
2D Tensor Field Segmentation∗

Cornelia Auer1, Jaya Sreevalsan-Nair2, Valentin Zobel3, and
Ingrid Hotz4

1 Zuse Institut Berlin
Takustrasse 7, 14195 Berlin, Germany
auer@zib.de

2 IIIT – Bangalore, Electronics City, Hosur Road, Bangalore, 560100, India
jnair@iiitb.ac.in

3 Zuse Institut Berlin
Takustrasse 7, 14195 Berlin, Germany
zobel@zib.de

4 Zuse Institut Berlin
Takustrasse 7, 14195 Berlin, Germany
hotz@zib.de

Abstract
We present a topology-based segmentation as means for visualizing 2D symmetric tensor fields.
The segmentation uses directional as well as eigenvalue characteristics of the underlying field
to delineate cells of similar (or dissimilar) behavior in the tensor field. A special feature of the
resulting cells is that their shape expresses the tensor behavior inside the cells and thus also
can be considered as a kind of glyph representation. This allows a qualitative comprehension
of important structures of the field. The resulting higher-level abstraction of the field provides
valuable analysis. The extraction of the integral topological skeleton using both major and minor
eigenvector fields serves as a structural pre-segmentation and renders all directional structures
in the field. The resulting curvilinear cells are bounded by tensorlines and already delineate
regions of equivalent eigenvector behavior. This pre-segmentation is further adaptively refined
to achieve a segmentation reflecting regions of similar eigenvalue and eigenvector characteristics.
Cell refinement involves both subdivision and merging of cells achieving a predetermined resolu-
tion, accuracy and uniformity of the segmentation. The buildingblocks of the approach can be
intuitively customized to meet the demands or different applications. Application to tensor fields
from numerical stress simulations demonstrates the effectiveness of our method.

1998 ACM Subject Classification I.3.3 [Computer Graphics]: Picture/Image Generation

Keywords and phrases Tensorfield visualization, surface topology

Digital Object Identifier 10.4230/DFU.Vol2.SciViz.2011.17

1 Introduction

Tensor fields occur in engineering and scientific simulations, either as intermediate product or
as final result. Mostly, the analysis of the resulting data is based on scalar fields derived from
these tensor fields. Since this approach often is insufficient to understand the entire physical
process, there is an increasing interest in the analysis of tensor data itself. The wealth
of information contained in tensor data, however, induces high data complexity making
visualization, analysis, and finally understanding of the data a challenging problem. In

∗ This work was supportet by the DFG Emmy Noether Research Project.

© C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz;
licensed under Creative Commons License NC-ND

Scientific Visualization: Interactions, Features, Metaphors. Dagstuhl Follow-Ups, Vol. 2.
Editor: Hans Hagen; pp. 17–35

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol2.SciViz.2011.17
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-26-2

18 2D Tensor Field Segmentation

(a) (b) (c)
Figure 1 (a) Close up: Extraction of integral topological skeleton for pre-segmentation into cells

of equivalent eigenvector behavior. (b) Color coding of scalar field reflecting the eigenvalue fields.
(c) Adaptive segmentation into regions of similar eigenvector and eigenvalue behavior.

addition, researchers often do not exactly know what they are looking for, before getting
used to the data. This lack of specific questions limits the use of feature extraction methods
to reduce complexity. Thus, the goal is to provide an overview of the data without missing
important details and without overwhelming the observer at the same time.
An essential step to reduce the amount of information is a segmentation that separates the
field into regions of similar characteristic behavior. This higher level of abstraction allows a
top-down exploration of the given dataset. Additionally the segmentation can be considered
as a basis for visualization techniques using textures and glyphs.
This paper proposes a 2D tensor field segmentation guided by eigenvector and eigenvalue
characteristics. Since the tensor is uniquely defined by these invariants, the segmentation
gives the domain experts insight into the tensor field as a whole. The segmentation process
consists of two steps:

Extraction of the integral topological graph considering both eigenvector fields to provide a
pre-segmentation, explained in Section 4. Thereby, the aim is not to show the correct
topological structure but to use it as a basic frame, see Figure 1(a).
An adaptive segmentation workflow using the eigenvalue fields to coarsen and subdivide
the initial segmentation, explained in Section 5. The workflow consists of a set of building
blocks, which can be flexibly combined to meet specific needs of the user or application,
see Figure 1(c).

The adaptive refinement process of the segmentation is guided by the definition of a scalar
invariant as similarity or dissimilarity measure, see Figure 1(b). Depending on the application,
a variety of scalar invariants can be used. For example, anisotropy and maximum shear
stress reflect the relation of eigenvalues and are of high importance in many applications. A
generalization of the notion of anisotropy to non-positive definite fields allows us to extend
our analysis to all tensor fields. In our approach, several dissimilarity measures can be flexibly
applied either by themselves or as combinations.
The resulting segments themselves in the final segmentation can be considered as visualization
glyphs in form of tiles. They are bounded by tensor lines which allows immediate interpreta-
tion of the eigenvector behavior within and color coding renders the eigenvalue characteristics
in the segments. The geometry of the resulting segments is represented explicitly and offers
statistical enquiry of properties inside each cell.

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz 19

Section 5 explaines the basic concept by the implementation of a focus+context visualization.
The segmentation is adapted to the demanded accuracy concerning eigenvector and -value
similarity and to the given resolution of the displayed domain. Finally the extraction of
degenerate regions in the field demonstrates the flexibility of the concept. Building blocks
of the basic approach are adapted to a strategy capturing these often numerical unstable
entities in tensor fields. The directional expression is weak, the only interest in these regions
is in the isotropic behavior of the eigenvalues.
There has been a lot of recent research in extraction, simplification and visualization of tensor
field topology, on which this work builds. Although, these methods extract valuable structural
information from the eigenvector fields, they ignore the importance of the eigenvalues. The
gap caused by the lack of interpretation of features in the eigenvalue field leads to decreased
use of tensor topology in analysis. This work bridges this gap by providing a complete
interpretation of the tensor field using the features present in both, the eigenvector as well
as the eigenvalue fields. Its effectiveness is demonstrated using data sets from structural
engineering, see Section 6.

