstadt,
64289 Darmstadt, Germany
streicher@mathematik.tu-darmstadt.de

Abstract
We prove a relative completeness result for a logic of functional programs extending D. Scott’s
LCF. For such a logic, contrary to results for Hoare logic, it does not make sense to ask whether
it is complete relative to the full theory of its first-order part, since the first order part does
not determine uniquely the model at higher-order types. Therefore, one has to fix a model and
choose an appropriate data theory w.r.t. which the logic is relatively complete. We establish
relative completeness for two models: for the Scott model we use the theory of Baire Space as
data theory, and for the effective Scott model we take first-order arithmetic. In both cases we
need to extend traditional LCF in order to capture a sufficient amount of domain theory.

1998 ACM Subject Classification D.2.4 Program Verification; D.3.1 Formal Definitions and
Theory; F.3.1 Specifying and Verifying and Reasoning about Programs; F.3.2 Semantics of Pro-
gramming Languages

Keywords and phrases Completeness, Program Logics, LCF

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.470

1 Introduction

Program logics play an important role in Computer Science to complement testing. A
program logic allows one to prove that a program satisfies a given specification. Seminal
work has been done in the late sixties by Hoare on axiomatic semantics for stateful programs
[8]. Since then many calculi have been developed for all kinds of programming languages
and meanwhile mechanizations of these logics in numerous verification tools exist.

Two properties of a program logic are of particular interest. Soundness states that any
property one can prove of a program in the calculus is actually valid. Completeness states
the converse, namely that any valid property can also be derived. In an ideal world, a
formal calculus for a program logic would be both, sound and complete, thus faithfully
and completely reflecting the semantics of programs and correctness assertions, also called
specifications.

Due to Gödel’s Incompleteness Theorem it is hopeless to look for absolutely complete
program logics since for any (sufficiently expressive) formal system S one can find a correctness
assertion GS which is true but cannot be derived in S. Nevertheless one might ask whether
the axioms of some program logic L are sufficient for proving all true correctness assertions
relative to some complete data theory T , i.e. whether L is complete relative to T .

In [6] this problem was considered for the case where L is the Hoare logic for a basic
imperative language which can store and manipulate objects of a data structure and T is the

© Bernhard Reus and Thomas Streicher;
licensed under Creative Commons License NC-ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 470–480

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2011.470
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Bernhard Reus and Thomas Streicher 471

complete first order theory of this data structure. Obviously, the logic L is complete relative
to T provided that for every program P and postcondition B

(a) the weakest liberal precondition wlp(P)(B) is expressible in T and
(b) {wlp(P)(B)}P{B} is provable in L

because by definition {A}P{B} is equivalent to A⇒ wlp(P)(B) and L can derive {A}P{B}
from A⇒ wlp(P)(B) and {wlp(P)(B)}P{B} via the consequence rule. In [6] it was shown
that (b) holds under the assumption of (a), i.e. that T is expressive w.r.t L. In practice,
expressivity is ensured by the first order definability of [[P]], the semantics of P : if R is a first
order relation expressing [[P]] then wlp(P)(B)(s) can be expressed as ∀s′. R(s, s′)⇒ B(s′).
A typical example is obtained by taking for T the set of all true first order sentences of
arithmetic since for all programs P its input/output relation [[P]] is recursively enumerable
and thus expressible by a formula of first order arithmetic.

To the best of our knowledge, the question of relative completeness for logics of functional
programming languages has not been investigated so far1 though it has been suggested in
[13].

Historically, the first logic for a functional programming language was Dana Scott’s LCF
introduced in [26]. This is a (many-sorted) predicate logic whose terms are PCF programs
as studied in [20] and many subsequent publications. There is some pragmatic evidence that
most correctness assertions about PCF programs can be proved within LCF. But there are
quite easy correctness assertions which can neither be proved nor disproved in LCF. Let,
for example, E(f) be the purely equational specification of the “parallel or” function then
LCF proves neither ∃f.E(f) nor its negation. The reason simply is that the former holds in
the Scott model but its negation holds in the fully abstract model (cf. [17]) where “parallel
or” does not exist (see [20]). Notice, however, that these two models are not different w.r.t.
the data type nat of natural numbers (and the type nat→nat of unary functions on nat)
but they do differ at higher types and, actually, already at type nat→nat→nat, the type of
“parallel or”. Accordingly, it does not make sense to ask whether LCF is relatively complete
w.r.t. the full theory of its first order part since the latter – unlike for the basic imperative
language considered in [6] – does not fully determine the (higher type part of the) model.

