
Higher order indexed monadic systems
Didier Caucal1 and Teodor Knapik2

1 CNRS, LIGM-Université Paris-Est
caucal@univ-mlv.fr

2 ERIM, Université de la Nouvelle Calédonie
knapik@univ-nc.nc

Abstract
A word rewriting system is called monadic if each of its right hand sides is either a single letter
or the empty word. We study the images of higher order indexed languages (defined by Maslov)
under inverse derivations of infinite monadic systems. We show that the inverse derivations of
deterministic level n indexed languages by confluent regular monadic systems are deterministic
level n+1 languages, and that the inverse derivations of level n indexed monadic systems preserve
level n indexed languages. Both results are established using a fine structural study of classes
of infinite automata accepting level n indexed languages. Our work generalizes formerly known
results about regular and context-free languages which form the first two levels of the indexed
language hierarchy.

1998 ACM Subject Classification F.4

Keywords and phrases Higher-order indexed languages, monadic systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.469

1 Introduction

A word rewriting system is a (possibly infinite) set of pairs of words called rules. The rewriting
relation −→ transforms a word xuy into xvy by applying a rule (u, v), leaving unchanged the
left and right contexts x and y. This is denoted by xuy −→ xvy. The iteration (or reflexive
and transitive closure under composition) of this relation is called the derivation relation
and written ∗−→. Word rewriting systems form a Turing-complete model of computation,
which implies in particular that the reachability problem ‘Given words u and v, is there a
derivation from u to v?’ is in general undecidable. It becomes however decidable for certain
subclasses of monadic systems, i.e. systems in which the right hand side of any rule is either
a single letter or the empty word [4]. Monadic systems form an important class generalizing
the well-known Dyck system, which we used in [10] to provide a decomposition technique
for word rewriting systems and generalize existing language preservation properties. The
current work finds a direct application in further exploiting this decomposition technique
(see the conclusion).

Given a family of languages F , we call a system F -monadic whenever the set of left
hand sides of rules with the same right hand side forms a language in F (i.e. the inverse
single-step rewriting of any letter or the empty word is a language in F ). As can be seen
by adapting the saturation method provided in [2], the (image under the) derivation of a
regular language by any F monadic system is also regular, and can be effectively computed
whenever the emptiness of the intersection of any language in F with a regular language is
decidable. This is the case for instance of regular and context-free monadic systems [15, 3],
but can be easily generalized to higher-order indexed monadic systems of any level (where
levels 0 and 1 correspond to regular and context-free languages; see [13] for a definition of

© D. Caucal and T. Knapik;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 469–480

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.469
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


470 Higher order indexed monadic systems

indexed languages). When effective, this regularity preservation property directly implies the
decidability of the reachability problem. It is also natural to ask whether this preservation
property still holds for classes of indexed languages above level 0 i.e. above regular languages,
but it turns out this is not the case: the derivation of a context-free language by a finite
monadic system can be non-recursive [3].

The situation is quite different when considering the inverse derivation relations of monadic
systems. Given a rewriting system R, we denote by Pre∗R(L) the set of all words which can be
derived by R into a word in L, i.e. the image of L by the inverse derivation of R. In contrast
to the above results, when R is a confluent finite monadic system and L is a regular set of
R-irreducible words, then Pre∗R(L) is a deterministic context-free (and in general non-regular)
language [3]. Moreover, when L is a context-free language and R a context-free monadic
system, Pre∗R(L) is also context-free [3], in other words for context-free monadic systems the
operator Pre∗R(L) effectively preserves context-freeness. In this work, we generalize these two
results to all higher levels of indexed languages.

This work relies on an automata-theoretic characterization of level n indexed languages
by automata with n-nested pushdown stores (i.e. ‘stacks of stacks’). We call these level n
automata [14]. We first show that for any confluent regular monadic system R, and any
deterministic level n indexed language L, Pre∗R(L) is a deterministic level n + 1 indexed
language (Theorem 17). This is done using the notion of Cayley automaton, in which states
correspond to R-irreducible words, there is an a-labelled edge from u to v if and only if v is
the normal form of ua, and words in the n indexed language L are seen as accepting states.
This automaton is a deterministic level n+ 1 automaton recognizing the language Pre∗R(L)
which is thus a deterministic level n+ 1 indexed language (Proposition 16).

Moreover, we show that for any level n (other than 0), the inverse derivation of any
level n indexed monadic system R preserves level n indexed languages (Theorem 22). From
any mapping h associating to each right hand side a of R a level n automaton recognizing
the set R−1(a) of the left hand sides producing a, we define the iterated substitution h∗

which transforms any level n automaton recognizing a language L into a level n automaton
recognizing Pre∗R(L).