2 Related Work

Still, the most common analysis methods for tensor fields are built on derived scalar fields.
While this approach is often helpful it is not always sufficient. Due to the demand for
tools representing the entire tensor information a variety of visualization methods have been
developed. Since tensor fields have very application specific characteristics, these methods
often are designed for concrete applications. Most efforts have been put into tensors from
diffusion tensor imaging (DTI) and mechanical engineering applications, which is the focus
of our work. In this area existing methods can roughly be classified into glyph-, texture- and
topology-based methods.

Glyphs represent a direct visualization approach displaying tensor values in selected
points. Related research issues are focused on the definition and placement of glyphs. Glyphs
that are commonly used are ellipsoids, Haber glyphs [8], or superquadrics [12]. Different
placement strategies are used to maximize the information displayed per image [7, 13]. A
representation of tensor values on one-dimensional lines are hyperstreamlines. They are
strongly related to streamline methods used for vector fields. They were introduced by
Delmarcelle and Hesselink [6] and have been utilized in a geo-mechanical context by Jeremic
et al. [11]. While glyphs are appropriate for characterizing single tensors, they are limited to
low resolution and fail to give insight into the structure of the entire field. A more continuous
view onto 2D fields can be obtained using tensor splats [3], or textures based on line integral
convolution [9, 24].

For DTI , a lot effort has been put into tensor field segmentation, mostly with the goal of
brain segmentation. Extending methods from image segmentation and clustering, the central
research topic is the definition of an appropriate dissimilarity measure for tensors. Proposed
methods range from active contours [21] and level sets [26] to graph-cut algorithms [23, 27].
Used metrics are the angular difference between principle eigenvector directions, or standard
metrics considering the entire tensor, like the Euclidean or Frobenius distance. Recently,
Wang et al. [21] introduced a distance measure from information theory designed for Gaussian
distributions. Although, it is a good representation of the diffusion tensor characteristics,
it is limited to positive definite tensors. A segmentation designed for meshes based on the
curvature tensor was introduced by Lavoue et al. [15]. Vertices are clustered according to
their principal curvature values using a k-means classification. The boundaries of resulting

Chapte r 2

20 2D Tensor Field Segmentation

cells tend to be parallel to lines of minimum curvature but do not exactly represent the
principal directions.

Methods concerned with the segmentation of general tensor fields are based on tensor field
topology. They concentrate on the structure of the eigenvector fields neglecting the scalar
entities. The idea of using topological methods to analyse the structures of 2D tensor fields
goes back to Delmarcelle [5] and Lavin et al. [14] and builds the basis for the method proposed
in this paper. They have introduced the topological skeleton consisting of degenerate points
and connecting tensor lines as central features. Following this work, much effort has been
put in simplifying and tracking of the resulting structures [19]. Alliez et al. [2] have proposed
an application to curvature tensors for polygonal remeshing of surfaces. Zheng et al. [25]
have initiated work in 3D tensor topology. Their analysis shows that in three dimensions
degenerate features form one-dimensional structures. An eigenvector-based interpolation as
basis for the topology extraction is proposed in [10]. An integral topological skeleton using
both eigenvector fields has been used for a directional field segmentation in [17].

3 Basics and Notations

This section summarizes the basics for this paper. Definitions and notations are restricted to
2D tensor fields of second order, since they are the topic of this work. For a more complete
and formal definition of tensors we refer readers to [22].

3.1 Tensors and Tensor Field

A tensor is a type of geometrical entity that generalizes the concept of scalars, vectors, and
linear operators in a coordinate-independent fashion. With respect to a given basis of IR2,
a tensor T can be expressed by a 2 × 2-dimensional matrix of real numbers. T is called
symmetric if for any coordinate basis, the corresponding matrix is symmetric. A tensor field
over some domain D ⊂ IR2 assigns to every point P ∈ D a tensor T(P). In the rest of the
paper, we will refer to symmetric 2D tensors of second order as tensor.

A tensor T is fully represented by its eigenvalues λ, µ and corresponding eigenvectors ↔v
and ↔w , implied by the eigenvalue equations T· ↔v= λ· ↔v and T· ↔w= µ· ↔w. The names λ and
µ are assigned in a way, such that always λ ≥ µ. Since the multiplication of an eigenvector
by any non-zero scalar yields an additional eigenvector, eigenvectors should be considered
without norm and orientation, which distinguishes them from classical vectors. We use ↔v
and ↔w when referring to eigenvectors to allude to the fact that they are bidirectional. We use
v and w when referring to vectors representing normalized eigenvectors with an arbitrarily
but fixed direction, e.g., using the unmodified results of the numerical computation used to
generate them. The direction of w is defined in such a way that v and w form a right-handed
system. Eigenvalues are computed by solving the characteristic equation, which is a quadratic
equation in λ: |T−λI| = 0, where I is identity matrix. For symmetric tensors, the eigenvalues
are real, and the eigenvectors are mutually orthogonal. The eigenvector corresponding to the
larger eigenvalue is called major eigenvector. Analogously, the eigenvector corresponding to
the smaller eigenvalue is denoted as minor eigenvector. If both eigenvalues are positive, the
tensor is called positive definite. Examples for positive definite tensor fields are diffusion
tensor fields. Stress and strain tensor fields are in general not positive definite.
Integrating the eigenvector fields results in two orthogonal families of continuous curves.
These curves are called major (red) and minor (blue) tensorlines according to the eigenvector
field integrated. These tensorlines are used to bound the cells of the segmentation.

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz 21

3.2 Tensor Field Topology
Similar to vector fields the structure of eigenvector fields is represented by their field topology.
It defines a skeleton consisting of distinguished points (degenerate points), and connecting
edges (separatrices). In this work, the topology of both eigenvector fields is considered as one
integral tensor field topology. In the following, we shortly resume the basics of tensor field
topology, concentrating on the aspects that we need later on. A more detailed discussion on
this topic is given in [5, 17, 20].

