
A Pumping Lemma for Pushdown Graphs of Any
Level
Paweł Parys∗

University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland, parys@mimuw.edu.pl

Abstract
We present a pumping lemma for the class of ε-contractions of pushdown graphs of level n, for
each n. A pumping lemma was proposed by Blumensath, but there is an irrecoverable error in
his proof; we present a new proof. Our pumping lemma also improves the bounds given in the
invalid paper of Blumensath.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases pushdown graph, ε-contraction, pumping lemma

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.54

1 Introduction

Higher-order pushdown systems are a very natural extension of pushdown systems. They
were originally introduced by Maslov [10]. In a system of level n we have a level-n stack
of level-(n − 1) stacks of ... of level-1 stacks. The idea is that the system operates only on
the topmost level-1 stack, but additionally it can make a copy of the topmost stack of some
level, or can remove the topmost stack of some level. Higher-order pushdown systems have
connections with several other concepts. A result of Knapik et al. [9] shows that higher-
order pushdown systems generate the same trees as safe higher-order recursion schemes.
Carayol and Wöhrle [2] proved that the ε-contractions of graphs generated by higher-order
pushdown systems are exactly the graphs in the Caucal hierarchy [3]. Thus, all these graphs
have decidable monadic second-order theories.

Even though higher-order pushdown systems generate important classes of graphs, useful
characterizations of their structure are still rare. We still miss techniques for disproving
membership in the pushdown hierarchy. In classical automata theory, pumping lemmas
provide good tools for proving that a language cannot be defined by a finite automaton
or by a pushdown automaton. For indexed languages, which are the languages recognized
by pushdown systems of level 2, we have a pumping lemma of Hayashi [6], and a shrinking
lemma of Gilman [4]. We also have a pumping lemma of Kartzow [7] for collapsible pushdown
systems of level 2. On higher levels, similar results are still missing. Blumensath [1] published
a pumping lemma for all levels of the higher-order pushdown hierarchy. Unfortunately, there
is an irrecoverable error in his proof (cf. [11]).

Our main theorem is the following pumping lemma applicable to every level of the higher-
order pushdown graph hierarchy.

I Theorem 1.1. Let A be a pushdown system of level n, and L a regular language. Let G be
the ε-contraction of the pushdown graph of A; assume that it is finitely branching. Assume
that in G there exists a path of length m from the initial configuration to some configuration

∗ Work partially supported by the Polish Ministry of Science grant nr N N206 567840.

© Paweł Parys;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 54–65

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.54
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Parys 55

c. Let S1 = (m + 1) · CAL and Sj = 2Sj−1 for 2 ≤ j ≤ n, where CAL is a constant which
depends on A and on L. Assume also that in G there exists a path p of length at least Sn,
which starts in c and belongs1 to L. Then there are infinitely many paths in G, which start
in c, belong to L, and end in configurations having the same state as the last configuration
of p.

This theorem is very similar to the pumping lemma proposed in [1]. Namely our Lemma
5.2 is an analogue of Corollary 16 from [1], and our Lemma 5.3 is an analogue of Theorem
61 from [1]; the above theorem (without the part about the regular language L) is obtained
by composing these two lemmas.

Notice also that the bound Sn is n− 1 times exponential in m, while the corresponding
bound in [1] is 3n − 1 times exponential. Thus we obtain a better bound. Moreover, our
bound is optimal, as explained in Section 6. The other difference is that our pumping
preserves a regular property L of the paths, as well as the state of the last configuration.

2 Preliminaries

A pushdown system (PDS for short) of level n is given by a tuple (A,Γ, γI , Q, qI ,∆, λ), where
A is an input alphabet,
Γ is a stack alphabet, and γI ∈ Γ is an initial stack symbol,
Q is a set of states, and qI ∈ Q is an initial state,
∆ ⊆ Q× Γ×Q×OP is a transition relation, where the set OP contains the operations
popk and pushk(α) for 1 ≤ k ≤ n and α ∈ Γ,
λ : ∆→ A ∪ {ε} is a labelling of transitions.

In this paper, the letter n is always used for the level of the pushdown system.
For any alphabet Γ (of stack symbols) we define a k-th level pushdown store (k-pds for

short) as an element of the following set Γk
∗:

Γ0
∗ = Γ,

Γk
∗ = (Γk−1

∗)∗ for 1 ≤ k ≤ n.

In other words, a 0-pds is just a single symbol, and a k-pds for 1 ≤ k ≤ n is a (possibly
empty) sequence of (k − 1)-pds’s. The last element of a k-pds is also called the topmost
one. For any αk ∈ Γk

∗ and αk−1 ∈ Γk−1
∗ we write αk : αk−1 for the k-pds obtained from

αk by placing αk−1 at its end. The operator „:” is assumed to be right associative, i.e.
α2 : α1 : α0 = α2 : (α1 : α0). We say for k ≥ 1 that a k-pds is proper if it is nonempty and
every (k − 1)-pds in it is proper; a 0-pds is always proper.

A configuration of A consists of a state and of a proper n-pds, i.e. it is an element of
Q × Γn

∗ in which the n-pds is proper. The initial configuration consists of the initial state
qI and of the n-pds containing only one 0-pds, which is the initial stack symbol γI . For a
configuration c, its state is denoted by state(c), and its n-pds is denoted by π(c).

