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Abstract
We apply a multi-color extension of the Beck-Fiala theorem to show that the multiobjective
maximum traveling salesman problem is randomized 1/2-approximable on directed graphs and
randomized 2/3-approximable on undirected graphs. Using the same technique we show that the
multiobjective maximum satisfiabilty problem is 1/2-approximable.
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1 Introduction

We study multiobjective variants of the traveling salesman problem and the satisfiability
problem.

The k-objective maximum traveling salesman problem: Given is a directed / undirected
complete graph with edge weights from Nk. Find a Hamiltonian cycle of maximum
weight.
The k-objective maximum weighted satisfiability problem: Given is a Boolean formula in
conjunctive normal form and for each clause a non-negative weight in Nk. Find a truth
assignment that maximizes the sum of the weights of all satisfied clauses.

In general we cannot expect to find a single solution that is optimal with respect to all
objectives. Instead we are interested in the Pareto set which consists of all optimal solutions
in the sense that there is no solution that is at least as good in all objectives and better in at
least one objective. Typically, the Pareto set has exponential size, and this particularly holds
for the traveling salesman and the satisfiability problems considered here. We are hence
interested in computing an approximation of the Pareto set.

A popular strategy for approximating single-objective traveling salesman and single-
objective satisfiability is to compute two or more alternatives out of which one chooses the
best one:

For each cycle in a maximum cycle cover of a graph, remove the edge with the lowest
weight, and connect the remaining paths to a Hamiltonian cycle.
For some formula, take an arbitrary truth assignment and its complementary truth
assignment, and return the one with the highest weight of satisfied clauses.

However, in the presence of multiple objectives, these alternatives can be incomparable and
hence we need an argument that allows to appropriately combine incomparable alternatives.
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While previous work focused on problem-specific properties to construct solutions of
good quality, we show that the Beck-Fiala theorem [3] from discrepancy theory and its
multi-color extension due to Doerr and Srivastav [5] provide a general and simple way
to combine alternatives appropriately. Its application leads to simplified and improved
approximation algorithms for the k-objective maximum traveling salesman problem on
directed and undirected graphs and the k-objective maximum weighted satisfiability problem.

2 Preliminaries

2.1 Multiobjective Optimization

Let k ≥ 1 and consider some k-objective maximization problem O that consists of a set of
instances I, a set of solutions S(x) for each instance x ∈ I, and a function w assigning a
k-dimensional weight w(x, s) ∈ Nk to each solution s ∈ S(x) depending also on the instance
x ∈ I. If the instance x is clear from the context, we also write w(s) = w(x, s). The
components of w are written as wi. For weights a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Nk we
write a ≥ b if ai ≥ bi for all i.

Let x ∈ I. The Pareto set of x, the set of all optimal solutions, is the set {s ∈ S(x) |
¬∃s′ ∈ S(x) (w(x, s′) ≥ w(x, s) and w(x, s′) 6= w(x, s))}. For solutions s, s′ ∈ S(x) and
α < 1 we say s is α-approximated by s′ if wi(s′) ≥ α ·wi(s) for all i. We call a set of solutions
α-approximate Pareto set of x if every solution s ∈ S(x) (or equivalently, every solution from
the Pareto set) is α-approximated by some s′ contained in the set.

We say that some algorithm is an α-approximation algorithm for O if it runs in polynomial
time and returns an α-approximate Pareto set of x for all inputs x ∈ I. We call it randomized
if it is allowed to fail with probability at most 1/2. An algorithm is a PTAS (polynomial-time
approximation scheme) for O, if on input x and 0 < ε < 1 it computes a (1− ε)-approximate
Pareto set of x and for each fixed ε, its runtime is polynomial in the length of x. If there is a
single polynomial in 1/ε + length(x) that bounds the algorithm’s runtime, we call it FPTAS
(fully polynomial-time approximation scheme). The randomized variants are called PRAS
(polynomial-time randomized approximation scheme) and FPRAS (fully polynomial-time
randomized approximation scheme).