Thus, the right question is whether “natural” models for PCF can have nice axiomatiza-
tions L which are complete relative to a full data theory T . Though “natural” is somewhat
subjective one may want to consider the following three kinds of models:

(1) the Scott model and its effective variant (for an introduction see e.g. [27])
(2) the observably sequential algorithms model and its effective variant (see the original

paper [4] or more modern adaptations like [10, 14, 15])
(3) fully abstract models like Milner’s model (see [17, 27]) or its sequentially realised

submodel F (see [18]).

The models in (1) allow one to interpret PCF++, i.e. PCF extended with a parallel or and a
continuous existential quantifier as in [20]. The models in (2) allow one to interpret SPCF,
an extension of PCF with error elements and a catch-construct which allows one to observe
sequentiality (see [4, 15]). In both cases all types σ appear as definable retracts of type
nat→nat. Thus, it seems plausible that one can axiomatize these models by adding some
“obvious” axioms to LCF (of course, depending on the kind of model) and show completeness

1 A notable exception is [9] where a different form of completeness for a functional language with state is
proven that is weaker (see Conclusions).

CSL’11

472 Relative Completeness for Logics of Functional Programs

of the ensuing logics, relative to the complete theory T of the total strict elements of nat→nat.
In case of effective variants of these models it is, however, possible to instantiate T by the
set of all arithmetic truths because it suffices to consider the computable elements of every
type which can be encoded by natural numbers (see e.g. [20]).

In this paper we will perform the task for (1) in Sections 2 and 3, respectively. In the
final section we will discuss the cases (2) and (3) and extensions to models with higher order
references.

2 The Scott Model

Let D be the Scott model of PCF as introduced in [26]. In loc.cit. one finds a program logic
LCF suitable for reasoning about elementary properties of PCF programs (see also Sect. 3.3
of [27] for a quick recap of LCF). However, the axioms of LCF are so general that they hold
in all cpo-enriched order extensional models of PCF. The aim of this paper is to extend
LCF to a logic L for which D is a model and which is complete relative to the complete
theory T of Baire space NN (considered as a subset of the interpretation of nat→nat in the
Scott model). This theory T will be modeled after the theory EL (short for Elementary
Analysis) of [28] which is “an extension of Heyting arithmetic with variables and quantifiers
for number-theoretic functions”. Our theory T differs from EL in two respects: it is based
on classical logic and formulated in a sublanguage of L which refers only to the strict total
elements of nat and nat→nat. In order to stay within the realm of NN, general recursion
is not available in the language of T though primitive recursion is. But this is not a real
restriction since all inhabited r.e. sets can be enumerated by a primitive recursive function.
This fact will be used subsequently without further mention.

As shown in Plotkin’s paper [21] every coherently complete countably algebraic domain
appears as retract of [N⊥→N⊥], the interpretation of nat→nat in D. By inspection of
the proof in [21] one sees that nat→nat contains all PCF types as computable retracts
of nat→nat. Thus, from results in [20] it follows that for every PCF type σ there exist
PCF++ programs eσ : σ → nat → nat and pσ : (nat → nat) → σ such that pσ ◦ eσ is the
identity on Dσ (the interpretation of type σ in D). By PCF++ we denote the extension
of PCF with the “parallel or” operation por : nat → nat → nat and Plotkin’s continuous
existential quantifier ∃ : (nat→ nat)→ nat. As shown in [20] (see also final chapter of [27])
all computable elements of the Scott model arise as denotations of PCF++-terms. Recall that
an element d ∈ Dσ is computable if, and only if, the set of codes of compact approximations
to d is recursively enumerable by some (prim. rec.) function αd. In the language T we can
refer to elements of Dσ in terms of sequences α ∈ NN which enumerate codes of compact
approximations to d. See [3, 2] for further information on representations of domains and
more general spaces via Baire space and its connection to function realizability.