Next, for configurations c, d we define when c ` d. Let α be the topmost 0-pds of π(c).
Assume that (state(c), α, state(d), op) ∈ ∆. We have two cases depending on op:

if op = popk then π(d) is obtained from π(c) by replacing its topmost k-pds αk : αk−1

by αk (i.e. we remove the topmost (k − 1)-pds; in particular the topmost k-pds of π(c)
has to contain at least two (k − 1)-pds’s),

1 Formally, the word consisting of labels on that path belongs to L.

STACS’12

56 A Pumping Lemma for Pushdown Graphs of Any Level

if op = pushk(β) then π(d) is obtained from π(c) by replacing its topmost k-pds αk : αk−1

by (αk : αk−1) : αk−1, and then by replacing its topmost 0-pds by β (i.e. we copy the
topmost k-pds, and then we change the topmost symbol in the copy2).

A run is a function w from numbers 0, 1, . . . , l (for some l ≥ 0) to configurations such
that w(i − 1) ` w(i) for 1 ≤ i ≤ l. The number l is called the length of w, and denoted by
|w|. We say that w is a run from w(0) to w(|w|). For 0 ≤ x ≤ y ≤ |w| we can consider the
subrun of w from x to y; this is the run of length y − x which maps i to w(i+ x). For two
runs v, w such that v(|v|) = w(0) we can consider their composition; this is the run of length
|v|+ |w| which maps i ≤ |v| to v(i), and i > |v| to w(i− |v|). We say that a configuration d
is reachable from a configuration c if there exists a run w from c to d.

The pushdown graph of A, denoted by PDG(A), is the directed graph consisting of
configurations of A reachable from the initial configuration; there is an edge from a config-
uration c to a configuration d when c ` d. To each edge of PDG(A) we can assign a label
from A ∪ {ε} in the following way. Let c, d be configurations such that c ` d. Notice that
the transition δ ∈ ∆ used between c and d (in the definition of `) is uniquely determined.
We label the edge from c to d by λ(δ). A run of A can also be interpreted as a path in
PDG(A), so it makes sense to talk about edges of a run, and about labels of these edges.

We define the ε-contraction of PDG(A), denoted by PDG(A)/ε, which is a directed
multigraph.3 Its vertices are the initial configuration cI , and configurations d such that
there is a run from cI to d in which the last edge is labelled by an element of A (i.e. not by
ε). In PDG(A)/ε there is an edge from c to d labelled by a ∈ A when in PDG(A) there is
a path from c to d whose edges except the last one are labelled by ε, and the last edge is
labelled by a. We say that PDG(A)/ε is finitely branching if from each of its nodes there
are only finitely many outgoing edges.

A position is a vector x = (xn, xn−1, . . . , x1) of n positive integers. The symbol on
position x in configuration c (which is an element of Γ) is defined as follows: we take the
xn-th (from the bottom) (n − 1)-pds of π(c), then its xn−1-th (n − 2)-pds, and so on. We
say that x is a position of c, if at position x there is a symbol in c.

For 0 ≤ k ≤ n, by topk(c) we denote the position of the bottommost symbol of the
topmost k-pds of c. In particular top0(c) is the position of the topmost symbol in c.

For any run w, indices 0 ≤ a ≤ b ≤ |w|, and a position y of w(b), we define a position
histw(b, y)(a). It is y when b = a. It is y also when b = a + 1, and the operation between
w(a) and w(b) is popk, as well as when the operation is pushk and y is not in the topmost
(k−1)-pds of w(b). If the operation between w(a) and w(b) is pushk and y is in the topmost
(k − 1)-pds of w(b), then histw(b, y)(a) is the position of w(a) from which a symbol was
copied to y (i.e. this is y with the (n−k+1)-th coordinate decreased by 1). When b > a+1,
histw(b, y)(a) is defined (by induction) as histw(a+1, histw(b, y)(a+1))(a). In other words,
histw(b, y)(a) is the (unique) position of w(a), from which the symbol was copied to y in
w(b).

For 0 ≤ k ≤ n, a run w, and an index 0 ≤ b ≤ |w| we define a set prek
w(b) consisting

of all indices a for which 0 ≤ a ≤ b and histw(b, topk(w(b)))(a) = topk(w(a)). Intuitively,
a ∈ prek

w(b) means that the topmost k-pds of w(b) „comes from” the topmost k-pds of w(a),

2 In the classical definition the topmost symbol can be changed only when k = 1 (for k ≥ 2 it has to be
β = α). Notice however that our theorems, true for every PDS, are in particular true for such restricted
PDS’s. On the other hand, it is not difficult to see that for any PDS A of level n there exists a PDS
B of level n of this restricted form such that graphs PDG(A)/ε and PDG(B)/ε are isomorphic.

3 In this graph, unlike in PDG(A), we can have multiple edges between two nodes, each labeled by a
different symbol.

P. Parys 57

in the sense that the topmost k-pds of w(b) is a copy of the topmost k-pds of w(a), but
possibly some changes were done to it.

Example. Consider a PDS of level 3. Below, brackets are used in descriptions of pds’s
as follows: symbols taken in brackets form one 1-pds, 1-pds’s taken in brackets form one
2-pds, and 2-pds’s taken in brackets form one 3-pds. Consider a run w of length 6 in which
π(w(0)) = [[[ab]]] and the operations between consecutive configurations are:

push2(c), push3(d), pop1, push3(e), pop2, pop3.