This work is organized as follows. In Section 2 we recall the necessary definitions, in
particular concerning Thue systems and Cayley graphs. In Section 3, we define a class of
graph transformations called inverse regular path functions, a technical tool of independent
interest generalizing the notion of inverse regular mapping. Finally in Section 4, we present
our main results concerning the inverse derivations of monadic systems.

2 Thue systems and Cayley graphs

We say that a system is canonical if each word derives into a unique irreducible word. To
any canonical Thue system R is associated its Cayley graph, which recognizes from ε to
any set L of irreducible words, the inverse derivation of L (Proposition 4).

2.1 Graphs
Let T be an infinite countable set of symbols called terminals. A graph G is a set of edges
labelled over T i.e. G ⊆ V ×T×V where V is an arbitrary set such that the following set
of vertices :

VG = { s ∈ V | ∃ a ∈ T ∃ t ∈ V (s, a, t) ∈ G ∨ (t, a, s) ∈ G }

is finite or countable, and the following set of labels :



D. Caucal and T. Knapik 471

TG = { a | ∃ s, t (s, a, t) ∈ G }

is finite. A triple (s, a, t) ∈ G is an edge labelled by a from source s to target t ; it is
identified with the labelled transition s

a−→G t or directly s
a−→ t if G is understood. Any

tuple (s0, a1, s1, . . ., an, sn) for n ≥ 0 and s0
a1−→G s1 , . . . , sn−1

an−→G sn is a path from
s0 to sn labelled by u = a1. . .an ; we write s0

u=⇒G sn or directly s0
u=⇒ sn if G is

understood. The language recognized by a graph G from a vertex subset I ⊆ VG to a vertex
subset F ⊆ VG is the label set L(G, I, F ) of all paths from I to F :

L(G, I, F ) = { u ∈ T ∗G | ∃ i ∈ I ∃ f ∈ F (i u=⇒G f) }.

A regular language is any language recognized by a finite graph; we denote Reg(N∗) the
set of regular languages over N ⊆ T . A graph is deterministic if it has no two edges with
the same source and the same label: (r a−→ s ∧ r

a−→ t) =⇒ s = t. Fixing an alphabet
N ⊂ T , a graph G is N -complete if TG = N and for any a ∈ N , every vertex s ∈ VG is
source of an edge labelled by a : ∃ t (s a−→ t).

2.2 Thue systems
A Thue system R over an alphabet N ⊂ T is a (not necessarily finite) subset of N∗×N∗.
Any element (u, v) ∈ R, also denoted by u R v, is a rule of R with left hand side (l.h.s.
for short) u and right hand side (r.h.s. for short) v. By interverting left and right hand
sides of R, we get the inverse R−1 = { (v, u) | u R v } of R. The domain of R is the
set DomR = { u | ∃ v (u R v) } and its range is the set RanR = DomR−1 . The identity
relation over a language L is the system IdL = { (u, u) | u ∈ L }. Given systems R and
S, their concatenation is R.S = { (ux, vy) | u R v ∧ x S y } and their composition is
RoS = { (u,w) | ∃v (u R v ∧ v S w) }. The left concatenation (resp. right concatenation) of a
system R by a language L ⊆ N∗ is the system L.R = IdL.R = { (xu, xv) | x ∈ L ∧ u R v }
(resp. R.L = R.IdL). A congruence R is an equivalence relation on N∗ which is closed
under left and right concatenation with N∗ i.e. R is an equivalence such that R.R ⊆ R.
The rewriting of a system R is the relation →R = N∗.R.N∗ i.e. xuy →R xvy for some rule
u R v with left and right contexts x, y ∈ N∗. For any language L ⊆ N∗, PreR(L) = { u |
∃ v ∈ L (u→R v) } is the set of predecessors of L, and PostR(L) = { v | ∃ u ∈ L (u→R v) }
is the set of successors of L. The derivation →∗R by R is the reflexive and transitive closure
of →R under composition. For any language L, Pre∗R(L) = { u | ∃ v ∈ L (u→∗R v) } is the
set of ascendants of L, and Post∗R(L) = { v | ∃ u ∈ L (u→∗R v) } is the set of descendants
of L. We denote by IrrR = { u ∈ N∗ | ¬ ∃v (u →R v) } = N∗ − N∗DomRN

∗ the set of
irreducible words of R. The Thue congruence ↔∗R = →∗R ∪ R−1 is the finest congruence
containing R, and we denote by [u]↔∗