Degenerate points – definition At most points in a tensor field, both eigenvectors are
defined uniquely; each assigned to one eigenvalue. However, this is not the case for points
with identical eigenvalues, that is λ = µ. These points are called degenerate or isotropic
points. This means the tensor is proportional to the identity matrix and all vectors are
eigenvectors. They are the only location where tensorlines of the same color can intersect.
Mostly, degenerate points appear as isolated points but also degenerate features of higher
order are possible. These are degenerate lines and triangles. Degenerate points in tensor fields
are equivalent to critical points in vector fields. However, due to orientation indeterminacy
of tensorlines, these points exhibit structures that are different from the structures seen in
vector and scalar field topologies, respectively.

Degenerate point – classification The field behavior in the vicinity of degenerated entities
is characterized by a number of specific sectors. These sectors are separated by distinguished
tensorlines which enter the degenerate point radially. The following behavior is possible, see
Figure 2:

A hyperbolic sector is bounded by one red and one blue radial line: Tensorlines in this
sector approach, sweep past the degenerate point and leave the sector through one
bounding radial line.
A parabolic or radial sector is bounded by two radial lines of the same color: In this sector
tensorlines of this color, start from the degenerate point and then diverge. Tensorlines of
the opposite color enter and leave the sector through the bounding lines.
An elliptic sector is bounded by one red and one blue radial line: Tensorlines in this
sector start from the degenerate point, and leave the sector through one of the bounding
lines.

A criterion to classify the sectors is the rotation angle of the eigenvectors ∆α, in comparison
to the opening angle of a sector ∆Θ, for more details we refer to [17, 18].

∆α =


∆Θ radial, concentric
∆Θ− π/2 hyperbolic
∆Θ + π/2 elliptic

(1)

Separatrices Radial tensorlines bounding hyperbolic sectors are called separatrices. They
constitute the edges of the topological graph. The graph defined by the two eigenvector field
builds the basis for the following segmentation algorithm.

3.3 Interpolation
Usually, tensor datasets represent a discretized tensor field, given on uniform or non-uniform
grids which we store on a triangular mesh. For the extraction of topology and the integration
of tensorlines, a linear eigenvector and eigenvalue interpolation is used [10]. The insertion of
new vertices in degenerate points makes sure that a consistent eigenvector interpolation is

Chapte r 2

22 2D Tensor Field Segmentation

elliptic
 - elliptic

hyperbolic
 - hyperbolic

radial
 - concentric

radial tensor lines

Figure 2 The neighborhood of a degenerate point is characterized by a number of sectors with
specific behavior.

possible inside each triangle. The eigenvectors at these points are set to zero. The problem
of eigenvector orientation is resolved by introducing edge labels, which encode the relative
orientation of the calculated eigenvectors v and w in adjacent vertices. After computing
these edge labels once, simple vector interpolation can be performed inside the triangles. The
additional vertices together with re-triangulation lead to an increased number of degenerate
entities of higher dimensionality when compared to linear interpolation of tensor components.
This interpolation method has been chosen for performance reasons. It minimizes the number
of eigenvector computations and makes an exact integration of the tensorlines possible. The
interpolation can be easily replaced with any other consistent tensor interpolation, leading
to slightly different results.

4 Initial Segmentation

In this section, we describe the steps leading to the initial segmentation of tensor fields using
the topological skeleton. The degenerate points and intersections of the separatrices in both
major and minor eigenvector fields define the vertices of the cells and the separatrices form
the edges.

4.1 Topology Extraction
We extract the topology of the tensorfield using linear interpolation of eigenvector fields,
given in Section 3.3. Alternatively, one can use other interpolation schema, e.g. [19]. Here,
we summarize the steps taken for the topology extraction, which is described in detail in [17].

Location of degenerate points – The product of the edge labels, introduced for the interpola-
tion, offers a simple criterion to detect triangles that contain degenerate points. The location
of an interior degenerate point only depends on the eigenvector directions in the vertices

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz 23

D D
D

(a) (b) (c) (d)

Figure 3 Cells defined by the topological skeleton: (a) regular cell without any degenerate points,
(b) hyperbolic sector, (c) parabolic sector, and (d) elliptic sector.

Pi, i = 1, 2, 3 of the triangle. It is defined as the intersection of connections of the vertices
and their so-called opposite points Oi. These are points on triangle edges ei opposite to Pi,
in which the eigenvector directions voi and woi are orthogonal to the eigenvector directions
vi and wi.

Determination and classification of radial directions – The neighborhood of a degenerate
point is characterized by segments separated by radial tensorlines. For linear eigenvector
interpolation, the radial tensorlines are straight lines defined by their intersection with
the edges of the triangle. For the skeleton computation, only the radial lines which are
boundaries of hyperbolic sectors are relevant. The classification is computed using Equation 1.

Non-isolated degenerate points – Degenerate entities like degenerate lines, polylines and
triangle, can be treated similar to isolated degenerate points. The eigenvector field inside
triangles adjacent to degenerate lines or triangles is constant. Thus, from a structural point
of view, it is enough to consider the vertices of the polylines line as degenerate points. The
sectors can be classified using the same angle criteria as for isolated degenerate points. While
these configurations are rather rare in tensor fields for the component-based interpolation,
they appear frequently for the eigenvector-based interpolation.

Separatrix computation and termination conditions – To complete the topological skeleton,
relevant radial directions are integrated. The tensorline evaluation is done triangle-wise using
4th order Runge-Kutta. Eigenvector-based interpolation also allows an exact integration [16].
Following termination conditions are implemented to obtain a cleaner skeleton: (a) The
separatrix leaves the domain. (b) The separatrix gets close to a degenerate point, line or
triangle. (c) The separatrix describes a circle or spiral and passes itself closely in parallel
integration direction. Separatrices are stored as polylines.

4.2 Cell Generation
After computing the topological skeletons for the major and minor eigenvector fields the
intersections of the red and blue separatrices define the cells of the pre-segmentation. To
increase the efficiency of these computations, every triangle keeps track of all separatrices
passing through it. Thus, only the triangles that contain at least one red and one blue line
are considered to compute the intersections. The vertices of the resulting curvilinear cells
are either red-blue intersection points, degenerate points, or intersections of tensorlines with
the boundary. They exhibit one of the following basic structures, see Figure 3:
1. Cells without a degenerate point are quadrangular with two red and two blue tensor lines

Chapte r 2

24 2D Tensor Field Segmentation

as boundary, in an alternating order. All red tensor lines passing through this segment
enter at one blue boundary and leave the cell at the opposite boundary. All intersection
angles are orthogonal.