We will define a program logic L which axiomatizes the Scott model sufficiently well. Our
aim is to show that L is complete relative to T . For this purpose it suffices that for every
L-predicate P on objects of type σ

(A) there is a T -predicate P̃ such that P (M) is equivalent to P̃ (αM) for all closed PCF
terms M of type σ and

(B) L proves that P (M)↔ P̃ (αM)

where αM enumerates the codes of compact approximations to (the interpretation of) M .
Condition (A) is analogous to the expressivity condition (a) in Cook’s original proof since
(A) requires that every specification P formulated in the program logic L can be expressed

Bernhard Reus and Thomas Streicher 473

equivalently by a predicate P̃ in the “data theory” T . Condition (B) is analogous to condition
(b) in Cook’s original proof since (B) requires that the program logic is strong enough to
prove this equivalence.

2.1 The program logic L
The logic L is similar to the language of LCF as introduced in [26] in the respect that its base
types are the types of PCF. However, terms of type σ will be all PCF++-terms. The only
base predicates are the inequality relations vσ on type σ. Equality on σ can be expressed as
x vσ y ∧ y vσ x. In contrast to the original LCF, our L will not be based on classical first
order but rather on classical higher order predicate logic.

The usual axioms of LCF are sufficient for performing most simple verification exercises
but do not capture the deeper domain theoretic structure of the Scott model. From our
axiomatization one can derive all the axioms of traditional LCF but we also will axiomatize
a reasonable part of domain theory à la Scott. This was done also in [22] and was machine
checked within HOL (a “synthetic” intuitionistic version has been developed and verified in
[23] using LEGO). Unlike those formalizations, however, we will also have to speak about
compact elements. In order to do that we do not need to extend the term language but we
need to state continuity and similar properties in terms of compact elements.

First of all we postulate that all relations vσ are partial orders. Furthermore, using
higher order logic we can state that all types σ are complete partial orders w.r.t. vσ.

(1) every type σ is a directed complete partial order (dcpo)

Furthermore, we require that

(2) all f of type σ→τ are Scott continuous

The next two axioms characterize the order and suprema in function spaces

(3) for all f, g of type σ→τ we have f vσ→τ g iff ∀x:σ. f(x) vτ g(x)
(4) for all directed subsets F of σ→τ we have ∀x:σ.

(⊔
F
)
(x) =

⊔
f∈F

f(x)

where
⊔
F is the supremum of F in σ→τ whose existence follows from axiom (1). The

following axioms (5–9) are standard:

(5) λx:σ.M1 vσ→τ λx:σ.M2 ⇔ ∀x:σ.M1 vτ M2
(6) (λx:σ.M)(N) =τ M [N/x]
(7) λx:σ.M(x) =σ→τ M provided x is not free in M
(8) fixσ(M) =σ M(fixσ(M))
(9) ∀x:σ. M(x) vσ x⇒ fixσ(M) vσ x provided x is not free in M

Thus, for Ωσ ≡ fixσ(λx:σ.x) we can show that ∀x:σ.Ωσ vσ x. Further, we postulate axiom

(10) forall f of type σ→σ we have fixσ(f) =
⊔
n∈ω

fn(Ωσ).

from which one can derive fixpoint induction and computational induction as usual.
Using the defined predicate N(x) ≡ x 6= Ωnat we can state the following axioms about

nat.

(11) ¬ succ(x) = 0
(12) ∀x, y:nat. N(x) ∧N(y) ∧ succ(x) = succ(y)⇒ x = y

CSL’11

474 Relative Completeness for Logics of Functional Programs

(13) P (0) ∧
(
∀x:nat. N(x)∧P (x)⇒P (succ(x))

)
⇒ ∀x:nat. N(x)⇒P (x)

(14) N(0)
(15) ∀x:nat. N(x)⇔ N(succ(x))
(16) pred(0) = 0
(17) ∀x:nat. pred(succ(x)) = x

(18) ifz(Ωnat, x, y) = Ωnat

(19) ifz(0, x, y) = x

(20) ∀z:nat. N(z)⇒ ifz(succ(z), x, y) = y.

We have to add axioms for the extra PCF++ constants por and ∃.