R
the Thue congruence class of u ∈ N∗. The word

problem for R is, given words u and v, to decide whether u ↔∗R v.
We say that a system R is terminating if each word derives to an irreducible word: ∀ u ∈
N∗ ∃ v ∈ IrrR (u→∗R v). Recall that R is noetherian if there is no infinite rewriting chain
u0 →R u1 →R . . . So any noetherian system is terminating but for a, b ∈ N , the system
{(a, a) , (a, b)} is terminating but not noetherian. A system R is confluent if every pair of
words with a common ancestor have a common descendant: if Pre∗R(u) ∩ Pre∗R(v) 6= ∅ then
Post∗R(u) ∩ Post∗R(v) 6= ∅. A canonical system R is a terminating and confluent system
which is equivalent to the condition that each word u derives into a unique irreducible word
u↓R called the normal form of u. In that case, the congruence class of any word is the set
of ascendants of its normal form.

FSTTCS 2011



472 Higher order indexed monadic systems

I Lemma 1. For any canonical system R, we have

[L]↔∗
R

= Pre∗R(L↓R) for any L ⊆ N∗,
{ [L]↔∗

R
| L ⊆ N∗ } is a boolean algebra.

2.3 Cayley graphs
Let us begin with an elementary example. For letters a and b, the finite system R0 =
{(a, ε) , (b, ε)} is canonical: ε is the normal form of any word. The rewriting →R0 restricted
to the words in a∗b∗ is the following grid:

aab

aabb

ε a aa

ab

abbbb

b

which has an undecidable monadic second order (MSO) theory, an even an undecidable
FO∗ theory [19] where FO∗ denotes the first order logic extended with the transitive closure
operator of arity one and without parameter. The Thue systems constitute a Turing-complete
model of computation, hence their rewritings define a large family of graphs [8] having (by
Rice’s theorem) strong undecidability results. Instead of considering the rewriting →R of
any Thue system R, [5] defines the Cayley graph of R as

[R] = { u a−→ v | u, v ∈ IrrR ∧ a ∈ N ∧ ua →∗R v }.

This is inspired by the analogous notion for groups. The Cayley graph of R0 is [R0] =
{ε a−→ ε , ε

b−→ ε} and the Cayley graph [R1] of the noetherian system R1 = {(ab, b) , (b, ε)}
is depicted as follows:

aa

b

a

b

a

b

aa
b b

b

aaaε

b b b b

This graph is prefix-recognizable hence it has a decidable MSO theory [7].
Note that [R] = ∅ ⇐⇒ IrrR = ∅ ⇐⇒ ε ∈ DomR, and that [R] contains the tree

{ u a−→ ua | u ∈ N∗ ∧ a ∈ N ∧ ua ∈ IrrR }

hence V[R] = IrrR. The Cayley graphs of canonical systems are deterministic and complete.

I Lemma 2. For any system R over N ,

R is terminating =⇒ [R] is N-complete,
R is confluent =⇒ [R] is deterministic.

Let us express the path labels of Cayley graphs of canonical systems.

I Lemma 3. For any canonical system R,

u
v=⇒[R] w ⇐⇒ uv →∗R w for every u,w ∈ IrrR and v ∈ N∗.

The set of path labels of the Cayley graph of any canonical system from vertex ε to any
vertex subset F is the set of ascendants of words in F .



D. Caucal and T. Knapik 473

I Proposition 4. For any canonical system R and any F ⊆ IrrR ,

L([R], ε, F ) = Pre∗R(F ) = [F ]↔∗
R
.

Note that the Cayley graph of the empty relation is the N -complete tree:

[∅] = { u a−→ ua | u ∈ N∗ ∧ a ∈ N }.

Let us show how to construct [R] from [∅] for a general system R.
Recall that the suffix rewriting −→|R = N∗.R of any system R is the binary relation
on N∗ defined by xu−→|R xv i.e. the application of a rule u R v under any left context
x ∈ N∗ (the right context being empty). The suffix derivation −→|∗R is the reflexive and
transitive closure under composition of the suffix rewriting. We say that a system R is suffix
if

PostR(IrrR.N) ⊆ {ε} ∪ IrrR.N .

Note that this condition is effective for any finite system R and more generally for any
recognizable system : R = U1×V1 ∪ . . .∪ Un×Vn for some n ≥ 0 and U1, V1, . . . , Un, Vn ∈
Reg(N∗). In that case, DomR is regular, hence IrrR and PostR(IrrR.N) are regular
languages. The Cayley graph of a suffix system can be obtained by the suffix derivation.

I Lemma 5. For any suffix system R,

ua −→∗R v ⇐⇒ ua −→|∗R v for any u, v ∈ IrrR and a ∈ N .

In the next section, we introduce a class of graph transformations allowing us to construct
from [∅] the Cayley graph [R] of any recognizable suffix system R.