The contents of the 3-pds’s of the configurations in the run, and the pre sets, are presented
in the table below.

i π(w(i)) pre0
w(i) pre1

w(i) pre2
w(i) pre3

w(i)
0 [[[ab]]] {0} {0} {0} {0}
1 [[[ab][ac]]] {0, 1} {0, 1} {0, 1} {0, 1}
2 [[[ab][ac]][[ab][ad]]] {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
3 [[[ab][ac]][[ab][a]]] {3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3}
4 [[[ab][ac]][[ab][a]][[ab][e]]] {3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
5 [[[ab][ac]][[ab][a]][[ab]]] {0, 5} {0, 5} {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5}
6 [[[ab][ac]][[ab][a]]] {3, 6} {0, 1, 2, 3, 6} {0, 1, 2, 3, 6} {0, 1, 2, 3, 4, 5, 6}

In configuration w(0) symbol a is on position (1, 1, 1) and symbol b is on position (1, 1, 2).
We have

histw(2, (2, 2, 1))(1) = (1, 2, 1) and histw(2, (2, 2, 1))(0) = (1, 1, 1).

Notice that positions y in w(b) and histw(b, y)(a) in w(a) not necessarily contain the same
symbol, for example on position (1, 2, 2) in w(1) we have c, and on position (1, 1, 2) in w(0)
we have b, but histw(1, (1, 2, 2))(0) = (1, 1, 2).

Easy properties. The following two propositions follow immediately from the definitions.
These properties are often used implicitly later.

I Proposition 2.1. Let w be a run, let 0 ≤ k ≤ n, and let 0 ≤ a ≤ b ≤ c ≤ |w|. Then
prek

w(b) ⊆ prek+1
w (b) (for k < n), and

a ∈ prek
w(b) and b ∈ prek

w(c) implies a ∈ prek
w(c), and

{a, b} ⊆ prek
w(c) implies a ∈ prek

w(b).

I Proposition 2.2. Let w be a run, let 1 ≤ k ≤ n, and let 0 ≤ a ≤ b ≤ |w| be such that
a ∈ prek

w(b). Then a ∈ prek−1
w (b) if and only if, for all a ≤ i ≤ b, the size of the k-pds of

w(i) containing histw(b, topk(w(b)))(i) is not smaller than the size of the topmost k-pds of
w(a).

3 Types of configurations

Let A = (A,Γ, γI , Q, qI ,∆, λ) be a PDS of level n. Below we define a function typeA which
assigns to every configuration of A an element of a finite set TA. The important properties
of the typeA function are listed below, in the three facts.

I Fact 3.1. Let A be a PDS of level n. Let w be a run of A such that 0 ∈ pre0
w(|w|), and

let c be a configuration such that typeA(w(0)) = typeA(c). Then there exists a run v from c

such that

STACS’12

58 A Pumping Lemma for Pushdown Graphs of Any Level

1. if π(w(0)) 6= π(w(|w|)) then π(v(0)) 6= π(v(|v|)), and
2. 0 ∈ pre0

v(|v|), and
3. all edges of w are labelled by ε if and only if all edges of v are labelled by ε, and
4. typeA(w(|w|)) = typeA(v(|v|)).

I Fact 3.2. Let A be a PDS of level n. Let w be a run of A such that at least one of its
edges is not labelled by ε, and the position top0(w(0)) is present in every configuration of w.
Let c be a configuration such that typeA(w(0)) = typeA(c). Then there exists a run v from
c such that at least one of its edges is not labelled by ε, and the position top0(c) is present
in every configuration of v.

I Fact 3.3. Let A be a PDS of level n. Let w be a run of A, and let c be a configuration such
that typeA(w(0)) = typeA(c). Then there exists a run v from c such that state(v(|v|)) =
state(w(|w|)).

Before we define types of configurations, we define types of k-pds’s, for each k. The main
idea is that we have to characterize special kind of runs, called k-returns, as well as runs as
described by Facts 3.2 and 3.3.

I Definition 3.4. Let 1 ≤ r ≤ n, and let w be a run. We say that w is an r-return if
the topmost r-pds of w(0) contains at least two (r − 1)-pds’s, and
histw(|w|, topr−1(w(|w|)))(0) is the bottommost position of the (r − 1)-pds just below
the topmost (r − 1)-pds of w(0), and
prer−1

w (|w|) = {|w|}.

In other words, w is an r-return when the topmost r-pds of w(|w|) is obtained from the
topmost r-pds of w(0) by removing its topmost (r − 1)-pds (but not only in the sense of
contents, but we require that really it was obtained this way). In particular we have the
following proposition.

I Proposition 3.5. Let w be an r-return. Then the topmost r-pds of w(0) after removing
its topmost (r − 1)-pds is equal to the topmost r-pds of w(|w|).

Example. Consider a PDS of level 2, and a run w of length 6 in which π(w(0)) = [[ab][cd]],
and the operations between consecutive configurations are:

push2(e), pop1, pop2, pop1, push1(d), pop1.