2. Cells with one degenerate vertex lying in a hyperbolic sector are quadrangular. The angle
at the degenerate point is in general not orthogonal.

3. Cells having a degenerate point in one vertex, lying in a parabolic segment, degenerate
to a triangular shape.

4. In elliptic sectors, cells with either two or three vertices are possible.
5. Cells containing degenerate lines as edges can exhibit all kinds of complicated structures.
The edges of the cell are segments of the separatrices and hence are represented as polylines.
The edges are ordered in counterclockwise orientation of the cell, and stored in a doubly-linked
list, for efficiency in finding neighbors to the cell and adjacent edges in a cell. Each edge is
represented using a half-edge data structure.

4.2.1 Half-edge Data Structure
A half-edge data structure [1, 4] is an edge-centered data-structure that maintains spatial
information of vertices, edges and cells. Each edge is shared by two cells. An edge can also
be considered as two opposite directed half-edges, called twins. Each half-edge stores its start
point, the end point of a half-edge however is determined indirectly by referencing to the
start point of the twin. The prime advantage of using this data structure is that a half-edge
and its corresponding cell share a one-to-one relationship. Consequently, neighbor-searches
and an iteration through the cells become very efficient.

Half-edge twins always belong to the same separatrix, except in the cases when the
edges are part of either boundaries or degenerate lines. As separatrices are represented by
polylines, the half-edge data structure is represented by polylines. Our implementation using
CGAL [1] additionally has to support irregularities in the cell layout, namely T-junctions or
hanging nodes, where twins have an n:m relation, such that they share common points of
the separatrix polyline but do not share the same start and end points, see Figure 4(a). To
resolve the issue of continuities in irregularities, our half-edge data-structure is modified as
follows: (a) We store pointers to points representing the current edge; (b) Two sets of twins
are supported for each edge - (i) a geometric twin: a single edge to identify the geometrical
limits of the edge and (ii) neighboring twins: an array of twins to identify all neighboring
cells in case of hanging nodes. The geometric twin of an edge is the flipped image of the edge
with respect to its starting and end points, which would ideally be the twin but necessarily
need not exist in the topological skeleton. The neighboring twins of an edge is the segmented
set of the first twin, which are the edges that actually exist in the skeleton. In the absence of
hanging nodes, the second set is a singleton set of the first twin.

4.2.2 Creating Cells from Topological Skeleton
The actual cell creation process involves physically creating the half-edges from the topological
skeleton, and using them to build the curvilinear cells. Starting with a single cell as a seed
cell, its neighborhood is grown to find the entire set of cells. Convex cells can be found
by a strict rotation angle criteria at the vertices in a counterclockwise orientation. The
remaining non-convex cells in the vicinity of degenerate lines or triangles are found by
implementing a greedy walk of finding consecutive half-edges that are not associated with
any cells. Consecutive half-edges are all that have the current half-edge’s end point as start
point.

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz 25

5 Adaptive Segmentation Workflow

The segmentation resulting from the topology already decomposes the domain in regions
where the eigenvector fields have a qualitatively similar behavior, but it does not yet fulfil
all our criteria for a good segmentation. To represent the entire tensor information also
the scalar invariants based on the eigenvalues have to be considered. This is achieved by
adaptively modifying the cells, characterized by a specified degree of similarity with respect
to eigenvalue behavior.

The segmentation strategy on the initial cell structure builds on two basic operations:
Coarsening: Cells that do not exhibit enough structural information on their own get
merged with adjacent cells.
Subdivision: Cells which exceed the defined criteria of similarity are subdivided by new
tensorlines.

Due to divergence and convergence of tensor lines, adaptive segmentation inevitably causes
occurrences of hanging nodes in the edges. To keep these irregularities to a minimum, a
growing strategy where we continue to merge or subdivide on consecutive cells as long
as possible and necessary, see Figures 4(b,c). Algorithms for coarsening and subdivision
operations are described in Section 5.3.

To guide the modification process by eigenvalue behavior one or more scalar fields are derived
from the initial tensor field, which directly render the eigenvalue behavior, see Section 5.1.
The degree of similarity and the need of modification is represented by weight functions
defined on the edges of the cells, see Section 5.2. These edge-weights evaluate the derived
scalar field but also reflect geometric properties of the cells. Combined with data dependent
thresholds the edge-weights serve as decision basis whether cells have to be merged or
subdivided. Further the edge-weights help to steer the modification by importance, as their
values directly offer prioritisation to achieve a smooth segmentation. Using edge-weights for
decision-making is an efficient choice as edges are one-dimensional structures, on which the
weights are computed.
To extend the capabilities of the adaptive segmentation process, it is designed to have a
high degree of flexibility to customize the workflow. For example using this segmentation
as preprocessing step for glyph placement would have different demands than using it for
texture mapping. We define the variables for customizing the workflow of the adaptive
refinement as:

Operations: The operations of the refinement, namely coarsening and subdivision, are
the modules of the workflow. They can be repeated and the workflow customized by
choosing the number and the order of implementation of the operations.
Control Parameters: The control parameters of the refinement are the chosen edge-
weights, the considered scalar fields and the thresholds defined by the demanded accuracy
and resolution. The choice of these control parameters impact the priority queues used
for the implementation of the operations.

The remainder of this section first presents the operations and control parameters of the
approach. Then the basic workflow is demonstrated by calculating a segmentation of the
tensor field. The segmentation follows accuracy towards tensor invariant similarity as wells
as geometric criteria. Implemented as focus + context visualization, the refinement process is
stopped for cells whose size falls below a value proportional to the resolution of the displayed
domain. This provides an overview of the field, on demand the user can specify a focus

Chapte r 2

26 2D Tensor Field Segmentation

Merge

Merge

Merge

Merge

Split

Split

Split

new
tensor line

(a) (b) (c)

Figure 4 (a) T-junction or hanging node, where neighboring twins in half-edge structure have an
n:m relation. Adaptive refinement operations: Recursive strategy for avoiding hanging nodes in (b)
coarsening of cells, and (c) subdivision of cells started by insertion of new tensor line.

region to view further detail, see Section 5.5. The flexibility of the approach is finally shown
by the extraction of degenerate regions, see Section 5.6.