2.2 Graph Prerequisites

An Nk-labeled directed (undirected) graph is a tuple G = (V,E,w), where V is some finite set
of vertices, E ⊆ V × V (E ⊆

(
V
2
)
) is a set of directed (undirected) edges, and w : E → Nk

is a k-dimensional weight function. If E = (V × V ) \ {(i, i) | i ∈ V } (E =
(
V
2
)
) then G is

called complete. We denote the i-th component of w by wi and extend w to sets of edges
by taking the sum over the weights of all edges in the set. A cycle (of length m ≥ 1) in G
is an alternating sequence of vertices and edges v0, e1, v1, . . . em, vm, where vi ∈ V , ej ∈ E,
ej = (vj−1, vj) (ej = {vj−1, vj}) for all 0 ≤ i ≤ m and 1 ≤ j ≤ m, neither the sequence of
vertices v0, v1, . . . , vm−1 nor the sequence of edges e1, . . . , em contains any repetition, and
vm = v0. A cycle in G is called Hamiltonian if it visits every vertex in G. A set of cycles
in G is called cycle cover if for every vertex v ∈ V it contains exactly one cycle that visits
v. For simplicity we interpret cycles and cycle covers as sets of edges and can thus (using
the above mentioned extension of w to sets of edges) write w(C) for the (multidimensional)
weight of a cycle cover C of G.
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2.3 Approximating Cycle Covers
We will consider approximation algorithms for the multiobjective traveling salesman problem
using a multiobjective version of the maximum cycle cover problem. For directed input
graphs we have the following problem definition.

k-Objective Maximum Directed Edge-Fixed c-Cycle Cover (k-c-MaxDCCF)
Instance: Nk-labeled complete directed graph (V,E,w) and F ⊆ E
Solution: Cycle cover C ⊆ E with at least c edges per cycle and F ⊆ C
Weight: w(C)

For undirected input graphs we analogously define the k-objective maximum undirected
edge-fixed c-cycle cover problem (k-c-MaxUCCF, for short). Let k-c-MaxUCC (k-c-
MaxDCC) denote the problems we obtain from k-c-MaxDCCF (k-c-MaxUCCF) if we
require F = ∅. Using this notation we obtain the usual cycle cover problems k-MaxDCC
as k-0-MaxDCC and k-MaxUCC as k-0-MaxUCC.

Manthey and Ram [14] show by a reduction to matching that there is an FPRAS for
k-objective minimum cycle cover problems. The same technique can be used to show that
there are FPRAS for k-MaxDCC and k-MaxUCC [12]. We show that there are FPRAS for
k-2-MaxDCCF and k-3-MaxUCCF by a reduction to k-MaxDCC and k-MaxUCC.

I Theorem 1. For every k ≥ 1, k-2-MaxDCCF and k-3-MaxUCCF admit an FPRAS.

Proof. For every l ≥ 1, let l-MaxDCC-Approx (l-MaxUCC-Approx) denote the FPRAS for
l-MaxDCC (l-MaxUCC). We begin with the directed case.

Let k ≥ 1. On input of the Nk-labeled complete directed graph G = (V,E,w) and F ⊆ E,
let G′ = (V,E,w′), where w′ : E → Nk+1 such that for all e ∈ E,

w′i(e) = wi(e) for 1 ≤ i ≤ k and w′k+1(e) =
{

1 if e ∈ F
0 otherwise.

For ε > 0, apply (k+1)-MaxDCC-Approx to G′ with approximation ratio ε′ = min{ε, 1/(r+1)},
where r := #F and return the obtained set of cycle covers that contain all edges from F .

Let C be some (arbitrary) cycle cover with F ⊆ C. If no such cycle cover exists, we
are done. Otherwise, we have w′k+1(C) = r, and with probability at least 1/2 the FPRAS
must have returned some cycle cover C ′ that ε′-approximates C. By ε′ ≤ 1/(r+1) we have
w′k+1(C ′) ≥ (1 − ε′) · w′k+1(C) ≥ (1 − 1/(r+1)) · r = r − r/(r+1) > r − 1 and hence F ⊆ C ′.
Moreover, by ε′ ≤ ε we have wi(C ′) = w′i(C ′) ≥ (1−ε′)·w′i(C) ≥ (1−ε)·w′i(C) = (1−ε)·wi(C)
for all 1 ≤ i ≤ k. Since an arbitrary cycle in a complete directed graph has length at least
two, the assertion is proved.