(21) ∀x, y:nat. por(x, y) = Ωnat ∨ por(x, y) = 0 ∨ por(x, y) = 1
(22) ∀x, y:nat. por(x, y) = 0↔ (x = 0 ∨ y = 0)
(23) ∀x, y:nat. por(x, y) = 1↔ (x = 1 ∧ y = 1)
(24) ∀f :nat→nat. ∃(f) = Ωnat ∨ ∃(f) = 0 ∨ ∃(f) = 1
(25) ∀f :nat→nat. ∃(f) = 0↔ ∃x : nat.N(x) ∧ f(x) = 0
(26) ∀f :nat→nat. ∃(f) = 1↔ f(Ω) = 1

Though L is sufficient for expressing “ordinary” correctness proofs it is not clear how to
formalize basic domain theory in this language. For this purpose one has to speak about
compact elements. For every type σ one can define in PCF++ a strict function εσ : nat→ σ

enumerating the compact elements of Dσ in such a way that (Dσ, ε
σ) is an effectively given

domain, see [20, 27]. We often write x ∈ εσn instead of εσn v x. The εσ are chosen in such a
way that

(27) x ∈ εnat
0 and ∀x:nat. x ∈ εnat

n+1 ⇔ x = n

(28) f ∈ εσ→τ
[〈n1,m1〉,...,〈nk,mk〉] ⇔

k∧
i=1

f(εσni
) ∈ ετmi

where 〈−,−〉 refers to some primitive recursive coding of pairs and [n1, . . . , nk] is a code for
the finite set {n1, . . . , nk}. In order to relate εσ to vσ we postulate the axiom

(29) x vσ y ⇔ ∀n:N. x ∈ εσn ⇒ y ∈ εσn
Continuity of all functions in σ→τ is expressed by the axiom

(30) ∀f :σ→τ.∀x:σ.∀n:N. f(x) ∈ ετn ⇒ ∃m:N. x ∈ εσm ∧ ∀x:σ. x ∈ εσm ⇒ f(x) ∈ ετn
In presence of higher order logic it is clear that the above axioms are sufficient for deriving
the usual theorems of domain theory à la Scott (see e.g. other axiomatizations of domain
theory like Holcf [22]). However, these axioms are not irredundant2 but sufficient for their
purpose.

2.2 T as a sublanguage of L
There is an obvious translation from the language of EL into the language of L whose image
we denote by T . The type of natural numbers in EL will be interpreted in L as the subset
of nat as given by the predicate N . The type of sequences in EL will be interpreted in L as
the subset B of strict and total elements of nat→nat. We write ∀n:N. · · · as an abbreviation
for ∀n:nat.N(n)⇒ · · · and ∀α:NN. · · · as an abbreviation for ∀α:nat→nat.B(α)⇒ · · · .

The basic operations of EL are interpreted by their corresponding basic operations in L.
The primitive recursor of EL is implemented in terms of the fixpoint operator of L.

2 For instance, axioms (8) and (9) follow from(10).

Bernhard Reus and Thomas Streicher 475

2.3 Reducing L to T
From [21] it follows that there are PCF++ terms

p→ : (nat→nat)→ (nat→nat)→ nat→nat and
e→ : ((nat→nat)→ nat→nat)→ nat→ nat

such that p→ ◦ e→ is the identity on nat→nat and this is provable in L. We may exhibit
nat as a retract of nat→nat by putting pnat(f) = f(0) and enat(x)(y) = x. For function
types σ→τ we define

eσ→τ (g) = e→(eτ ◦ g ◦ pσ) pσ→τ (f) = pτ ◦ p→(f) ◦ eσ

exhibiting σ→τ as a retract of nat→nat provably in L.3
However, in general for a computable f of type nat→nat there will not exist a total

recursive α with pσ(f) = pσ(α). Thus, it seems appropriate to consider in addition a
PCF definable map r : (nat→nat) → (nat→nat) which turns a sequence of codes of
compact elements of nat→nat into the supremum of the coded elements in nat→nat, i.e.
r(α) =

⊔
n
εnat→nat
α(n) , provided this supremum exists. Obviously, the restriction of r to NN is still

surjective on nat→nat and, moreover, the corresponding statement ∀f :nat→nat.∃α:NN. f =
r(α) is provable in L. Thus, for every type σ one can prove in L that ∀x:σ.∃α:NN. x = p̃σ(α)
where p̃σ = pσ ◦ r. Moreover, one can show that p̃σ restricted to NN is an admissible
representation of Dσ in the sense of [2]. This means that for every (computable) continuous
map f from a subset R of NN to Dσ there exists a (computable) continuous map φ : R→ NN

realizing f , i.e. f = p̃σ ◦ φ.
Based on these facts one may replace quantifications of the form Qx:σ.A(x) (where Q