3 Path functions

We introduce a generalization of the notion of inverse regular mapping introduced in [7],
called inverse path function. We show that the Cayley graph of any recognizable suffix
system can be obtained from the complete and deterministic tree by an inverse path function
(Proposition 7).

Let Tε = T ∪ {ε} and F = { , ¬ , ∨ , ∧ , · , ∗}. We define the set Exp of boolean
path expressions as the smallest language over Tε ∪ F ∪ {( , )} such that Tε ⊆ Exp and

u , (¬u) , (u ∨ v) , (u ∧ v) , (u · v) , (u∗) ∈ Exp for any u, v ∈ Exp.

The word label w of a path s
w=⇒G t from s to t of a graph G is extended to a regular

expression u ∈ Exp by induction on the length of u as follows. For any a ∈ T and u, v ∈
Exp,

s
a=⇒ t if s

a−→ t ; s
ε=⇒ t if s = t

s
u=⇒ t if t

u=⇒ s ; s
(¬u)=⇒ t if ¬ (s u=⇒ t)

s
(u∨ v)=⇒ t if s

u=⇒ t ∨ s
v=⇒ t ; s

(u∧ v)=⇒ t if s
u=⇒ t ∧ s

v=⇒ t

s
(u · v)=⇒ t if ∃ r (s u=⇒ r ∧ r

v=⇒ t) ; s
(u∗)=⇒ t if s ( u=⇒)∗ t.

For instance s
(ε∧ (a . a))

=⇒ t means that s = t ∧ ∃ r (s a−→ r).
We can remove parentheses using the associativity of ∨ , ∧ , · and by assigning priorities to
operators as usual. Finally · can be omitted.
A function h : T −→ Exp of finite domain is called a regular path function and is applied by
inverse to any graph G to get the graph:

FSTTCS 2011



474 Higher order indexed monadic systems

h−1(G) = { s a−→ t | a ∈ Dom(h) ∧ s
h(a)
=⇒G t }.

For instance, the path function h defined by h(a) = a and h(ι) = aa ∧ ¬(aa) applied by
inverse to the previous Cayley graph [R1] gives the following graph h−1([R1]) :

a aaε

a a a a

ι

aaa aaaa

By applying to this graph the inverse of the path function g defined by

g(ι) = ι ; g(a) = (ε ∧ a∗ ι (aa)∗) a a
g(o) = ι ∨ a ι a ; g(b) = (ε ∧ (a a)∗ ι a∗) a ∨ (ε ∧ (a a)∗a ι a∗) a a

we get the following graph K = g−1(h−1([R1])) depicted as follows:

a aaa

aaε aaaaa a

b b
b b

ι, o

o

where L(K, ε, {ε, a}) ∩ {a, b}∗ = { anbn | n ≥ 0 }.
Inverse path functions are closed under composition. More precisely any path function
h : T −→ Exp is extended by morphism to a function Exp −→ Exp. The expression h(u)
is also denoted by u[h(a1)/a1, . . ., h(ap)/ap] for {a1, . . ., ap} = Dom(h) and is only defined
when Ele(u) ∩ T ⊆ Dom(h). This allows to define the composition g o h of path functions
g and h by (g o h)(a) = h(g(a)) for any a ∈ Dom(g) with g(a) ∈ Dom(h).
The family of inverse path functions is closed under composition.

I Lemma 6. For any graph G and any path functions g and h, we have

g−1(h−1(G)) = (g o h)−1(G).

For any recognizable suffix system, we can construct its Cayley graph.

I Proposition 7. For any recognizable suffix system R, we can construct a path function h

such that [R] = h−1([∅]).

Let us combine Propositions 4 and 7.

I Corollary 8. For any recognizable canonical suffix system R and for any regular language
L ⊆ IrrR, Pre∗R(L) = [L]↔∗

R
is a deterministic context-free language.

This follows from the fact that a deterministic prefix-recognizable graph recognizes, from a
vertex to a regular vertex set, a deterministic context-free language [7].

4 Monadic systems

We review language preservation properties of the derivation and inverse derivation relations
of regular and context-free monadic systems. We generalize these results to higher-order
indexed monadic systems using the Shelah-Stupp and Muchnik iterations together with
inverse path functions.