5.1 Choice of Scalar Field
Several scalar fields can be considered as basis for the refinement depending on the specific
application. We can either use both eigenvalue fields, an anisotropy value, the maximum
shear stress (which is related to the anisotropy) or other tensor invariants.
Maximum shear stress S is defined as

S = |λ− µ| (2)

For the anisotropy we propose a generalized notion of fractional anisotropy FA∗, which can
also be used for non positive definite tensors.

FA∗ =

√
(λ− µ)2

λ2 + µ2 +A2 (3)

The positive constant A is added to the denominator, which eliminates the discontinuity
close to zero for λ, µ ∈ IR. This results in low anisotropy values for tensors with eigenvalues
of different sign but small absolute value. The values of FA∗ range from 0 to 1.

5.2 Edge-weight Definition and Thresholds
A set of pre-defined functions as weights assigned to the cell edges is provided. It consists of
geometric measures representing the current cell size and shape as well as similarity measures
for scalar fields derived from the tensor field. This set can be extended by user-defined
functions. The dominant use of geometric edge-weights favours a more uniform segmentation,
whereas the scalar field based weights lead to a higher adaptivity towards accuracy in
eigenvalue similarity. In the following two weights of each class are proposed. These weights
can be arbitrarily combined.

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz 27

Let e be an edge of a cell consisting of k segments (xi,xi+1), by the virtue of being part of
a polyline, where xi is the position of the ith point on the edge. Further, let s be a scalar
function defined along the edge and si = s(xi).

Variance of scalar values s(xi) on the edge wv(e):

wv(e) =
∑k

i=1
(sxi
−s̄)2‖xi+1−xi‖∑k

i=1
‖xi+1−xi‖

, where s̄ is the mean of s along e.

Absolute difference of minimal and maximal scalar value along the edge wd(e) = abs(smin−
smax).
Edge length wl(e) =

∑k
i=1 ‖xi+1 − xi‖.

Change of eigenvector direction along the edge wc(e):
wc(e) =

∑k
i=1 |∠(vi,vi+1)|, vi is the major eigenvector at position xi.

We chose the proposed edge-weights to be as intuitive and universal as possible, independent
of the various ranges that appear in different datasets. Variance is a commonly known
statistical quantity and is a similarity measure which is robust to smaller perturbations of
scalar values along an edge, such as noise. Difference of minimal and maximal scalar value
in turn is strict towards any changes of scalar values along an edge and directly renders
the absolute difference of scalar values appearing on an edge. Edge length can be used to
adjust the size of the segmented cells to optimize perceivability by the user. The eigenvector
directions are already well represented by the cell shape and tensor line boundaries, however
if uniformity of the cells is required change of eigenvector direction represents the curvature
of the cell boundaries and is therefore an appropriate measure.
In Section 5.5 we give a preset of thresholds for these weights, which are calculated as
percentages of the given ranges in the field. These presets are universal and lead to stable
results of good quality, which experiments with different datasets showed, see Section 6.
However they can be intuitively strictened or loosened for different visualization purposes
with immediate interpretation.

5.3 Refinement Operations
If not noted differently the refinement operations always respect the chosen thresholds towards
the edge-weights. For example if a minimum edge length for the coarsening operation is
specified - no edge subdivision is performed if one of the new edges would fall below the
minimum edge length.

5.3.1 Coarsening
The main goal of the coarsening operation is to get rid of small cells that do not carry enough
structural information on their own. Coarsening operation involves merges of cell pairs.
Merging a pair of cells requires the merge of up to two pairs of edges and removal of the
common edge of the cells. For this operation, we build an edge-weight based priority queue
of pairs of cells that can be merged. We use queues to follow the FIFO (first in, first out) or-
der, ascending or descending priority is fixed by minimum or maximum thresholds respectively.

Merge Prerequisites – Based on the geometry layout, two cells can only be merged if they
share a common edge that can be deleted to join these cells. Technically, a common edge
between two cells means that one of the cells has an edge whose geometric twin is an edge of
the second cell. Edges containing hanging nodes cannot be common edges.

Chapte r 2

28 2D Tensor Field Segmentation

Priority Queue and Sorting – For the coarsening operation a priority queue of pairs of
adjacent cells that can be merged is maintained. A multi-pass sort is performed based on the
chosen edge-weights. Not only the smallest cells should be merged first but also for each cell
two neighboring cells are candidates for merge (except for boundary cells). For the example
of the segmentation workflow in Section 5.5 the priority queue is first sorted by minimum
edge length of the edges involved and then by maximum edge length of the edges to be merged.

Algorithm
– Check adjacent cells for if they can be merged and sort these into the priority queue,

based on the chosen edge-weight prioritization.
– While the priority queue is not empty, the pair with the highest priority is merged.
– Update the data structure by merging the appropriate edges of the pair cells, deleting

the common edge and creating a new cell from the new edges.
– Update the priority queue with the new merged cell.
– If contiguous cell pairs in direction of the deleted common edge are to be merged move

them on top of the queue to accomplish the recursive workflow. See Figure 4(b).

5.3.2 Subdivision
Single cells are subdivided by starting a new tensor line of opposite color on one of its edges
that has to be subdivided. Similar to the coarsening operation an edge-weight based priority
queue implemented as FIFO.

Start Point of Subdividing Tensor line – Two possibilities for the start point of the
new tensor lines are provided. The first option favours the generation of equally sized cells,
and starts the tensor line in the midpoint of the edge. The second option starts the tensor
line between the extrema of the scalar values on the edge. This choice is more adapted to the
data and guarantees to decrease the edge-weight when subdividing. There are no technical
prerequisites to subdivide a cell.

Priority Functions and Sorting – Differently from the coarsening operation, a priority
queue for edges is used rather than cells. Again the priority queue can be sorted according to
multiple edge-weights. The growing strategy in subdividing consecutive cells is implemented
by integrating a subdividing tensor line as long as possible and necessary, see termination
conditions (a,b) in the algorithm below. No explicit prioritisation has to be done.