stands for ∀ or ∃) by Qα:NN.A(p̃σ(α)). Formulas of the latter form are not yet in the fragment
T since p̃σ is not a term of T . Thus, we have to replace atomic formulas p̃σ(α) vσ p̃σ(β)
by L-provably equivalent formulas in the language of T . For this purpose we first replace
p̃σ(α) vσ p̃σ(β) by ∀n:N.p̃σ(α) ∈ εσn ⇒ p̃σ(β) ∈ εσn. Thus, it suffices to replace formulas of
the form p̃σ(α) ∈ εσn by L-provably equivalent formulas Rσ(α, n) in the language of T . This
is achieved by the following lemma.

I Lemma 1. For every PCF type σ there is a T -predicate Rσ(α, n) such that

(†) Rσ(α, n)⇔ p̃σ(α) ∈ εσn

is provable in L.

Proof. For base type nat, we get by definition of εnat and r that

p̃nat(α) ∈ εnat
n ⇐⇒ n = 0 ∨ pnat(

⊔
k

εnat→nat
α(k)) = n−1

⇐⇒ n = 0 ∨ (
⊔
k

εnat→nat
α(k))(0) = n−1

⇐⇒ n = 0 ∨ ∃k:nat. (εnat→nat
α(k))(0) = n−1

⇐⇒ n = 0 ∨ ∃k:nat. 〈1, n〉 ∈ α(k)

which is a T -predicate. Therefore, we can set Rnat(α, n) ≡ n = 0 ∨ ∃k:nat. 〈1, n〉 ∈ α(k).
Suppose as induction hypothesis that we have achieved our goal for σ and τ already. Now

3 In [21] Plotkin shows that all coherently complete countably algebraic cpo’s arise as retracts of nat→nat.
But all PCF types get interpreted as coherently complete countably algebraic cpo’s in the Scott model.

CSL’11

476 Relative Completeness for Logics of Functional Programs

we can prove in L that

p̃σ→τ (α) ∈ εσ→τ
[〈n1,m1〉,...,〈nk,mk〉] ⇐⇒

k∧
i=1

p̃σ→τ (α)(εσni
) ∈ ετmi

⇐⇒
k∧
i=1

pτ (p→(r(α))(eσ(εσni
))) ∈ ετmi

⇐⇒
k∧
i=1

p̃τ (Φσ,τ (α, ni)) ∈ ετmi

⇐⇒
k∧
i=1

Rτ (Φσ,τ (α, ni),mi)

where Φσ,τ (α, n) is a term in T of type NN such that L proves pτ (p→(r(α))(eσ(εσn))) =
p̃τ (Φσ,τ (α, n)). The term Φσ,τ exists because p̃τ is an admissible representation of Dτ and
every code of an r.e. set can effectively be transformed into a code of a primitive recursive
function enumerating it.

According to the equivalence established above, we may now define Rσ→τ inductively as

Rσ→τ (α, [〈n1,m1〉, . . . , 〈nk,mk〉]) ≡
k∧
i=1

Rτ (Φσ,τ (α, ni),mi)

which can be expressed in the language of T (see [28]). J

Now we may associate with the base predicate vσ of L the T -predicate ṽσ defined as

α ṽσ β ≡ ∀n:N. Rσ(α, n)⇒ Rσ(β, n)

and, accordingly, we have

α=̃σβ ≡ ∀n:N. Rσ(α, n)⇔ Rσ(β, n) .

For L-predicates P we define their translation to a T -predicate P̃ by replacing v by ṽ, leaving
propositional connectives unchanged and replacing quantification over σ by quantification
over NN.

It remains to explain how one translates L-terms to T . For this purpose notice that Scott
domains form a full subcategory of Mod(K2), the modest sets in the (function) realizability
topos over the second Kleene algebra K2 as shown e.g. in [2]. As already mentioned
above for the domain Dσ an admissible representation is provided by the restriction of p̃σ
to NN, the underlying set of K2. Thus, for every PCF++ term x1:σ1, . . . , xk:σk ` t : τ
one can find a primitive recursive neighbourhood function αt in NN such that L proves
∀β1, . . . , βk:NN. p̃τ (αt(β1| . . . |βk)) = t[p̃σ1(β1), . . . , p̃σk

(βk)/x1, . . . , xk]. Accordingly, we may
translate the term t to the T -term αt(β1| . . . |βk) (where juxtaposition denotes application in
K2 and (β1| . . . |βk) is a code for the respective k-tuple in NN).