D. Caucal and T. Knapik 475

4.1 Regular and context-free monadic systems
A system R is monadic if ε is not a l.h.s. and any r.h.s. is either a single letter or ε i.e.
R ⊆ N+×Nε for Nε = N ∪ {ε}. Contrary to the usual definition of monadic systems
[15, 3, 4], we allow unitary rules a → b for a, b ∈ N . Hence a monadic system R is not
in general noetherian. However and in a standard way, we consider the equivalence ∼ on
N defined for any a, b ∈ N by a ∼ b if a →∗R b →∗R a. We take a mapping from N

into T such that a = b ⇐⇒ a ∼ b, that we extend by morphism from N∗ into T ∗. So
R = { (u, v) | u R v ∧ u 6= v } is a monadic system over N = { a | a ∈ N } such that for
any u, v ∈ N∗ (u →∗R v ⇐⇒ u →∗

R
v). The system R can still have unitary rules but

R is noetherian, and R is confluent ⇐⇒ R is confluent.
We say that a monadic system R is finite (resp. regular, context-free) if for each a ∈ Nε,
the language R−1(a) of the l.h.s. producing a is finite (resp. regular, context-free). All
these subclasses of monadic systems are effective in the sense that for each r.h.s. a ∈ Nε
we can decide whether R−1(a) ∩ L = ∅ with L ∈ Reg(N∗). Note that a monadic system
is recognizable if and only if it is regular. A particular finite monadic system is the Dyck
system: D = { (a a, ε) | a ∈ N} ∪ { (a a, ε) | a ∈ N} where a is a new letter for each
a ∈ N . The operator Post∗D preserves regularity: L ∈ Reg(N∗) =⇒ Post∗D(L) ∈ Reg(N∗).
This property has been established in [2] with a saturation method that can be extended to
any monadic system.

I Theorem 9. For any monadic system R, the operator Post∗R preserves regularity, and
effectively when R is effective.

This effective regularity preservation has been given for the context-free monadic systems [3]
(Theorem 2.5). Let us apply Theorem 9 on R when R is confluent.

I Corollary 10. The word problem is decidable for any effective confluent monadic system.

The confluence property is decidable for regular monadic systems [15] but is undecidable
for context-free monadic systems [3]. Furthermore Post∗D for the Dyck system D does not
preserve context-freeness [12]. In fact Post∗R(L) may not be recursive when L is context-free,
even if R is a confluent finite monadic system [3] (Theorem 4.1).

We will thus focus on preservation properties of Pre∗R for monadic systems R. Note that
Pre∗R does not preserve regularity: for the finite monadic system R = {(ab, ε)}, we have
Pre∗R(ε) ∩ a∗b∗ = { anbn | n ≥ 0 } hence Pre∗R(ε) is not regular. However any monadic
system is suffix, hence we can apply Corollary 8 on R for R confluent.

I Corollary 11. For any confluent regular monadic system R and any regular language
L ⊆ IrrR, the set Pre∗R(L) is a deterministic context-free language.

This was already known for the restricted case of finite confluent monadic systems [3]
(Theorem 3.9) and of unequivocal monadic systems [15]. Note that the confluence assumption
in Corollary 11 cannot be dropped: let R2 = {(ab, ε) , (aab, ε)} whose Cayley graph
restricted to the vertices in a∗ is the following non deterministic graph:

a

b

a

b

a

b

b

a aa aaaε

b b

The language Pre∗R2
(ε) ∩ a∗b∗ = { ambn | n ≤ m ≤ 2n } is context-free but not deterministic

context-free [20], hence Pre∗R2
(ε) is not a deterministic context-free language. However

Pre∗R2
(ε) is context-free. In fact, the inverse of a finite monadic system is a context-free

FSTTCS 2011



476 Higher order indexed monadic systems

grammar allowing ε as a l.h.s., and we know that the expressive power of context-free
grammars is not increased when allowing a context-free set of r.h.s. for each l.h.s.

I Proposition 12. [3] For any context-free monadic system R, the operator Pre∗R effectively
preserves context-freeness.

We propose to generalize Corollary 11 and Proposition 12 to a hierarchy of monadic systems
whose first two levels are the regular and context-free monadic systems.

4.2 Higher-order indexed monadic systems
Level n indexed languages were introduced for n = 2 by Aho et al. [1], and for arbitrary
n by Maslov [13]; level 0 and level 1 indexed languages are the regular and context-free
languages. These classes of languages coincide with the OI hierarchy of [11]. A monadic
system R is n-indexed if for each a ∈ Nε, the language R−1(a) is n-indexed; in that case,
R is effective [14] and by Theorem 9, Post∗R effectively preserves regularity.
The n-indexed languages are the languages recognized by automata using an n-nested
pushdown store [14] and called level n automata. We can describe level n+ 1 automata
from level n automata using two basic graph transformations [6]: the previously defined
inverse path functions and the full iteration defined by Muchnik [16]. This operation is a
generalization of the basic iteration G# of a graph G with a new label # ∈ T − TG defined
by Shelah and Stupp [17, 18]:

G# = { (s1, . . . , sn, s)
a−→ (s1, . . . , sn, t) | n ≥ 0 ∧ s1, . . ., sn ∈ VG ∧ s

a−→G t }

∪ { (s1, . . . , sn) #−→ (s1, . . . , sn, s) | n ≥ 0 ∧ s1, . . ., sn, s ∈ VG }.