The contents of the 2-pds’s of the configurations in the run are presented in the table below.

i 0 1 2 3 4 5 6
π(w(i)) [[ab][cd]] [[ab][cd][ce]] [[ab][cd][c]] [[ab][cd]] [[ab][c]] [[ab][cd]] [[ab][c]]

The subruns of w from 0 to 2, from 0 to 4, from 1 to 2, from 3 to 4, and from 5 to 6 are
1-returns; the subruns of w from 1 to 3, and from 2 to 3 are 2-returns. These are the only
subruns of w being returns, in particular w is not a 1-return because 4 ∈ pre0

w(6).

We are going to define a type of a k-pds for each 0 ≤ k ≤ n. A set of possible level-k types
(types of k-pds’s) will be denoted by T k. We also define a set Dk; its elements correspond
to kinds of runs (this correspondence is formalized in the “agrees with” notion).

P. Parys 59

I Definition 3.6. We define T k (where 0 ≤ k ≤ n) by induction on k, going down from
k = n to k = 0. Let 0 ≤ k ≤ n. Assume we have already defined sets T i for k + 1 ≤ i ≤ n.
We take

Dk = Q∪
n⋃

r=k+1
{r}×

(
{non-ε}∪

(
{0, 1}×P(T n)×P(T n−1)×· · ·×P(T r+1)×Q×{0, 1}

))
,

T k = P(T n)× P(T n−1)× · · · × P(T k+1)×Q×Dk,

where by P(X) we denote the power set of X (the set of all subsets of X).

I Definition 3.7. We define type(αk) ⊆ T k for a k-pds αk (where 0 ≤ k ≤ n) by induction
on k, going down from k = n to k = 0. Let 0 ≤ k ≤ n. Assume we have already defined
sets type for i-pds’s for k + 1 ≤ i ≤ n.
1. Let t = (r, f, ξn, ξn−1, . . . , ξr+1, q, g) ∈ Dk, and let w be a run. Decompose π(w(|w|)) =

βn : βn−1 : · · · : βr. We say that w agrees with t if
w is an r-return, and
each edge of w is labelled by ε if and only if f = 0, and
type(βi) = ξi for r + 1 ≤ i ≤ n, and
q = state(w(|w|)), and
π(w(|w|)) can be obtained from π(w(0)) by removing its topmost (r − 1)-pds if and
only if g = 0.

2. We say that a run w agrees with (r, non-ε) ∈ Dk if at least one edge of w is labelled by
an element of A, and position topr−1(w(0)) is present in every configuration of w.

3. We say that a run w agrees with q ∈ Dk ∩Q if state(w(|w|)) = q.
4. Let t = (ρn, ρn−1, . . . , ρk+1, p, t′) ∈ T k, and let αk be a k-pds. We say that t ∈ type(αk)

if the following is true.

For k + 1 ≤ i ≤ n, let αi be an i-pds such that type(αi) = ρi. Then there exists a
run from (p, αn : αn−1 : · · · : αk) which agrees with t′.

In point 4 of the above definition we mean that for all appropriate αk+1, αk+2, . . . , αn

the run exists (and not that there exist appropriate αk+1, αk+2, . . . , αn such that the run
exists). However in fact the „there exists” variant would be equivalent; this is described by
the following lemma, which is the main technical result about types.

I Lemma 3.8. Let 0 ≤ k ≤ n, let t ∈ Dk, and let w be a run which agrees with t. Decompose
π(w(0)) = αn : αn−1 : · · · : αk. Then

(type(αn), type(αn−1), . . . , type(αk+1), state(w(0)), t) ∈ type(αk).

The proof of this lemma is tedious but rather straightforward. Finally, we define types
of configurations.

I Definition 3.9. Let TA = P(T n)×P(T n−1)× · · · × P(T 1)× Γ×Q. For a configuration
c = (q, αn : αn−1 : · · · : α0), let

typeA(c) = (type(αn), type(αn−1), . . . , type(α1), α0, q).

Using Lemma 3.8 it is not difficult to show that Facts 3.1–3.3 for such definition of a
type.

STACS’12

60 A Pumping Lemma for Pushdown Graphs of Any Level

4 Pumping of pushdown graphs

The following technical lemma describes how pushdown graphs can be pumped.

I Lemma 4.1. Let A be a PDS of level n, let 0 ≤ k ≤ n, let w be a run of A, and let
G ⊆ prek

w(|w|)− {|w|}. Let αk be the k-pds of w(0) containing histw(|w|, topk(w(|w|)))(0).
For 1 ≤ j ≤ k, let rj be the maximum of the sizes of the j-pds’s in αk. Define

N0 = |TA|+ 1 and Nj = rj · 2Nj−1 for 1 ≤ j ≤ k.

Assume that |G| ≥ Nk. Then there exist indices 0 ≤ x < y < z ≤ |w| such that
1. typeA(w(x)) = typeA(w(y)), and
2. x ∈ pre0

w(y) and y ∈ prek
w(|w|), and

3. either π(w(x)) 6= π(w(y)), or G ∩ {x, x+ 1, . . . , y − 1} 6= ∅, and
4. z − 1 ∈ G and top0(w(y)) is present in every configuration of the subrun of w from y to

z.