The proof for the undirected case is very similar, as we call (k + 1)-MaxUCC-Approx
instead. Since in a complete undirected graph every cycle has length at least three, the
assertion follows. J

2.4 Boolean Formulas
We consider formulas over a finite set of propositional variables V , where a literal is a
propositional variable v ∈ V or its negation v, a clause is a finite, nonempty set of literals,
and a formula in conjunctive normal form (CNF, for short) is a finite set of clauses. A truth
assignment is a mapping I : V → {0, 1}. For some v ∈ V , we say that I satisfies the literal v
if I(v) = 1, and I satisfies the literal v if I(v) = 0. We further say that I satisfies the clause
C and write I(C) = 1 if there is some literal l ∈ C that is satisfied by I.

FSTTCS 2011



58 Applications of Discrepancy Theory in Multiobjective Approximation

3 Multi-Color Discrepancy

Suppose we have a list of items with (single-objective) weights and want to find a subset of
these items with about half of the total weight. The exact version of this problem is of course
the NP-complete problem Partition [7], and hence it is unlikely that an exact solution
can be found in polynomial time. If we allow a deviation in the order of the largest weight,
this problem can be solved in polynomial time, though. Surprisingly, this is still true if the
weights are not single numbers but vectors of numbers, which follows from a classical result
in discrepancy theory known as the Beck-Fiala theorem [3]. It is important to note that the
allowed deviation is independent of the number of vectors since this enables us to use this
result in multiobjective approximation for balancing out multiple objectives at the same time
with an error that does not depend on the input size.

In the Beck-Fiala theorem and the task discussed above, we have to decide for each item
to either include it or not. In some situations in multiobjective optimization, though, a more
general problem needs to be solved: There is a constant number of weight vectors for each
item, out of which we have to choose exactly one. Doerr and Srivastav [5] showed that the
Beck-Fiala theorem generalizes to this so-called multi-color setting with almost the same
deviation. Their proof implicitly shows that this choice can be computed in polynomial time.

For a vector x ∈ Qm let ||x||∞ = maxi |xi|, and for a matrix A ∈ Qm×n let ||A||1 =
maxj

∑
i |aij |. For c ≥ 2, n ≥ 1 let Mc,n = {x ∈ (Q ∩ [0, 1])cn |

∑c−1
k=0 xcb−k = 1 for all

b ∈ {1, . . . , n}} and Mc,n = Mc,n ∩ {0, 1}cn.

I Theorem 2. (Doerr, Srivastav [5]) There is a polynomial-time algorithm that on input
of some A ∈ Qm×cn, m,n ∈ N, c ≥ 2 and p ∈ Mc,n finds a coloring χ ∈ Mc,n such that
||A(p− χ)||∞ ≤ 2||A||1.

I Corollary 3. There is a polynomial-time algorithm that on input of a set of vectors
vj,r ∈ Qm for 1 ≤ j ≤ n, 1 ≤ r ≤ c computes a coloring χ : {1, . . . , n} → {1, . . . , c} such that
for each 1 ≤ i ≤ m it holds that∣∣∣∣∣∣1c

n∑
j=1

c∑
r=1

vj,ri −
n∑
j=1

v
j,χ(j)
i

∣∣∣∣∣∣ ≤ 2mmax
j,r
|vj,ri |.

Proof. The result is obvious for c = 1. For c ≥ 2, we use Theorem 2. Because the error
bound is different for each row, we need to scale the rows of the vectors. Let δi = maxj,r |vj,ri |
for 1 ≤ i ≤ m. Let A = (ai,j′) ∈ Qm×cn where ai,(c(j−1)+r) = 1

δi
vj,ri (if δi = 0, set it to 0)

and p ∈ Qcn such that pi = 1
c for all 1 ≤ i ≤ cn. We obtain a coloring χ ∈ {0, 1}cn such that

for each 1 ≤ j ≤ n there is exactly one 1 ≤ r ≤ c such that χc(j−1)+r = 1 and it holds that
||A(p− χ)||∞ ≤ 2||A||1. Note that because of the scaling, the largest entry in A is 1 and thus
we have ||A||1 ≤ m. Define χ′ : {1, . . . , n} → {1, . . . , c} by χ′(j) = r ⇐⇒ χc(j−1)+r = 1.
For each 1 ≤ i ≤ m we obtain