Muchnik extended this basic iteration to the full iteration G#,& by marking with a loop
labelled by & ∈ T − (TG ∪ {#}), in each copy of G in G#, the vertex from which the copy
originates:

G#,& = G# ∪ { (s1, . . . , sn, s, s) &−→ (s1, . . . , sn, s, s) | n ≥ 0 ∧ s1, . . ., sn, s ∈ VG }.

We give below an illustration of the full iteration of a ‘triangle’.

G

&

&

&

&

&#

&

#
#

#

#
#

#
#

#

By iteratively applying from the family F0 of finite graphs the full iteration followed by an
inverse path function, we get a hierarchy of graphs [9]: for every n ≥ 0,

Fn+1 = { h−1(G#,&) | G ∈ Fn ∧ #,& ∈ T − TG ∧ h path function }.

Since inverse path functions are particular MSO-interpretations and the full iteration preserves
the decidability of the monadic theory [16, 18], all graphs in this hierarchy have a decidable
MSO theory. By Lemma 6, each family Fn is closed under inverse path functions. For n 6= 0,
Fn is also closed under Shelah and Stupp’s iteration (but not under Muchnik’s iteration).

I Theorem 13. For any n > 0, the set Fn is closed under basic iteration.



D. Caucal and T. Knapik 477

To recognize languages, we fix an input label ι ∈ T and an output label o ∈ T . An automaton
is a graph in which each input edge s

ι−→ t and each output edge s
o−→ t is a loop: s = t.

We denote by A the family of automata and An = A ∩ Fn is the family of level n automata
for any n ≥ 0. We also consider the restriction Adet of deterministic automata which have
a deterministic graph with a unique loop labelled by ι. Any automaton G recognizes the
language L(G) of path labels over TG − {ι, o} from ι to o i.e.

L(G) = { u ∈ (TG − {ι, o})∗ | ∃ s, t (s ι−→G s
u=⇒G t

o−→G t) }.

For each n ≥ 0, the n-indexed languages are the languages recognized by level n automata
[6] ; we denote by Indexn this family:

Indexn = { L(G) | G ∈ An }.

We also define the subfamily Indexdet
n of n-indexed deterministic languages :

Indexdet
n = { L(G) | G ∈ Fn ∩ Adet }.

So Indexdet
0 = Index0 is the family of regular languages, and Indexdet

1 is the family of
deterministic context-free languages. Recall that a substitution is a function h : T −→ 2T∗

of finite domain that we extend by morphism: h(uv) = h(u).h(v) for any u, v ∈ (Dom(h))∗;
we say that h is an Indexn-substitution for n ≥ 0 if h(a) ∈ Indexn for all a ∈ Dom(h).
The inverse substitution h−1 of a language L ⊆ T ∗ is the language

h−1(L) = { u ∈ (Dom(h))∗ | h(u) ∩ L 6= ∅ }.

An Index0-substitution is a regular substitution which is a particular path function. Let us
apply the closure of each family Fn under inverse path functions.

I Corollary 14. For any n ≥ 0, Indexn is closed under inverse regular substitutions.

By Theorem 13, each family Fn is closed under synchronization product with finite automata.

I Corollary 15. For any n ≥ 0, the families Indexn and Indexdet
n are closed under

intersection with any regular language.

The Cayley graph [R] of any Thue system R is extended to the Cayley automaton [R,L]
for any final set L ⊆ IrrR by

[R,L] = [R] ∪ {ε ι−→ ε} ∪ { u o−→ u | u ∈ L }.

where ι (resp. o) labelled loops mark initial (resp. final) states. For R canonical and by
Lemma 2, [R,L] is a deterministic and complete automaton recognizing by Proposition 4
the language L([R,L]) = Pre∗R(L) = [L]↔∗

R
. Let us generalize Proposition 7.

I Proposition 16. For any recognizable suffix system R, any n ≥ 0 and L ⊆ IrrR with
L ∈ Indexdet

n , we have [R,L] ∈ Fn+1 .

This entails a generalization of Corollary 8 : Pre∗R modifies by adding at most 1 the level of
n-indexed deterministic languages when R is a confluent regular monadic system.