Thus, in summary, we have shown our first main result:

I Theorem 2. For every sentence A of L there is a sentence Ã in the fragment T such that
L proves A⇔ Ã. Thus L is complete relative to T , the set of all true sentences of EL.

3 The Effective Scott Model

For the effective Scott model [20] it should be possible to find an axiomatization Le which is
complete relative to the set Te of all true arithmetic sentences. However, in this model the
interpretation of types will not be cpo’s anymore because not all directed suprema exist. For
this reason we replace axioms (1-4) of subsection 2.1 by the following ones where the terms
εσ are the same as in the respective subsection.

Bernhard Reus and Thomas Streicher 477

(1) ∀f, g:σ→τ.f vσ→τ g ⇐⇒
(
∀x, y : σ.f(x) v g(y)

)
(2) for all x in σ the set {n : nat | N(n) ∧ n ∈ εσx} is r.e.
(3) for every r.e. set A if the subset {εσn | n ∈ A} is directed then it has a supremum in σ
(4) the suprema of (3) are pointwise in case of function types.

The logic Le of the effective Scott model is given by these four axioms and the axiom
(5-30) of subsection 2.1.

The system Te is the set of all true arithmetic sentences formulated in the obvious
sublanguage of Le. We assume that Te contains constants for all primitive recursive functions
on natural numbers.

For reducing Le to Te we proceed essentially as in subsection 2.3. The main difference
is that instead of the map r : (nat→nat) → nat→nat used there we consider a map
r : nat→ (nat→nat) which sends a code of a recursive enumeration of compact elements
in type nat→nat to its supremum provided the elements given in the enumeration are
consistent. As in subsection 2.3 we define p̃σ as pσ ◦ r : nat→ σ which is easily seen to be
an admissible numbering of the computable elements of the effectively given domain (Dσ, ε

σ)
(see last chapter of [27]).

In analogy to Lemma 1 we have

I Lemma 3. For every PCF type σ there is a Te-predicate Rσ(`, n) such that

(†) Rσ(`, n)⇔ p̃σ(`) ∈ εσn

is provable in Le.

Proof. The claim is evident for base type nat. Suppose as induction hypothesis that we
have achieved our goal for σ and τ already.

Now, completely analogously to the proof of Lemma 1 we can prove in Le that

p̃σ→τ (`) ∈ εσ→τ
[〈n1,m1〉,...,〈nk,mk〉] ⇐⇒

k∧
i=1

Rτ (Φσ,τ (`, ni),mi)

where Φσ,τ (`, n) is a term in Te such that Le proves pτ (p→(r(`))(eσ(εσn))) = p̃τ (Φσ,τ (`, n)).
The term Φσ,τ exists because p̃τ is an admissible numbering of the the computable elements
of the effectively given domain Dτ .

According to the above, we may define Rσ→τ inductively as

Rσ→τ (`, [〈n1,m1〉, . . . , 〈nk,mk〉]) ≡
k∧
i=1

Rτ (Φσ,τ (`, ni),mi)

which can be expressed in the language of Te (see [28]). J

Now in analogy with subsection 2.3 we may associate with the base predicate vσ of Le
the Te-predicate ṽσ defined as

n ṽσm ≡ ∀k:N. Rσ(n, k)⇒ Rτ (m, k)

and, accordingly, we have

n=̃σm ≡ ∀k:N. Rσ(n, k)⇔ Rτ (m, k)

For Le-predicates P we define their translation to a Te-predicate P̃ by replacing v by
ṽ, leaving propositional connectives unchanged and replacing quantification over σ by
quantification over N.

CSL’11

478 Relative Completeness for Logics of Functional Programs

As before, it remains to say how one translates Le-terms to Te. For this purpose
notice that effective Scott domains form a full subcategory of Mod(K1), the modest sets
in the (number) realizability topos (aka effective topos) over the first Kleene algebra K1
as shown e.g. in [16]. Actually, for the effective domain Dσ an admissible numbering is
provided by the restriction of p̃σ to N, the underlying set of K1. For every PCF++ term
x1:σ1, . . . , xk:σk ` t : τ one can find a primitive recursive function ft such that Le proves
∀m1, . . . ,mk:N. p̃τ (ft(m1, . . . ,mk)) = t[p̃σ1(m1), . . . , p̃σk

(mk)/x1, . . . , xk]. Accordingly, we
may translate the term t to the Te-term ft(m1, . . . ,mk).