2mδi ≥ 2||δiA||1 ≥ |(δiA(p− χ))i|

=

∣∣∣∣∣∣
cn∑
j′=1

δiaij′(pj′ − χj′)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

c∑
r=1

1
c
vj,ri −

n∑
j=1

v
j,χ′(j)
i

∣∣∣∣∣∣ .
J
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4 Approximating Multiobjective Maximum Traveling Salesman

4.1 Definition
Given some complete Nk-labeled graph as input, our goal is to find a Hamiltonian cycle
of maximum weight. For directed graphs this problem is called k-objective maximum
asymmetric traveling salesman (k-MaxATSP), while for undirected graphs it is called k-
objective maximum symmetric traveling salesman (k-MaxSTSP). Below we give the formal
definition of k-MaxATSP, the problem k-MaxSTSP is defined analogously.

k-Objective Maximum Asymmetric Traveling Salesman (k-MaxATSP)
Instance: Nk-labeled directed complete graph (V,E,w)
Solution: Hamiltonian cycle C
Weight: w(C)

4.2 Previous Work
In 1979, Fisher, Nemhauser and Wolsey [6] gave a 1/2-approximation algorithm for single-
objective maximum asymmetric traveling salesman (1-MaxATSP) by removing the lightest
edge from each cycle of a maximum cycle cover and connecting the remaining paths to a
Hamiltonian cycle. Since undirected cycles always contain at least three edges, this also
showed that single-objective maximum symmetric traveling salesman (1-MaxSTSP) is 2/3-
approximable. Since then, many improvements were achieved, and currently, the best known
approximation ratios of 2/3 for 1-MaxATSP and 7/9 for 1-MaxSTSP are due to Kaplan et al.
[9] and Paluch, Mucha and Madry [15].

Most single-objective approximation algorithms do not directly translate to the case of
multiple objectives, and hence we need more sophisticated algorithms. For k-MaxATSP and
k-MaxSTSP, where k ≥ 2, the currently best known approximation algorithms are due to
Manthey, who showed a randomized (1/2−ε)-approximation of k-MaxATSP and a randomized
(2/3 − ε)-approximation of k-MaxSTSP [12]. Recently, Manthey also gave a deterministic
(1/2k − ε)-approximation of k-MaxSTSP and a deterministic (1/(4k−2)− ε)-approximation of
k-MaxATSP [13].

4.3 Our Results
We show that k-MaxATSP is randomized 1/2-approximable and k-MaxSTSP is randomized
2/3-approximable using the following idea. We choose a suitable number l depending only
on k and try all sets of at most l edges F using brute force. For each such F we apply the
FPRAS for k-2-MaxDCCF (k-3-MaxUCCF), which exists by Theorem 1, fixing the edges
in F . For all cycle covers thus obtained, we select two (three) edges from each cycle and
compute a 2-coloring (3-coloring) of the cycles with low discrepancy with regard to the weight
vectors of the selected edges. Using this coloring, we remove exactly one edge from each
cycle and connect the remaining simple paths to a single cycle in an arbitrary way. Since
the coloring has low discrepancy, we only remove about one half (one third) of the weight in
each objective. The introduced error is absorbed by choosing suitable heavy edges F at the
beginning. The described procedure generally works for arbitrary c-cycle covers.

I Lemma 4. Let c ≥ 2 and k ≥ 1. If there exists an FPRAS for k-c-MaxDCCF (k-c-
MaxUCCF, resp.), then the algorithm Alg-k-MaxTSP computes a randomized (1 − 1/c)-
approximation for k-MaxATSP (k-MaxSTSP, resp.).