I Theorem 17. For any recognizable system R which is canonical and suffix, for any
language L ⊆ IrrR and any n ≥ 0, L ∈ Indexdet

n =⇒ Pre∗R(L) = [L]↔∗
R
∈ Indexdet

n+1.

FSTTCS 2011



478 Higher order indexed monadic systems

Let us generalize Proposition 12 to indexed monadic systems. Like for the previous finite
monadic system R0, the rewriting →R of an n-indexed monadic system R has in general
an undecidable monadic theory, hence is not in the class Fn for any n. But for any n-
indexed language L, we can recognize the language Pre∗R(L) by a graph in Fn (in F1 for
n = 0). The construction uses automaton substitutions which are functions h of finite domain
Dom(h) ⊂ T such that h(a) is an automaton for each a ∈ Dom(h); we say that h is an
Fn-substitution for some n ≥ 0 if h(a) ∈ Fn for each a ∈ Dom(h). We also use ε-automata
G allowing the label ε (ε ∈ TG); its ε-closure is the automaton

Gε = { s a−→ t | s ε∗=⇒G
a−→G

ε∗=⇒G ∧ a 6= ε } = g−1(G)

for the path function g defined for any a ∈ TG −{ε} by g(a) = ε∗ a ε∗. The image h(G) of
an automaton G by an automaton substitution h is the automaton

h(G) = (hε(G))ε ∪ { s ι−→ s | s ι−→G s } ∪ { s o−→ s | s o−→G s }

where hε(G) is the following ε-automaton:

hε(G) =
⋃

(s,a,t)∈G { (s, a, p) b−→ (s, a, q) | p b−→h(a) q ∧ b 6= ι ∧ b 6= o }

∪ { s ε−→ (s, a, q) | ∃ t (s a−→G t) ∧ q
ι−→h(a) q }

∪ { (s, a, q) ε−→ t | s a−→G t ∧ q
o−→h(a) q }.

To express the language recognized by h(G), we associate to h the (language) substitution
ĥ defined by ĥ(a) = L(h(a)) for any a ∈ Dom(h).

I Lemma 18. For any automaton substitution h and any automaton G,

L(h(G)) = ĥ(L(G))

and for any n ≥ 0, the automaton

h(G) ∈ Fn for G ∈ Fn and h is an Fn-substitution.

Let us apply Lemma 18.

I Corollary 19. For all n ≥ 0, Indexn is closed under any Indexn-substitution.

The iterated automaton substitution h∗(G) of an automaton G by an automaton substitution
h is the automaton

h∗(G) =
(⋃

n≥0 h
n
ε (G)

)ε .

Similarly the iterated language substitution h∗ of a (language) substitution h is the substi-
tution of domain Dom(h) where the vector of languages h∗(a) for a ∈ Dom(h) is the least
fixed point of the system of equations

h∗(a) = {a} ∪ h∗(h(a))

For h(a) = aa, we have h∗(a) = a+ 6=
⋃
n≥0 h

n(a) = { a2n | n ≥ 0 }. For the substitution
h defined by h(a) = bab and h(b) = b, we have h∗(a) = { bnabn | n ≥ 0 } and h∗(b) = b.
When h is a finite substitution, the equations defining h∗ form a context-free grammar,
hence h∗ is a context-free substitution. Note that h∗ remains a context-free substitution
when h is a context-free substitution. To any automaton substitution h, we associate the
monadic system

−→
h = { (u, a) | a ∈ Dom(h) ∧ u ∈ L(h(a)) }. Let us iterate Lemma 18.



D. Caucal and T. Knapik 479

I Lemma 20. For any automaton substitution h and any automaton G over TG ⊆ Dom(h),

L(h∗(G)) = ĥ∗(L(G)) = Pre∗−→
h

(L(G))

and for any n > 0, the automaton

h∗(G) ∈ Fn for G ∈ Fn and h is an Fn-substitution.

Let us apply Lemma 20.

I Corollary 21. For all n > 0, any iterated Indexn-substitution is an Indexn-substitution.

It remains to combine Theorem 13 with Lemma 20 to get for n 6= 0 that any n-indexed
monadic system preserves n-indexed languages by inverse derivation.

I Theorem 22. For any level n ≥ 1 indexed monadic system R,

L ∈ Indexn =⇒ Pre∗R(L) ∈ Indexn.

Let us combine Theorems 17 and 22.

I Corollary 23. For any confluent regular monadic system R and any n ≥ 1,

L ∈ 2IrrR ∩ Indexdet
n =⇒ Pre∗R(L) ∈ Indexn ∩ Indexdet

n+1 .