Let us comment on the statement of this lemma. The essence of the lemma is that in
every appropriately long run one can find indices x, y such that typeA(w(x)) = typeA(w(y))
and x ∈ pre0

w(y). Notice that the notion “appropriately long” depends on the size of the
stack in w(0): when one starts from a bigger stack, we require a longer run. Then Fact
3.1 can be applied to the fragment of w between x and y, so this fragment can be pumped
(repeated forever). The lemma is more complicated for technical reasons. The problem is
that pumping any fragment of a run is not interesting enough. For example the fragment
between x and y can be a loop doing nothing; we are not satisfied with finding such a loop.
For this reason we have introduced the set G of “good” indices, and we assume that this set
is big enough. Our goal is to have some element of G in the fragment between x and y (the
second variant of condition 3). However this is not always possible, and we sometimes get
the first variant of condition 3; the intuition is that then we can show (using also index z)
that the graph has to be infinitely branching.

The above lemma is proved by induction on k. For k = 0 we have |G| ≥ |TA| + 1 and
there are only |TA| possible values of typeA, so there exist two indices x, y ∈ G such that
x < y and typeA(w(x)) = typeA(w(y)) (we get condition 1). By assumption we know that
x, y ∈ pre0

w(|w|); this implies that x ∈ pre0
w(y) (we get condition 2). We have condition 3

because x ∈ G. We take z = y + 1. We have z − 1 ∈ G. Because y ∈ pre0
w(|w|), position

top0(w(y)) is present in w(z) (we get condition 4).
For k > 0 we make the induction step using the following lemma about sequences

of integers. For 0 ≤ i ≤ |w| as ai we take the size of the k-pds of w(i) containing
histw(|w|, topk(w(|w|)))(i).

I Lemma 4.2. Let N ≥ 1 be a natural number, let a0, a1, . . . , aM be a sequence of positive
integers such that |ai − ai−1| ≤ 1 for 1 ≤ i ≤ M . Let G ⊆ {0, 1, . . . ,M − 1} be such that
|G| ≥ a0 · 2N . Then there exist two indices b, e such that 0 ≤ b < e ≤M and e− 1 ∈ G, and
1. for each i such that b ≤ i ≤ e we have ai ≥ ab, and
2. for each i such that 0 ≤ i ≤ b− 1 we have ai ≥ ab + 1, and
3. |Hb,e| ≥ N , where

Hb,e = {i : b ≤ i ≤ e− 1 ∧ ∀j(i ≤ j ≤ e⇒ aj ≥ ai) ∧
∧ ∃g∈G(g ≥ i ∧ ∀j(i+ 1 ≤ j ≤ g ⇒ aj ≥ ai + 1))}.

P. Parys 61

5 Finitely branching ε-contractions of pushdown graphs

In this section we show how finitely branching ε-contractions of pushdown graphs can be
pumped; we prove Theorem 1.1. First we give an auxiliary lemma, which describes how the
assumption about finite branching can be used. Then we have two lemmas, which are then
composed together into Theorem 1.1. Lemma 5.2 tells us that a short run from the initial
configuration cannot finish in a configuration having a big stack. Lemma 5.3 is similar to
Theorem 1.1, but instead of assuming that a configuration can be reached with a short run
from the initial configuration, we assume that its stack is small (and this assumption will
be then satisfied thanks to Lemma 5.2).

I Lemma 5.1. Let A be a PDS of level n, let w be a run of A such that w(0) is reachable
from the initial configuration, and let 0 ≤ x < y ≤ |w|−1 be indices such that typeA(w(x)) =
typeA(w(y)), and x ∈ pre0

w(y), and π(w(x)) 6= π(w(y)). Assume that top0(y) is present in
every configuration of the subrun of w from y to |w|. Assume also that every edge of w
between x and y is labelled by ε, and at least one edge of w between y and |w| is not labelled
by ε. Then PDG(A)/ε is not finitely branching.

Proof. Without loss of generality, we assume that w begins in the initial configuration; we
can obtain such a situation by appending before w any run from the initial configuration to
w(0), and appropriately shifting x and y. Let g be the smallest index (0 ≤ g ≤ x) such that
every edge between g and x is labelled by ε. Then w(g) is a node of PDS(A)/ε.

We want to create a sequence of runs v1, v2, v3, . . . such that for each i ≥ 1 we have
a) v1(0) = w(x) and vi(0) = vi−1(|vi−1|) for i > 1, and
b) π(vi(0)) 6= π(vi(|vi|)), and
c) 0 ∈ pre0

vi
(|vi|), and

d) every edge of vi is labelled by ε, and
e) typeA(vi(0)) = typeA(vi(|vi|)).
As v1 we can take the subrun of w from x to y. Assume that we already have vi for some
i ≥ 1. We use Fact 3.1 for vi (as w) and vi(|vi|) (as c); thanks to properties c) and e) its
assumptions are satisfied. We obtain a run vi+1 from vi(|vi|). Conditions 1–4 of the fact
immediately give us conditions b–e for vi+1.

Notice, for each i ≥ 1, that because 0 ∈ pre0
vi

(|vi|) and π(vi(0)) 6= π(vi(|vi|)), position
top0(vi(|vi|)) (which is top0(vi+1(0))) is lexicographically greater than top0(vi(0)). Thus
every top0(vi(0)) is different.