FSTTCS 2011
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Algorithm: Alg-k-MaxTSP(V,E,w) with parameter c ≥ 2
Input :Nk-labeled directed/undirected complete graph G = (V,E,w)
Output : set of Hamiltonian cycles of G

1 foreach FH , FL ⊆ E with #FH ≤ 3 c k2, #FL ≤ c#FH do
2 let δ ∈ Nk with δi = max{n ∈ N | there are 3 c k edges e ∈ FH with wi(e) ≥ n};
3 foreach e ∈ E \ FH do
4 if w(e) 6≤ δ then set w(e) = 0 for the current iteration of line 1;
5 compute (1− 1/#V )-approx. S of k-c-MaxDCCF / k-c-MaxUCCF on (G,FH ∪ FL);
6 foreach cycle cover S ∈ S do
7 let C1, . . . , Cr denote the cycles in S;
8 if for each i ∈ {1, . . . , r}, Ci \ FH contains a path of length c then
9 foreach i ∈ {1, . . . , r} do choose path ei,1, . . . , ei,c ∈ Ci \ FH arbitrarily;

10 compute some coloring χ : {1, . . . , r} → {1, . . . , c} such that
r∑
i=1

w(ei,χ(i)) ≤ 2k · δ + 1
c

r∑
i=1

c∑
j=1

w(ei,j)

and remove the edges {ei,χ(i) | 1 ≤ i ≤ r} from S;
11 output the remaining edges, arbitrarily connected to a Hamiltonian cycle;

Proof. Let k ≥ 1, c ≥ 2, and G = (V,E,w) be some Nk-labeled (directed or undirected)
input graph with m = #V sufficiently large.

We will first argue that the algorithm terminates in time polynomial in the length of G.
Since there are only polynomially many subsets FH , FL ⊆ E with cardinality bounded by a
constant, the loop in line 1 is executed polynomially often. In each iteration the FPRAS
on G = (V,E,w) and FH ∪ FL ⊆ E terminates in time polynomial in the length of G
and FH ∪ FE , which means that the set S contains only polynomially many cycle covers.
Hence, for each iteration of the loop in line 1, the loop in line 6 is also executed at most
polynomially many times, and overall we have polynomially many nested iterations. In
each nested iteration where each cycle of the cycle cover contains a path as required, we
compute a coloring of {1, . . . , r} with low discrepancy. By Corollary 3 this can be done in
polynomial time. Observe that all further steps require at most polynomial time, and hence
the algorithm terminates after polynomially many steps.

Next we argue that the algorithm will succeed with probability at least 1/2. Observe
that the only randomized parts of the algorithm are the calls to the randomized cycle cover
approximation algorithm in line 5. Using amplification we can assume that the probability
that all the calls to this algorithm succeed is at least 1/2.

It remains to show that if the algorithm Alg-k-MaxTSP succeeds, it outputs some (1−1/c)-
approximate set of Hamiltonian cycles. Hence, for the remainder of the proof, let us assume
that the algorithm and hence all calls to the internal FPRAS succeed. Furthermore, let
R ⊆ E be some Hamiltonian cycle of G. We will argue that there is some iteration where
the algorithm outputs an (1− 1/c)-approximation of R.

For each 1 ≤ i ≤ k, let FH,i ⊆ R be some set of 3 c k heaviest edges of R in the i-th
component, breaking ties arbitrarily. Let FH =

⋃k
i=1 FH,i. We define FL ⊆ R such that

FL ∩ FH = ∅ and each edge in FH is part of a path in FL ∪ FH that contains c edges from
FL. This is always possible as long as R is large enough. We now have #FH ≤ 3 c k2 and
#FL ≤ c#FH . Hence in line 1 there will be some iteration that chooses FH and FL. We fix
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this iteration for the remainder of the proof.
Let δ ∈ Nk as defined in line 2 and observe that δi = min{wi(e) | e ∈ FH,i} for all i,

which means that for all edges e ∈ R \ FH we have w(e) ≤ δ. Hence the loop in line 3 sets
the weights of all edges e ∈ E \R that do not fulfill w(e) ≤ δ to zero, and these are the only
weights that are modified. In particular, this does not affect edges in R, hence w(R) remains
unchanged. Note that since we do not increase the weight of any edge and do not change the
weight of the edges in R, it suffices to show that the algorithm computes an approximation
with respect to the changed weights.