For instance taking the finite system R = {(abc, b)} which is monadic and confluent and
taking the restricted Dyck language L over the pair (a, b) i.e. the language recognized by
the automaton

a

b

a

b

a

b

ι

o

which is an irreducible deterministic context-free language, the set

Pre∗R(L) = { aman1bcn1 . . .anmbcnm | m ≥ 0 ∧ n1, . . . , nm ≥ 0 }

is a context-free language which is deterministic at level 2 but not at level 1.

5 Conclusion

We have generalized language preservation properties of regular and context-free monadic
systems to higher-order indexed monadic systems. These results were obtained by applying
two basic graph transformations: the basic iteration and inverse path functions.By applying
Theorem 13 and Theorem 22 to the decomposition of the derivation of word rewriting systems
[10], we can extend the preservation of context-free languages to n-indexed languages for
each n > 0.

Acknowledgements Many thanks to Antoine Meyer for helping us make this paper readable,
and to anonymous referees for helpful comments.

FSTTCS 2011



480 Higher order indexed monadic systems

References
1 A. Aho, R. Sethi and J. Ullman, Indexed grammars – an extension of context-free grammars,

JACM 15-4, 647–671 (1968).
2 M. Benois, Parties rationnelles du groupe libre, C.R. Académie des Sciences, Paris, Série A,

1188–1190 (1969).
3 R. Book, M. Jantzen and C. Wrathall, Monadic Thue systems, Theoretical Computer

Science 19, 231–251 (1982).
4 R. Book and F. Otto, String-rewriting systems, Texts and Monographs in Computer Science,

Springer-Verlag, 189 pages (1993).
5 H. Calbrix and T. Knapik, A string-rewriting characterization of Muller and Schupp’s

context-free graphs, 18th FSTTCS, LNCS 1530, V. Arvind, R. Ramanujam (Eds.), 331–342
(1998).

6 A. Carayol and S. Wöhrle, The Caucal hierarchy of infinite graphs in terms of logic and
higher-order pushdown automata, 23rd FSTTCS, LNCS 2914, P. Pandya, J. Radhakrishnan
(Eds.), 112–123 (2003).

7 D. Caucal, On infinite transition graphs having a decidable monadic theory, 23rd ICALP,
LNCS 1099, F. Meyer auf der Heide, B. Monien (Eds.), 194–205 (1996)
or in Theoretical Computer Science 290, 79–115 (2003).

8 D. Caucal, On the transition graphs of Turing machines, 3rd MCU, LNCS 2055, M. Mar-
genstern, Y. Rogozhin (Eds.), 177–189 (2001).

9 D. Caucal, On infinite terms having a decidable monadic theory, 27th MFCS, LNCS 2420,
K. Diks, W. Rytter (Eds.), 165–176 (2002).

10 D. Caucal and T.H. Dinh, Regularity and context-freeness over word rewriting systems,
14th FOSSACS, LNCS 6604, Martin Hofmann (Ed.), 214–228 (2011).

11 J. Engelfriet and E. Schmidt, IO and OI, Journal of Computer and System Sciences 15,
328–353 (1977).

12 M. Jantzen, M. Kudlek, K.-J. Lange and H. Petersen, Dyck1-reductions of context-free
languages, 6th FCT, LNCS 278, L. Budach, R. Bakharajev, O. Lipanov (Eds.), 218–227
(1987).

13 A. Maslov, The hierarchy of indexed languages of arbitrary level, Doklady Akademii Nauk
SSSR 217, 1013–1016 (1974).

14 A. Maslov, Multilevel pushdown automata, Problemy Peredacy Informacii 12-1, 55–62
(1976).

15 C. Ó’Dúnlaing, Infinite regular Thue systems, Theoretical Computer Science 25, 171–192
(1983).

16 A. Semenov, Decidability of monadic theories, 11th MFCS, LNCS 176, M. Chytil, V. Koubek
(Eds.), 162–175 (1984).

17 S. Shelah, The monadic theory of order, Annals of Mathematics 102, 379–419 (1975).
18 J. Stupp, The lattice model is recursive in the original model, The Hebrew University (1975).
18 I. Walukiewicz, Monadic second-order logic on tree-like structures, Theoretical Computer

Science 275, 311–346 (2002).
19 S. Wöhrle and W. Thomas, Model checking synchronized products of infinite transition

systems, Logical Methods in Computer Science 3 (4:5), 1–18 (2007).
20 S. Yu, A pumping lemma for deterministic context-free languages, Information Processing

Letters 31-1, 47–51 (1989).


	Introduction
	Thue systems and Cayley graphs
	Graphs
	Thue systems
	Cayley graphs

	Path functions
	Monadic systems
	Regular and context-free monadic systems
	Higher-order indexed monadic systems

	Conclusion