For every i ≥ 1 we do the following. From condition e) and from typeA(w(x)) =
typeA(w(y)) we know that typeA(vi(0)) = typeA(w(y)). We use Fact 3.2 for the subrun
of w from y to |w| (as w), and for vi(0) (as c). We obtain a run ui from vi(0) such that at
least one of its edges is not labelled by ε, and position top0(vi(0)) is present in every config-
uration of ui. We can assume that only the last edge of ui is not labelled by ε (we obtain
this situation by cutting ui after the first edge not labelled by ε). Now compose the subrun
of w from g to x, runs v1, v2, . . . , vi−1, and run ui. We obtain a run from w(g) such that
only its last edge is not labelled by ε. Thus ui(|ui|) is a successor of w(g) in PDG(A)/ε, in
which position top0(vi(0)) is present. As each position top0(vi(0)) is different, they cannot
be all present in only finitely many configurations, so among ui(|ui|) there are infinitely
many different configurations. This means that PDG(A)/ε is not finitely branching. J

I Lemma 5.2. Let A be a PDS of level n such that PDG(A)/ε is finitely branching. Let
w be a run which begins in the initial configuration, and whose last edge is not labelled by ε.

STACS’12

62 A Pumping Lemma for Pushdown Graphs of Any Level

Let m be the number of edges of w not labelled by ε. Let

M1 = (m+ 1) · (|TA|+ 1) and Mj = 2Mj−1 for 2 ≤ j ≤ n.

Then, for 1 ≤ k ≤ n, the size of any k-pds of w(|w|) is at most Mk.

Proof. Induction on m. Notice that m ≥ 1. Define

M ′1 = m · (|TA|+ 1) and M ′j = 2M ′j−1 for 2 ≤ j ≤ n.

Let b be the index such that the (m− 1)-st edge of w not labelled by ε is between w(b− 1)
and w(b); if m = 1 we take b = 0. From the induction assumption, used for the subrun of w
from 0 to b, we know, for 1 ≤ k ≤ n, that the size of any k-pds of w(b) is at most M ′k. This
is also true for m = 1, as M ′k ≥ 1.

Assume that for some k (1 ≤ k ≤ n) the size of some k-pds of w(|w|) is greater than Mk.
Let s be the bottommost position of such a k-pds. Let v be the subrun of w from b to |w|.
For 0 ≤ i ≤ |v|, let ai be the size of the k-pds of v(i) containing histv(|v|, s)(i). We have
a|v| ≥Mk and a0 ≤M ′k. Of course |ai−1 − ai| ≤ 1 for 1 ≤ i ≤ |v|. Let

G = {i : 0 ≤ i ≤ |v| − 1 ∧ ∀j(i+ 1 ≤ j ≤ |v| ⇒ aj ≥ ai + 1)}.

Notice that |G| ≥ Mk −M ′k, as for each j such that M ′k ≤ j ≤ Mk − 1 in G we have the
last index i such that ai = j. Let e be the greatest index such that e− 1 ∈ G; let v′ be the
subrun of v from 0 to e. Define

N0 = |TA|+ 1 and Ni = M ′i · 2Ni−1 for 1 ≤ i ≤ k − 1.

We are going to use Lemma 4.1 for k − 1 (as k), for the run v′ (as w), and for G. We
have to check that its assumptions are satisfied. We need to check that G ⊆ prek−1

v (e).
Because only the topmost k-pds can change its size, and ai 6= ai+1 for i ∈ G, it follows that
histv(|v|, s)(i) = topk(v(i)) for i ∈ G ∪ {e}, which means that G ⊆ prek

v(e). As additionally
aj ≥ ai for i ∈ G, i ≤ j ≤ |v|, from Proposition 2.2 we get G ⊆ prek−1

v (e), as required. We
also need to check that G has enough elements; this is a straightforward calculation.

From Lemma 4.1 we obtain indices 0 ≤ x < y < z ≤ e such that
1. typeA(v(x)) = typeA(v(y)), and
2. x ∈ pre0

v(y), and
3. either π(v(x)) 6= π(v(y)), or G ∩ {x, x+ 1, . . . , y − 1} 6= ∅, and
4. z− 1 ∈ G and top0(v(y)) is present in every configuration of the subrun of v from y to z.

Is it possible that π(v(x)) = π(v(y))? As additionally x ∈ pre0
v(y) (condition 2), this

would mean that for every position p in v(y) we have histv(y, p)(x) = p (between v(x) and
v(y) some new fragments of the n-pds were added and then removed; it is impossible that
we have first removed something and then reproduced it). In particular ax and ay describe
the size of the same k-pds, so ax = ay. Moreover ai ≥ ax for x ≤ i ≤ y. But condition
3 implies that there is some g ∈ G ∩ {x, x + 1, . . . , y − 1}. This is impossible, as we have
ay ≥ ag + 1 (by definition of G), and ag ≥ ax, which means that ax 6= ay. Thus we always
have π(v(x)) 6= π(v(y)).

Because z−1 ∈ G, we have az−1 6= az, so since only the topmost k-pds can change its size,
we know that histv(|v|, s)(z) = topk(v(z)). Additionally ai ≥ az = az−1 + 1 for z ≤ i ≤ |v|
(by definition of G), which means that topk−1(v(z)) is present in every configuration of the
subrun of v from z to |v|. Since top0(v(y)) is present in v(z − 1) (condition 4), we know
that top0(v(y)) is (lexicographically) below topk−1(v(z)), so one cannot remove top0(v(y))

P. Parys 63

without removing topk−1(v(z)). It follows that top0(v(y)) is present in every configuration
of the subrun of v from y to |v|.

