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Abstract
Quantum states generally require exponential sized classical descriptions, but the long conjec-
tured area law provides hope that a large class of natural quantum states can be described
succinctly. Recent progress in formally proving the area law is described.
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1 Summary

Arguably the most fundamental difference between quantum and classical systems is the
exponential difference in the number of parameters required to describe them - whereas
a classical system of n particles can be described by O(n) parameters, an arbitrary state
of a similar quantum system would in general require 2Ωn parameters. The reason for
this discrepancy is quantum entanglement, which is a fundamental resource in quantum
information processing, is also the principal obstacle in the efficient simulation of quantum
systems on a classical computer. But is there a significant class of quantum states which can
be described succinctly? More formally is there a set S of states such that for every state∣∣ψ〉 ∈ S there is a classical description w ∈ {0, 1}poly(n) that "describes"

∣∣ψ〉 — in the sense
that it is possible to efficiently compute interesting quantities about

∣∣ψ〉 , such as energy or
two point correlations, from the classical description w. This may be formalized by saying
that the result of any k-local measurement, for some constant k, on

∣∣ψ〉 can be efficiently
computed from w.

A possible candidate for S is the set of ground states of gapped local Hamiltonians. Local
Hamiltonians are quantum analogs of CSPs, and ground states are quantum analogs of
satisfying assignments or configurations that minimize the number of unsatisfied constraints.
More formally, consider a set of n (d dimensional) spins arranged in a lattice, with nearest-
neighbor interactions described by a local Hamiltonian H =

∑n−1
i=1 Hi. H is a dn × dn

Hermitian matrix, whose eigenvectors are the states of the system with definite energy equal
to the corresponding eigenvalue. We assume that H has a unique ground state

∣∣Ω〉 , the
lowest energy eigenvector. The spectral gap of H, denoted by ε, is the difference between
the two lowest eigenvalues. We will assume that each term Hi has unit norm and say that
H is gapped if the spectral gap ε is bounded below by some constant independent of n.

A remarkable conjecture in condensed matter physics dating back about a half century
is the Area Law, which strongly bounds the entanglement in ground states of gapped local
Hamiltonians. More specifically, for any contiguous region of the grid L, the entanglement
entropy between the particles inside L and the particles outside L is trivially bounded by
(log d times) the number of particles in L, which we may think of as the volume of L. The
surface area of L is the number of grid edges crossing between L and L or equivalently
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thenumber of terms of the Hamiltonian describing interactions between particles in L with
particles in L. Then a state

∣∣ψ〉 obeys an area law if the entanglement entropy between L
and L is upper-bounded by a quantity proportional to the surface area of L, rather than its
volume.

A few years ago, in a seminal paper [5] Hastings proved that ground states of gapped 1D
systems obey an area law. More specifically, for such systems, he proved that the entanglement
entropy across any cut in the chain is bounded by S1D ≤ eO(X), where X = log d

ε . As a
consequence he showed that the ground state of such systems has a polynomial classical
description by a Matrix Product State of size neS1D .

This left the area law for two (and higher) dimensional systems as one of the most
important open questions in Quantum Hamiltonian Complexity. One way to tackle this
question is to improve the bound on the entanglement entropy, since a bound of O(log d)
would automatically imply area laws for higher dimensional systems — simply treat the
system as a 1D system by grouping all the particles at the boundary as a huge particle of
dimension dB , where B is the number of particles on the boundary. A logarithmic bound on
entanglement entropy now yields a bound of O(B log d)).

A combinatorial approach to proving the area law for 1D frustration-free systems (i.e.,
systems where the ground state

∣∣Ω〉 is also the common ground state of all local terms)
was introduced in [2]. The new proof replaced Hastings’ analytical machinery, including
the Lieb-Robinson bound and spectral Fourier analysis, with the Detectability Lemma [1],
a combinatorial lemma about local Hamiltonians. However, the resulting bound was no
better than Hastings’ bound because, at its heart, the argument followed the same outline as
Hastings’, including the use of a “monogamy of entanglement”-type argument that leads to
an exponential slack.

A completely new approach to proving the 1D area law (based on the detectability lemma)
was pursued in [3] and [4]. This led to an exponential improvement in the bound on the
entanglement entropy. Formally, in [4] it was proved that for 1D frustration-free systems, the
entanglement entropy of every cut in the chain is upper bounded by S1D ≤ O(X3 log8X).
This also improves by an exponential factor the bound on the classical description of such
states by a Matrix Product State description. Moreover, by using the locality properties of
the Hamiltonian, for the case of 2D systems the entanglement bound can be improved to
S ≤ O(B2 ·X3 log8(B ·X)). This leaves the 2D area law poised at a very interesting point —
any non-trivial improvement in the existing bounds would result in the first sub-volume law
for 2D systems.
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