Thus, in summary, we have our second main result

I Theorem 4. For every sentence A of Le there is a sentence Ã in the fragment Te such
that Le proves A⇔ Ã. Thus Le is complete relative to Te, the set of all true sentences of
arithmetic.

4 Conclusions and Directions for Future Work

We have proved relative completeness of an extension of LCF axiomatising the Scott model
with respect to the full theory of Baire space NN. Similarly, an extension of the effective
Scott model has been shown to be relative complete w.r.t. all true sentences of first order
arithmetic. To the best of our knowledge these are original results.

As mentioned in the Introduction, one could now go on and attempt similar relative
completeness proofs for axiomatisations of other models of PCF. For the observably sequential
algorithms model [4] one can exploit the fact that it admits a universal type nat→nat as
shown in [13] and its axiomatization could follow the ideas on Locally Boolean Domains
presented in [10].

For fully abstract models of PCF, unfortunately, the methods of our paper cannot be
applied. From Prop. 7.6 of [11] it follows that the fully abstract games model for PCF
does not admit a universal type. This, however, does not entail that there does not exist
a universal type in the model F which is obtained from the games model by taking the
quotient modulo observational equivalence. The reason is that the quotient may create new
retractions in F . But even if there existed a universal PCF type in F there would still
remain the problem that by Loader’s result [12] the decisive predicates on compact elements
are not effective and thus it would not be obvious how to axiomatise them.

In any case, the model F is particularly ill-behaved as shown in [18]. Firstly, not all
functionals in the model preserve suprema of ω-chains. Secondly, many “finitary” objects are
not compact in the sense of domain theory. However, the situation is much more satisfactory
when looking at F from the point of view of “operationally based domain theory” as in
[7, 25] where instead of order-theoretic suprema of ascending chains one considers limits of
so-called “ω-chains” (cf. [19, 24]). Thus, it may be worthwhile to axiomatize F despite the
problems discussed above. For instance, one could try to formulate the games model of PCF
within the fragment EL (which allows one to speak about arenas and strategies which can
be represented by functions on N) and to consider the logical relation between the games
model and F itself specifying which elements are realized by which strategies. This way one
obtains representations of PCF types which, though different from the ones considered in
this paper, can still be used for reformulating correctness assertions in terms of EL.

Another open problem is to find relatively complete logics for languages with higher order
store as in [1]. In [11] a language λco has been exhibited that is universal for a games model
G! where G is the category of affine sequential algorithms on Curien-Lamarche games and ! is
the repetetive exponential on G. The reason for this universality is that there is a simple

Bernhard Reus and Thomas Streicher 479

universal type natnat→natnat whose computable elements can all be denoted by λco terms.
Alas, the model G! is more restrictive than the games model considered in [1] and thus we do
not know whether the latter contains a universal type. At first sight the paper [9] seems to
address this problem but the assertion language used there is too strong in the sense that
it refers to higher order objects and thus contains already all correctness assertions. The
main achievement of loc.cit. is rather that the program logic characterises programs up to
observational equivalence.

Moreover, program specifications in loc.cit. have to be formulated as Hoare triples which
cannot be combined by logical connectives and quantifiers. This, however, would be desirable
since it allows one to avoid the problems with verification of higher-order local procedures as
described in [5].

Acknowledgements This research has been supported by the EPSRC Research Grant
“Relative Completeness for Logics of Functional Programs” (EPSRC EP/I01456X/1). We
would like to thank Martin Berger for discussions on the completeness results of [9] and the
anonymous referees for their suggestions and comments.

References
1 S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for general

references. In Proc. of the 13th Symp. on Logic in Computer Science, pp. 334–344, IEEE
Press, Washington, 1997.

2 I. Battenfeld, M. Schröder, and A. Simpson. A Convenient Category of Domains, Electronic
Notes in Theoretical Computer Science, vol. 172, pp. 69–99, 2007.

3 A. Bauer. Realizability as Connection between Constructive and Computable Math-
ematics. Proc. of CCA 2005 - Second International Conference on Computability and
Complexity in Analysis, pp. 378–379, 2005. Long version electronically available from
math.andrej.com/data/c2c.pdf.