Algorithm
– Sort edges to be subdivided into priority queue, based on chosen edge-weights.
– While the priority queue is not empty, pop the top edge and start a subdividing tensor

line of opposite color.
– Integrate tensor line until one of the following termination conditions is reached:

(a) It intersects an edge, which is not in the priority queue and therefore should not be
subdivided.
(b) It intersects an edge and it’s subdivision would generate edges violating fixed edge
weight thresholds, for example minimum edge length.
(c) It fulfils one of the termination conditions described in Section 4.1.

– Subdivide all cells corresponding to edges intersected by the new tensor line, as shown
in Figure 4(c). Update data structure by subdividing intersected edges, generating new

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz 29

edges along the tensor line, and finally generating new subdivided cells using the new
edges.

– Update priority queue by deleting the original edges intersected by the new tensor line,
and adding and sorting the newly generated edges if they are candidates for further
subdivision.

5.4 Customized Workflow of Adaptive Refinement
The possibility to customize the workflow gives a high degree of flexibility in obtaining various
analyses of the same dataset. Essentially the workflow consists of modules for operations,
which are influenced by the control parameters and strategies adopted for implementation.
Variations in the workflow are achieved by changing the number and order of the modules, by
adjusting the thresholds used for each operation, and by deciding on the strategies to be used
for the control flow of the modules. Strategies include the choice of appropriate edge-weights
and scalar fields and choice of position of starting a new tensor line for subdivision of edges.

Table 1 Table to summarize the options when configuring for the segmentation process.

Basic operations coarsening subdivide
Edge-weight prioritisation geometric scalar field
Error measure for edge-weight
definition

variance max difference

Tensor line seeding middle of edge between max and min
Level of detail resolution accuracy

For a domain expert the flexibility of the approach ranges from using the presets with the
scalar field of his choice over strictening or loosening thresholds to mixing and matching the
implemented components to his needs. Developers can extend the basic set by implementing
new elements, as e.g. edge-weights or tensorline seeding.

5.5 Workflow: Basic Segmentation
This workflow delivers a focus + context visualization, calculating an initial context seg-
mentation which can be browsed in detail by selecting a focus region. The field is segmented
in regions of similar tensor invariant behavior. We chose FA∗ (see Section 5.1) as scalar
field to render the eigenvalue characteristics. For all operations the same edge-weights and
thresholds are used.

The default parameters are, if not differently noted:
(a) Geometric edge-weight steering resolution is the edge length wl with minimum edge length
threshold fixed to ϕl = 1% of the displayed domain range. By selecting a focus region the
minimum edge length is automatically adjusted and the segmentation is refined displaying
further details.
(b) Scalar field edge-weight steering accuracy is the absolute difference of minimum and
maximum scalar value wd, with its threshold set to 10 % of the scalar value range, which is
for FA∗ as scalar field ϕd= 0.1.
Resolution and accuracy are the basic level of detail parameters for focus + context visualiz-
ations, where the geometric edge-weight has higher priority than the accuracy edge-weight.
This means for edge lengths smaller than the fixed minimum edge length a merge is performed
even if the merged edge exceeds the given accuracy threshold.

Chapte r 2

30 2D Tensor Field Segmentation

The following operations composite the workflow
1. First coarsening: in merging as many similar cells as possible cleans up the pre-

segmentation , especially very small cells are removed. The priority queue is first
sorted by minimum edge length of the edges involved and then by maximum edge length
of the edges to be merged. Merging of small cells with rather large cells favours the goal
of a smooth segmentation.

2. Subdivision: the cells are refined to the pre-defined accuracy, unless this violates the
resolution criterion. The tensor line seeding is between the extremal points. Experiments
showed that the best strategy for a smooth segmentation is to do a 2-pass sort of the
priority queue first based on maximum edge-length, the second pass based on maximum
scalar edge weight.

3. Final coarsening: cells with highest similarity are merged. The priority queue is sorted
first by minimum edge length of the edges involved and then in ascending order by a
pre-calculated scalar edge weight wd of the edges to be merged.

For a chosen focus step 2 and 3 are repeated with adjusted geometric edge weight, the
accuracy edge weight remains. As the cells are given as explicit entities, cells exceeding the
accuracy edge weight can be highlighted on demand.
This workflow and thresholds can be used in any tensor field segmentation as stable presets.
Results for using variance as scalar field edge-weight are given in Section 6.

5.6 Workflow: Degenerate Regions
In the direct vicinity of degenerate entities tensors are almost isotropic and thus directional
behavior is not strongly expressed. Such areas are collectively represented as degenerate
regions, following the paradigm of the coarsening operation, that all cells are combined which
do not exhibit enough structural information on their own. These degenerate regions are
"grown" from the degenerated entities using two passes of the subdivision operation. FA∗ is
used as scalar field.

1. First subdivision: In the first pass only edges, called degenerate edges, emerging from
a degenerate entity are considered for subdivision using a specific edge-weight, which
is the maximum anisotropy occurring on the edge. The start point for the subdividing
tensor line is the point on the edge with anisotropy below a fixed threshold ϕ = 0.05 and
with maximum distance from the degenerate entity. prioritisation is done by the least
anisotropy value of the start points.

2. Second subdivision: As it cannot be guaranteed that the subdividing tensor lines will
intersect other degenerate edges at points with anisotropy below ϕ, a second subdivision
pass is performed, where all edges participating in the intermediate degenerate regions
from the first subdivision step are considered.

It should be noted that the generation of degenerate cells may induce subdivision of neigh-
boring cells that may result in small not well shaped cells, which may not get merged in a
later step, as seen in Figure 9. It is still of benefit to extract degenerate regions, as the weak
expression of direction in such areas can result in numerical instabilities.