Recall also that the last edge of v is not labelled by ε, and all earlier edges are labelled
by ε. So every edge of v between x and y is labelled by ε, and at least one edge of v between
y and |v| is not labelled by ε. Thus the assumptions of Lemma 5.1 (where v is taken as w)
are satisfied. We get that PDG(A)/ε is not finitely branching, which contradicts with our
assumption. J

I Lemma 5.3. Let A be a PDS of level n such that PDG(A)/ε is finitely branching, and let
w be a run of A such that w(0) is reachable from the initial configuration. For 1 ≤ j ≤ n,
let rj be the maximum of the sizes of j-pds’s of w(0). Define

N0 = |TA|+ 1 and Nj = rj · 2Nj−1 for 1 ≤ j ≤ n.

Assume that at least Nn edges of w are not labelled by ε. Then for each j ∈ N there exist a
run wj from w(0) which has at least j edges not labelled by ε, and such that state(wj(|wj |)) =
state(w(|w|)).

Proof. Let G be the set of indices i (0 ≤ i ≤ |w| − 1) such that the edge between w(i) and
w(i+1) is not labelled by ε. We use Lemma 4.1 for n (as k), for run w, and set G. Of course
G ⊆ pren

w(|w|), as pren
w(|w|) by definition contains all numbers from 0 to |w|. We also have

|G| ≥ Nn, which is the required size. From the lemma we obtain indices 0 ≤ x < y < z ≤ |w|
such that
1. typeA(w(x)) = typeA(w(y)), and
2. x ∈ pre0

w(y), and
3. either π(w(x)) 6= π(w(y)), or G ∩ {x, x+ 1, . . . , y − 1} 6= ∅, and
4. z − 1 ∈ G and top0(w(y)) is present in every configuration of the subrun of w from y to

z.

Assume first that every edge of w between x and y is labelled by ε. By condition 3 we
see that π(w(x)) 6= π(w(y)). Notice also that at least one edge of w between y and z is
not labelled by ε, namely the last edge (as z − 1 ∈ G). The assumptions of Lemma 5.1
are satisfied; we get that PDG(A)/ε is not finitely branching, which contradicts with our
assumption. Thus at least one edge of w between x and y is not labelled by ε.

We want to create a sequence of runs v1, v2, v3, . . . beginning at w(x) such that for each
j ≥ 1 we have
a) 0 ∈ pre0

vj
(|vj |), and

b) at least j edges of vj are not labelled by ε, and
c) typeA(vj(0)) = typeA(vj(|vj |)).
As v1 we can take the subrun of w from x to y. Assume that we already have vj for some
j ≥ 1. We use Fact 3.1 for vj (as w) and vj(|vj |) (as c); thanks to properties a) and c) its
assumptions are satisfied. We obtain a run v from vj(|vj |). Let vj+1 be the composition of
runs vj and v. Condition 2 of the fact says that 0 ∈ pre0

v(|v|); together with 0 ∈ pre0
vj

(|vj |)
it gives us that 0 ∈ pre0

vj+1
(|vj+1|). Condition 3 of the fact says that at least one edge of v

is not labelled by ε; thus at least j + 1 edges of vj+1 are not labelled by ε. Condition 4 of
the fact says that typeA(v(0)) = typeA(v(|v|)); thus typeA(vj+1(0)) = typeA(vj+1(|vj+1|)).

Next, we use Fact 3.3 for the subrun of w from y to |w| and for vj(|vj |); we obtain a
run v′j from vj(|vj |) such that state(v′j(|v′j |)) = state(w(|w|)). Finally, as wj we take the
composition of the subrun of w from 0 to x with run vi and with run v′i; this run satisfies
the thesis of the lemma. J

STACS’12

64 A Pumping Lemma for Pushdown Graphs of Any Level

Proof (Theorem 1.1). First we consider the following special case. Assume that the lan-
guage L contains all words. Assume also that the set of states of A is of the form Q×{0, 1},
and a transition is labelled by ε if and only if it leads to a state with 0 on the second
coordinate. Then we take CAL = 3 · (|TA| + 1) · 2|TA|+1. Because in PDG(A)/ε we have
a path of length m from the initial configuration to c, there exists a run w from the initial
configuration to c such that exactly m of its edges are not labelled by ε, in particular the
last one. Let

M1 = (m+ 1) · (|TA|+ 1) and Mj = 2Mj−1 for 2 ≤ j ≤ n.

By Lemma 5.2 we know, for 1 ≤ k ≤ n, that the size of any k-pds of c is at most Mk. Let

N0 = |TA|+ 1 and Nj = Mj · 2Nj−1 for 1 ≤ j ≤ n.

A straightforward calculation proves that Sn ≥ Nn. Because in PDG(A)/ε we have a path
of length Sn starting at c, there exists a run v starting at c such that at least Sn ≥ Nn of its
edges are not labelled by ε. We use Lemma 5.3 for the run v (as w). It says that there exist
runs wj from c having arbitrarily many edges not labelled by ε, and such that wj(|wj |) and
w(|w|) have the same state. Since one state is reached either only by ε-transitions or only
by non-ε-transitions, the last edge of wj is not labelled by ε, because the last edge of w was
not labelled by ε. It means that there are arbitrarily many paths in PDG(A)/ε starting at
c, and ending in configurations with state state(w(|w|)).