4 R. Cartwright, P.-L. Curien, and M. Felleisen. Fully abstract semantics for observably
sequential languages. Inf. Comput., 111(2):297–401, 1994.

5 E.M. Clarke. Programming Language Constructs for Which it is Impossible to Obtain
Good Hoare-like Axiom Systems. Journal of the Association for Computing Machinery,
Vol. 26, No. l, pp. 129-147, 1979.

6 S. Cook. Soundness and completeness of an axiom system for program verification. SIAM
Journal on Computing 7:70–90, 1978.

7 M. Escardó and W. Kin Ho. Operational domain theory and topology of sequential pro-
gramming languages, Inf. Comput. 207(3): 411-437, 2009.

8 C.A.R. Hoare. An axiomatic basis for computer programming. Comm. ACM 12:576–583,
1969.

9 K. Honda, N. Yoshida, and M. Berger. An Observationally Complete Program Logic for
Imperative Higher Order Functions. In Proc. of the 20th Symp. on Logic in Computer
Science, pp. 270–279, IEEE Press, Washington, 2005.

10 J. Laird. Locally boolean domains. Theor. Comput. Sci., 342(1):132–148, 2005.
11 J. Laird. Functional Programs as Coroutines: A Semantic Analysis. Logical Methods in

Computer Science, to appear.
12 R. Loader. Finitary PCF is not decidable. Theor. Comput. Sci. 266(1-2): 341-364, 2001.
13 J. Longley. Universal types and what they are good for. In GQ. Zhang, J. Lawson, Y.-

M. Liu and M.-K. Luo (editors), Domain theory, logic and computation: Proc. of the
2nd International Symposium on Domain Theory, Semantic Structures in Computation 3,
pp. 25-63, Kluwer, 2003.

CSL’11

480 Relative Completeness for Logics of Functional Programs

14 T. Löw. Locally Boolean Domains and Universal Models for Infinitary Sequential Lan-
guages. PhD thesis, TU Darmstadt, 2006.

15 T. Löw and Th. Streicher. Universality results for models in locally boolean domains. In
Z. Ésik, editor, Proc. of the 20th Int. Workshop Computer Science Logic, volume 4207 of
Lecture Notes in Computer Science, pp. 456–470. Springer, 2006.

16 D.C. McCarty. Realizability and Recursive Mathematics. PhD Thesis, Oxford, 1984.
17 R. Milner. Fully Abstract Models of Typed λ-Calculi. Theor. Comput. Sci. 4, pp. 1-22,1977.
18 D. Normann and V.Yu. Sazonov. The extensional ordering of the sequential functionals.

preprint, 2010.
19 J. van Oosten and A.K. Simpson. Axioms and (counter) examples in synthetic domain

theory. Ann. Pure Appl. Logic, 104(1-3):233–278, 2000.
20 G. Plotkin. LCF considered as a programming language. TCS 5, pp. 223-255, 1977.
21 G. Plotkin. Tω as a universal domain. J. Comput. System Sci. 17, no. 2, pp. 209–236, 1978.
22 F. Regensburger. HOLCF: Higher Order Logic of Computable Functions, Proc. of the

8th International Workshop on Higher Order Logic Theorem Proving and Its Applications,
pp. 293–307, vol. 957 of Lecture Notes in Computer Science, Springer, 1995.

23 B. Reus. Formalizing Synthetic Domain Theory. Journal of Automated Reasoning, 23:411–
444, 1999.

24 B. Reus and Th. Streicher. General Synthetic Domain Theory – a logical approach. Math.
Struct. in Comp. Sci., 9:177–223, 1999.

25 A. Rohr. A Universal Realizability Model for Sequential Computation. PhD Thesis, TU
Darmstadt, 2002.

26 D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Unpublished paper
from 1969 reprinted in Böhm Festschrift, Theor. Comput. Sci. 121, No. 1-2, pp. 411–440,
1993.

27 Th. Streicher. Domain-theoretic Foundations of Functional Programming. World Scientific,
2006.

28 A. Troelstra and D. van Dalen. Constructivism in Mathematics. Two volumes, North
Holland, 1988.

	Introduction
	The Scott Model
	The program logic L
	T as a sublanguage of L
	Reducing L to T

	The Effective Scott Model
	Conclusions and Directions for Future Work