6 Results and Discussion

We tested our algorithm on three datasets from structural engineering, which are finite
element simulations of forces acting upon solid blocks resulting in stress tensor data. These

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz 31

Figure 5 Focus + context visualization.

are simulations of one and two forces applied to the top of a solid block and of multiple
forces applied to a notched block, the latter using hp-adaptive finite elements. In this section,
we will refer to them as one point load (1PL), two point load (2PL), and notched block (NB),
respectively.
Figure 5 shows the focus + context implementation proposed in Section 5.5 on the 1PL
dataset. The right image shows the selected focus further refined with the resolution threshold,
minimum edge length, adapted to 1% of the displayed domain range, the accuracy threshold
remains. In this visualization the cells delineate regions of similar eigenvalue behavior, the
color coding of the cells renders the relation of the eigenvalues. The two arrows in the lower
right corner of the focus image indicate exemplary how the eigenvector behavior can be
interpreted from the cell boundaries.
We conducted further analysis on thresholds, specific control parameters and strategies. To
evaluate the quality of the overview segmentation we used the following methods:

Image representation of local error: The error is sampled in an image of resolution u× v
where each pixel (i, j) is mapped to a point (x, y) in the tensor field, and is assigned a
color from a red-shaded colormap mapping to error value
err(i, j) = ‖s(x, y)− s̄cell(x,y)‖, where cell(x, y) is the cell containing (x, y) and s̄cell(x,y)
is the average scalar value on the edges of cell cell(x, y). Results are shown in Figure 8(a)
and 7.
Average error: While computing the image representation of the local error, we calculate

the average error for the field as �Err =
∑

i,j
err(i,j)

u∗v .
Number of cells needed for pre-defined quality: We aim to have as few cells as possible
in an adaptively segmented field, which makes the number of cells needed to achieve a
segmentation of predefined quality an important criterion.

The first example examines level of detail according to accuracy, see Figure 6. In Figure 6(b)
ϕd is twice as strict as for Figure 6(c). Using superimposition of the original scalar field
on segmentation result of the one point load dataset, Figure 6(a) demonstrates that the
segmentation and original scalar field match.
The second example focuses on resolution as level of detail. In Figure 7(b) the minimum

Chapte r 2

32 2D Tensor Field Segmentation

(a) (b) (c) (d)

Figure 6 Adaptive segmentation of a slice in the one point load dataset. (a) Superimposition
of scalar field on adaptive segmentation of tensor field. Choice of threshold for edge-weight ϕd of
value (b) 0.1 and (c) 0.2 for customizing the workflow for segmentation. (d) Segmentation with
edge-weight variation and ϕv = 0.015

(a) (b) (c)

Figure 7 Image representation of error for a specific slice of two point load dataset. (a) Initial
segmentation of tensor field. (b) Adaptive segmentation using wd as edge-weight. (c) Adaptive
segmentation using double threshold for minimum edge length.

edge length ϕl is twice as strict as for Figure 7(c). All images are superimpositions of error
images and the segmented cell boundaries. Figure 7(a) shows the pre-segmentation, and
7(b,c) the results for the different levels of detail.
As differences in images can be hard to perceive we display results of further evalutation in
tables, associated figures are denoted. The first block in Table 2 is used as reference for the
subsequent evaluation, it lists the values for the overview segmentation of Section 5.5.

Test 1: Comparison of edge-weights, variance wv vs. absolute difference of extremal values
of scalar field wd:
As threshold for wv 0.1% of the scalar value range is used, given by ϕv = 0.001. The middle
block in table 2 and Figure 6(d) demonstrate that wv leads to fewer cells at a higher mean
error, compared to wd used in the basic workflow. Variance is a criterion that regards mean
values and ignores smaller variations along an edge. Thus fewer cells have to be subdivided,
see Figure 6(d). The smoothing effect of the variance-based edge-weight can be extensively
used to achieve desired results. wd is an edge-weight that is rather strict and regards any
change in the scalar field along the edge, which results in more cells, but higher accuracy.

Test 2: Comparison of strategies in choice of start point of tensor lines for subdivision
operation: midpoint of an edge vs. point between extrema of the scalar field along an edge.
Using the midpoint of an edge is a simple, straightforward technique, which leads to a slightly

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz 33

(a) (b) (c)

Figure 8 Close up of adaptive segmentation of a slice in the notched block dataset: (a) Image
representation of error shows how the edge-weights only reflect the behavior of the scalar field on
the edges of the cell but not in its interior. Results of the choice of start point of tensor lines for the
subdivision operation, at (b) the midpoint of edge and (c) the midpoint of extrema of scalar value
along edge.

Table 2 Results for tests on control parameters and strategies 5.5.

Data 2PL 1PL NB

Basic workflow:
#Cells 2830 1424 420
�Err 4.67e-2 3.38e-2 4.02e-2

Ref. Figure Fig. 7(b) Fig. 6(b) Fig. 8(a,c)

Accuracy edge weight variance:
#Cells 2497 1129 285
�Err 5.039e-2 3.64e-2 4.93e-2

Ref. Figure Fig. 6(d)

Start point for subdividing tensor line in the middle:
#Cells 2870 1414 402
�Err 4.75e-2 3.38e-2 4.02e-2

Ref. Figure Fig. 8(b)

higher mean error, as shown in Table 2 last block. Starting the subdividing tensor lines
between the minimum and maximum scalar values guarantees decrease in the edge-weights.
This leads to qualitatively higher subdivisions as shown in Figure 8(b,c).

7 Conclusions

We have shown that the presented segmentation approach is able to generate segmentations
aligned to the tensor field with low error measures. The weights and strategies can be
chosen dependent on the demands of the specific application and allow a wide variety of data
representation. The results shown in this paper are based on the anisotropy of the tensor
field, and we can extend our work to other scalar fields used individually or as a combination
of several fields. The main challenge for a segmentation based on tensor lines is the fact that
feature lines resulting from the scalar field are in general not aligned with the eigenvector

Chapte r 2

34 2D Tensor Field Segmentation

Figure 9 Close up: degenerate regions marked in violet.

field and thus they can only be approximated by a step function (see Figure 8(a)).
The strength of the application lies in its flexibility - restricting the modification process
to geometric edge-weights delivers a uniform segmentation, whereas steering it by accuracy
edge-weights generates a highly adaptive segmentation. There is a variety of options to
customize the segmentation and use it for example for tensorline seeding or as preprocessing
step for glyph placement or texture mapping.
During the design of the algorithm at many points decisions were made to balance its
efficiency and accuracy. One example is the choice to define weights only on basis of the
scalar field along cell edges, which is very efficient. But it cannot be guaranteed that the
error contained in a cell is always well represented by the error along its one-dimensional
edges. An integrated analysis of all cell edges, which leads to use of cell-weights as opposed
to edge-weights is one of the interesting options for the future.