Next we obtain a (1−1/#V )-approximate set S of c-cycle covers of G that contain FH ∪FL.
Since R is a c-cycle cover of G with FH ∪ FL ⊆ R, there must be some c-cycle cover S ∈ S
with FH ∪ FL ⊆ S that (1 − 1/#V )-approximates R. Hence in line 6 there will be some
iteration that chooses this S. Again we fix this iteration for the remainder of the proof.

As in line 7, let C1, . . . , Cr denote the cycles in S. Note that each cycle contains at
least c edges. Since each edge in FH is part of a path in FH ∪ FL with at least c edges
from FL, we even know that each cycle contains at least c edges not from FH and thus the
condition in line 8 is fulfilled. Let these edges ei,j be defined as in the algorithm. Note that
since ei,j /∈ FH we have w(ei,j) ≤ δ for all i, j, because the weight function was changed
accordingly.

In line 10 we compute some χ : {1, . . . , r} → {1, . . . , c} such that
r∑
i=1

w(ei,χ(i)) ≤ 2 k · δ + 1
c

r∑
i=1

c∑
j=1

w(ei,j) ≤ 2 k · δ + 1
c
· w(S \ FH).

Recall that by Corollary 3 such a coloring exists and can be computed in polynomial time.
Removing the chosen edges breaks the cycles into simple paths, which can be arbitrarily
connected to a Hamiltonian cycle R′. For the following estimation note that δ ≤ w(FH )

3 c k and
w(FH) ≥ 3 c k

m w(R) and recall that m = #V = #R.

w(R′) ≥ w(S)−
r∑
i=1

w(ei,χ(i)) ≥ w(S)− 2 k · δ − 1
c
· w(S \ FH)

=
(

1− 1
c

)
w(S) + 1

c
w(FH)− 2 k · δ ≥

(
1− 1

c

)
w(S) + 1

3 cw(FH)

≥
(

1− 1
c

)(
1− 1

m

)
w(R) + k

m
w(R) ≥

(
1− 1

c

)
w(R)

This proves the assertion. J

It is known that 1-c-MaxDCC is APX-hard for all c ≥ 3 [4] and that 1-c-MaxUCC is
APX-hard for c ≥ 5 [11]. This means that, unless P = NP, there is no PTAS for these
problems (and especially not for the variants with fixed edges). Furthermore, the existence
of an FPRAS or PRAS for these problems implies NP = RP and thus a collapse of the
polynomial-time hierarchy, which is seen as follows.

If an APX-hard problem has a PRAS, then all problems in APX have a PRAS and
hence MAX-3SAT has one. There exists an ε > 0 and a polynomial-time computable f
mapping CNF formulas to 3-CNF formulas such that if x ∈ SAT, then f(x) ∈ 3SAT; and
if x /∈ SAT, then there is no assignment satisfying more than a fraction of 1 − ε of f(x)’s
clauses [1, Theorem 10.1]. The PRAS for MAX-3SAT allows us to compute probabilistically
a (1 − ε/2)-approximation for f(x) which in turn tells us whether or not x ∈ SAT. Since
this procedure has no false negatives we get RP = NP, which implies a collapse of the
polynomial-time hierarchy [10, 17].

FSTTCS 2011
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So it seems unlikely that there is a PRAS for 1-c-MaxDCC where c ≥ 3 and 1-c-MaxUCC
where c ≥ 5. However, this does not necessarily mean that the above algorithm is useless for
parameters c ≥ 3 in the directed and c ≥ 5 in the undirected case: The algorithm could still
benefit from a constant-factor approximation for k-c-MaxUCCF or k-c-MaxDCCF. A simple
change in the estimation shows that if the cycle cover algorithm has an approximation ratio
of α, the above algorithm provides an approximation with ratio α(1− 1/c).

I Theorem 5. Let k ≥ 1.
1. k-MaxATSP is randomized 1/2-approximable.
2. k-MaxSTSP is randomized 2/3-approximable.