Next, consider a situation where A is arbitrary, but L still contains all words. Then
we convert A to A′ having the above form. We simply product the states Q of A by
{0, 1}; for every transition δ = (q1, γ, q2, op) of A, in A′ we have, for i = 0, 1, transitions
((q1, i), γ, (q2, 0), op) if λ(δ) = ε, or ((q1, i), γ, (q2, 1), op) otherwise. The initial state gets 1
on the second coordinate. Notice that only configurations having 1 on the second coordinate
are in PDG(A′)/ε. Moreover there is an edge between two configurations in PDG(A)/ε if
and only if there is an edge between corresponding (obtained by putting 1 on the second
coordinate of the state) configurations in PDG(A′)/ε. So the two graphs are isomorphic,
thus the theorem for one of them immediately implies the theorem for the other.

For an arbitrary language L and arbitrary PDS A the theorem is true, because we can
make a product of A with a finite automaton recognizing L. J

6 Example application

Let ϕ : N → N be an unbounded function. Let fϕ
1 (x) = x · ϕ(x) and fϕ

k+1(x) = 2fϕ
k

(x) for
k ≥ 1. Consider the tree Tϕ

n whose nodes are

{0i1j : i ≥ 0, j ≤ fϕ
n (i+ 2) + 1},

and a node w is connected with a node wa by an edge labelled by a (where w is a word
and a ∈ {0, 1} is a letter). This tree is not isomorphic to the ε-contraction of any pushdown
graph of level n.

Heading for a contradiction, assume that Tϕ
n is isomorphic to PDG(A)/ε for some push-

down system A of level n. In this isomorphism, the empty word in Tϕ
n has to correspond

to the initial configuration (as it is the only configuration which can have no predecessors).
Choose i ∈ N such that ϕ(i+ 2) ≥ CAL (where CAL is the constant from Theorem 1.1, for
L = {0, 1}∗). Let c be the configuration corresponding to 0i1, and d the configuration cor-
responding to 0i1fϕ

n (i+2)+1. We use Theorem 1.1 for the path from the initial configuration

P. Parys 65

to c and for the path from c to d; their length is, respectively, i+ 1 and fϕ
n (i+ 2) (which is

greater or equal to Sn from the theorem). Thus we obtain infinitely many paths starting in
0i1, which contradicts the definition of Tϕ

n .
On the other hand it is known that when the function ϕ is constant, then tree Tϕ

n is
isomorphic to PDG(A)/ε for some pushdown system A. See e.g. [1], Example 9, where a
very similar pushdown system is constructed. In this sense the length required in Theorem
1.1 is the smallest possible: Sn has to be n− 1 times exponential in m.

7 Future work

As a continuation of this work, we have recently [8] generalized Theorem 1.1 to collapsible
pushdown systems. Collapsible pushdown systems are an extension of higher-order push-
down systems, in which an additional operation, called collapse, can be performed. Trees
generated by these systems correspond to all higher-order recursion schemes [5], not only to
safe ones.

Our pumping lemma talks only about the length of paths, and about a regular condition
on the labels on them, hence its applications are rather limited. It would be useful to show a
pumping lemma which describes more precisely how the new paths (as sequences of labels)
can be constructed from the original paths, similarly to the classical pumping lemma for
finite automata or pushdown automata.

Acknowledgement. I would like to thank Alexander Kartzow for many useful comments.

References
1 Achim Blumensath. On the structure of graphs in the caucal hierarchy. Theor. Comput.

Sci., 400(1-3):19–45, 2008.
2 Arnaud Carayol and Stefan Wöhrle. The caucal hierarchy of infinite graphs in terms of

logic and higher-order pushdown automata. In FSTTCS, pages 112–123. Springer, 2003.
3 Didier Caucal. On infinite terms having a decidable monadic theory. In Krzysztof Diks

and Wojciech Rytter, editors, MFCS, volume 2420 of Lecture Notes in Computer Science,
pages 165–176. Springer, 2002.

4 Robert H. Gilman. A shrinking lemma for indexed languages. Theor. Comput. Sci.,
163(1&2):277–281, 1996.

5 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible
pushdown automata and recursion schemes. In LICS, pages 452–461. IEEE Computer
Society, 2008.

6 Takeshi Hayashi. On derivation trees of indexed grammars. Publ. RIMS, Kyoto Univ.,
9:61–92, 1973.

7 Alexander Kartzow. A pumping lemma for collapsible pushdown graphs of level 2. In
Marc Bezem, editor, CSL, volume 12 of LIPIcs, pages 322–336. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2011.

8 Alexander Kartzow and Paweł Parys. Strictness of the collapsible pushdown hierarchy. In
preparation, 2012.

9 Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are
easy. In Mogens Nielsen and Uffe Engberg, editors, FoSSaCS, volume 2303 of Lecture Notes
in Computer Science, pages 205–222. Springer, 2002.

10 A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl.,
15:1170–1174, 1974.

11 Paweł Parys. The pumping lemma is incorrect? Unpublished, 2010.

STACS’12

	Introduction
	Preliminaries
	Types of configurations
	Pumping of pushdown graphs
	Finitely branching -contractions of pushdown graphs
	Example application
	Future work