References
1 Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
2 Pierre Alliez, David Cohen-Steiner, Oliver Devillers, Bruno Levy, and Mathieu Desbrun.

Anisotropic polygonal remeshing. SIGGRAPH 03, 22(3):485–493, 2003.
3 A. Bhalerao and C.-F. Westin. Tensor splats: Visualising tensor fields by texture mapped

volume rendering. In 6th International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pages 294–901, 2003.

4 M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry,
Algorithms and Applications. Springer, 2nd edition, 1998.

5 Thierry Delmarcelle. The Visualization of Second-order Tensor Fields. PhD thesis, Stanford
University, 1994.

6 Thierry Delmarcelle and Lambertus Hesselink. Visualization of second order tensor fields
and matrix data. IEEE Computer Graphics & Applications, pages 25–33, 1993.

7 Louis Feng, Ingrid Hotz, Bernd Hamann, and Kenneth Joy. Anisotropic noise samples.
IEEE Transactions on Visualization and Computer Graphics, 14(2):342–354, 2008.

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz 35

8 Robert B. Haber. Visualization techiques for engineering mechanics. Comp. Systems in
Engineering, 1(1):37–50, 1990.

9 Ingrid Hotz, Louis Feng, Hans Hagen, Bernd Hamann, Boris Jeremic, and Kenneth I. Joy.
Physically based methods for tensor field visualization. In VIS ’04: Proceedings of IEEE
Visualization, pages 123–130, 2004.

10 Ingrid Hotz, Jaya Sreevalsan-Nair, and Bernd Hamann. Tensor field reconstruction based
on eigenvector and eigenvalue interpolation. In Hans Hagen, editor, Scientific Visualization:
Challenges for the Future, 2008.

11 B. Jeremic, Gerik Scheuermann, Jan Frey, Zhaohui Yang, Bernd Hamann, Kenneth I. Joy,
and Hans Hagen. Tensor visualization in computational geomechanics. Int. Journal for
Numerical and Analytical Methods in Geomechanics, 26:925–944, 2002.

12 Gordon Kindlmann. Superquadric tensor glyphs. In Proceeding of The Joint Eurographics
- IEEE TCVG Symposium on Visualization, pages 147–154, 2004.

13 Gordon Kindlmann and Carl-Fredrik Westin. Diffusion tensor visualization with glyph
packing. IEEE Transactions on Visualization and Computer Graphics, 12(5):1329–1336,
2006.

14 Yingmei Lavin, Rajesh Batra, Lambertus Hesselink, and Yuval Levy. The topology of
symmetric tensor fields. AIAA 13th Computational Fluid Dynamics Conference,, page
2084, 1997.

15 Guillaume Lavoue, Florent Dupont, and Atilla Baskurt. A new cad mesh segmentation
method, based on curvature tensor analysis. Computer-Aided Design, 37(10):975–987, 2005.

16 Gregory M. Nielson and Il-Hong Jung. Tools for computing tangent curves for linearly
varying vector fields over tetrahedral domains. IEEE Transactions on Visualization and
Computer Graphics, 5(4):360–372, 1999.

17 Jaya Sreevalsan-Nair, Cornelia Auer, Bernd Hamann, and Ingrid Hotz. Eigenvector-based
interpolation and segmentation of 2d tensor fields. In submitted to TopoInVis 09.

18 Xavier Tricoche. Vector and Tensor Field Topology Simplification, Tracking and Visualiz-
ation. PhD thesis, University of Kaiserslautern, 2002.

19 Xavier Tricoche, Gerik Scheuermann, Hans Hagen, and Stefan Clauss. Vector and tensor
field topology simplification on irregular grids. In VisSym ’01: Proceedings of the symposium
on Data Visualization 2001, pages 107–116, 2001.

20 Xavier Tricoche, X. Zheng, and Alex Pang. Visualizing the topology of second order, time-
varying two-dimensional tensor fields. In Visualization and Image Processing of Tensor
Fields, pages 225–240, 2005.

21 Zhizhou Wang. Diffusion Tensor Field Restoration and Segmentation. PhD thesis, Univer-
sity of Florida, 2004.

22 Joachim Weickart and Hans Hagen, editors. Visualization and Processing of Tensor Fields.
Mathematics and Visualization. Springer, 2006.

23 Y. Weldeselassie and G. Hamarneh. Dt-mri segmentation using graph cuts. In Medical
Imaging 2007: Image Processing. SPIE, 2007.

24 Xiaoqiang Zheng and Alex Pang. Hyperlic. In Proceedings of IEEE Visualization 2003,
pages 249–256, 2003.

25 Xiaoqiang Zheng and Alex Pang. Topological lines in 3d tensor fields. In Proceedings of
IEEE Visualization 2004, 2004.

26 Leonid Zhukov, K. Museth, D. Breen, Ross Whitaker, and Alan Barr. Level set modeling
and segmentation of dt-mri brain data. Journal Electronic Imaging, 12(1):125–133, 2003.

27 Ulas Ziyan, David Tuch, and Carl-Fredrik Westin. Segmentation of thalamic nuclei from dti
using spectral clustering. In Ninth International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI’06), pages 807–814, 2006.

Chapte r 2

	Introduction
	Related Work
	 Basics and Notations
	Tensors and Tensor Field
	Tensor Field Topology
	Interpolation

	Initial Segmentation
	Topology Extraction
	Cell Generation
	Half-edge Data Structure
	Creating Cells from Topological Skeleton

	Adaptive Segmentation Workflow
	Choice of Scalar Field
	Edge-weight Definition and Thresholds
	Refinement Operations
	Coarsening
	Subdivision

	Customized Workflow of Adaptive Refinement
	Workflow: Basic Segmentation
	Workflow: Degenerate Regions

	Results and Discussion
	Conclusions