Proof. We combine Theorem 1 and Lemma 4. J

5 Approximating Multiobjective Maximum Satisfiability

5.1 Definition
Given a formula in CNF and a function that maps each clause to a k-objective weight, our
goal is to find truth assignments that maximize the sum of the weights of all satisfied clauses.
The formal definition is as follows.

k-Objective Maximum Weighted Satisfiability (k-MaxSAT)
Instance: Formula H in CNF over a set of variables V , weight function w : H → Nk
Solution: Truth assignment I : V → {0, 1}
Weight: Sum of the weights of all clauses satisfied by I, i.e., w(I) =

∑
C∈H
I(C)=1

w(C)

5.2 Previous Work
The first approximation algorithm for maximum satisfiability is due to Johnson [8], whose
greedy algorithm showed that the single-objective 1-MaxSAT problem is 1/2-approximable.
Further improvements on the approximation ratio followed, and the currently best known
approximation ratio of 0.7846 for 1-MaxSAT is due to Asano and Williamson [2].

Only little is known about k-MaxSAT for k ≥ 2. Santana et. al. [16] apply genetic
algorithms to a version of the problem that is equivalent to k-MaxSAT with polynomially
bounded weights. To our knowledge, the approximability of k-MaxSAT for k ≥ 2 has not
been investigated so far.

5.3 Our Results
We show that k-MaxSAT is 1/2-approximable mainly by transferring the idea that for any
truth assignment, the assignment itself or its complementary assignment satisfies at least
one half of all clauses to multidimensional objective functions. We choose some suitable
parameter l ∈ N depending only on the number of objectives. For a given formula in CNF
we try all possible partial truth assignments for each set of at most l variables using brute
force and extend each partial assignment to a full assignment in the following way: For each
remaining variable v we compute two vectors roughly representing the weight gained by the
two possible assignments for v. We then compute a 2-coloring of those weight vectors with
low discrepancy which completes the partial assignment to a truth assignment whose weight
is at least one half of the total weight of the remaining satisfiable clauses minus some error.
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This error can be compensated by choosing l large enough such that the partial assignment
already contributes a large enough weight. This results in a 1/2-approximation for k-MaxSAT.

For a set of clausesH and a variable v letH[v = 1] = {C ∈ H | v ∈ C} be the set of clauses
that are satisfied if this variable is assigned one, and analogously H[v = 0] = {C ∈ H | v ∈ C}
be the set of clauses that are satisfied if this variable is assigned zero. This notation is
extended to sets of variables V by H[V = i] =

⋃
v∈V H[v = i] for i = 0, 1.

Algorithm: Alg-k-MaxSAT(H,w)
Input : Formula H in CNF over the variables V = {v1, . . . , vm}, k-objective weight

function w : H → Nk
Output : Set of truth assignments I : V → {0, 1}

1 foreach disjoint V 0, V 1 ⊆ V with #(V 0 ∪ V 1) ≤ 4k2 do
2 G := H \ (H[V 0 = 0] ∪H[V 1 = 1]);
3 V̂ (1−i) := {v ∈ V \ (V 0 ∪ V 1) | 4k · w(G[v = i]) 6≤ w(H \G)}, i = 0, 1;
4 if V̂ 0 ∩ V̂ 1 = ∅ then
5 V ′ := V \ (V 0 ∪ V 1 ∪ V̂ 0 ∪ V̂ 1), L′ := V ′ ∪ {v | v ∈ V ′};
6 G′ := (G[V ′ = 0] ∪G[V ′ = 1]) \ (G[V̂ 0 = 0] ∪G[V̂ 1 = 1]);
7 for vj ∈ V ′ let xj,i =

∑
{ w(C)

#(C∩L′) | C ∈ G
′[vj = i]} for i = 0, 1;

8 compute some coloring χ : V ′ → {0, 1} such that∑
vj∈V ′

xj,χ(j) ≥ 1
2
∑
vj∈V ′

(xj,0 + xj,1)− 2kδ

where δr = max{xj,ir | vj ∈ V ′, i ∈ {0, 1}};
9 let I(v) := i for v ∈ V i ∪ V̂ i ∪ χ−1({i}), i = 0, 1;

10 output I

I Theorem 6. k-MaxSAT is 1/2-approximable for any k ≥ 1.

Proof. We show that this approximation is realized by Alg-k-MaxSAT. First note that this
algorithm runs in polynomial time since k is constant and the coloring in line 8 can be
computed in polynomial time using Corollary 3. For the correctness, let (H,w) be the input
where H is a formula over the variables V = {v1, . . . , vm} and w : H → Nk is the k-objective
weight function. Let Io : V → {0, 1} be an optimal truth assignment. We show that there
is a loop iteration of Alg-k-MaxSAT(H,w) that outputs a truth assignment I such that
w(I) ≥ w(Io)/2.

We first note that there are sets V 0 and V 1 with a bounded cardinality of at most 4k2

that define a partial truth assignment that contributes a large weight.

I Claim 7. There are sets V i ⊆ I−1
o ({i}), i = 0, 1 with #(V 0 ∪ V 1) ≤ 4k2 such that for

G = H \ (H[V 0 = 0] ∪H[V 1 = 1]) and any v ∈ V \ (V 0 ∪ V 1) it holds that

w(G[v = Io(v)]) ≤ 1
4kw(H \G). (1)

Proof Sketch. The set V 0 ∪ V 1 is obtained by iteratively choosing variables such that (one
component of) the weight of the remaining clauses that get satisfied if the variable is set to
its value under Io is high, while the components are chosen in a round-robin fashion. Since
V 0 ∪ V 1 contains the 4k most “influential” variables per objective, none of the remaining
variables can have high “influence” on the remaining clauses, because otherwise one of them
would have been chosen to belong to V 0 ∪ V 1. J
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We choose the iteration of the algorithm where V 0 and V 1 equal the sets whose existence
is guaranteed by Claim 7. In the following, we use the variables as they are defined in the
algorithm. Observe that by the claim it holds that Io(v) = i for all v ∈ V̂ i for i = 0, 1 and
thus V̂ 0 ∩ V̂ 1 = ∅. Note that∑

vj∈V ′

xj,0 + xj,1 =
∑
vj∈V ′

∑
i∈{0,1}

∑
C∈G′[vj=i]

w(C)
#(C ∩ L′)

=
∑
C∈G′

#(C ∩ L′) w(C)
#(C ∩ L′)

= w(G′).

Furthermore, for all vj ∈ V ′ and i = 0, 1, we have the bound xj,i ≤ w(G′[vj = i]) ≤ w(G[vj =
i]) ≤ 1

4kw(H \ G) because of the definition of V ′ and V̂ (1−i). By Corollary 3, we find a
coloring χ : V ′ → {0, 1} such that for each 1 ≤ i ≤ k it holds that∣∣∣∣∣∣12

∑
vj∈V ′

1∑
r=0

xj,ri −
∑
vj∈V ′

x
j,χ(vj)
i

∣∣∣∣∣∣ ≤ 2kmax
j,r
|xj,ri | ≤ 2k 1

4kwi(H \G) = 1
2wi(H \G)

and hence∑
vj∈V ′

xj,χ(vj) ≥ 1
2
∑
vj∈V ′

(xj,0 + xj,1)− 1
2w(H \G) = 1

2(w(G′)− w(H \G)).

For I being the truth assignment generated in this iteration it holds that

w({C ∈ G′ | I(C) = 1}) ≥
∑
vj∈V ′

xj,χ(vj) ≥ 1
2(w(G′)− w(H \G)). (2)

Furthermore, since I and Io coincide on V \ V ′, we have

w({C ∈ H \G′ | I(C) = 1}) = w({C ∈ H \G′ | Io(C) = 1}) (3)
≥ w({C ∈ H \G | Io(C) = 1})
= w({H \G}). (4)

Thus we finally obtain

w(I) = w({C ∈ H \G′ | I(C) = 1}) + w({C ∈ G′ | I(C) = 1})
(2)
≥ w({C ∈ H \G′ | I(C) = 1}) + 1

2 (w(G′)− w(H \G))
(3)= w({C ∈ H \G′ | Io(C) = 1}) + 1

2 (w(G′)− w(H \G))
(4)
≥ 1

2w({C ∈ H \G′ | Io(C) = 1}) + 1
2w(G′)

≥ 1
2w(Io). J
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