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—— Abstract

Queueing networks are gaining attraction for the performance analysis of parallel computer sys-
tems. A Jackson network is a set of interconnected servers, where the completion of a job at
server ¢ may result in the creation of a new job for server j. We propose to extend Jackson
networks by “branching” and by “control” features. Both extensions are new and substantially
expand the modelling power of Jackson networks. On the other hand, the extensions raise com-
putational questions, particularly concerning the stability of the networks, i.e, the ergodicity of
the underlying Markov chain. We show for our extended model that it is decidable in polyno-
mial time if there exists a controller that achieves stability. Moreover, if such a controller exists,
one can efficiently compute a static randomized controller which stabilizes the network in a very
strong sense; in particular, all moments of the queue sizes are finite.
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1 Introduction

Queueing theory plays a central role in the performance analysis of computer systems. In
particular, queueing networks are gaining attraction as models of parallel systems. A queueing
network is a set of processing units (called servers), each of which performs tasks (called
jobs) of a certain type. Each server has its own queue of jobs waiting to be processed. The
successful completion of a job may trigger one (or more) new jobs (of possibly different type)
that need to be processed as well. In addition to this “internal” job creation, so-called open
queueing networks allow for new jobs to arrive “externally”, i.e., from outside.

Queueing networks are a popular model for both hardware and software systems because
of their simplicity and generality. On the hardware side, queueing networks can, e.g., be used
for modeling multi-core processors, see e.g. [28] and the references in [8]. One advantage of
queueing-based analyses is their scalability with growing parallelism; e.g., it is said in [20]:
“Cycle-accurate full-system performance simulators do not scale well beyond a few tens of
processor cores at best. As such, analytical models based on the theory of queueing systems,
are a logical choice for developing a basic understanding of the fundamental tradeoffs in
future, large-scale multi-core systems.” On the software side, queueing networks are used for
modeling message passing. It is said in [27]: “Two natural classes of systems can be modeled
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using such a framework: asynchronous programs on a multi-core computer and distributed
programs communicating on a network.” Of course, the realm of queueing networks stretches
far beyond computer science, see [3, 7].

The simplest queueing networks are so-called Jackson networks [15]: Given two servers
i,7 € {1,...,n}, there is a “rule” of the form ¢ L, J which specifies the probability p;; that
the completion of an -job results in the creation of a j-job. There are also rules ¢ LY e
where pjop=1->" ; Dij specifies the probability that no new job is created. Each server ¢ has
a rate p; with which an i-job is processed if there is one. In addition, there is a rate a; with
which i-jobs arrive from outside the network. The processing times and the external arrivals
are exponentially distributed, so that a Jackson network describes a continuous-time Markov
chain (CTMC). It was shown in Jackson’s paper [15] that if the rate A; of internal and
external arrivals at server i is less than pu; for all 4, then the network is stable, i.e., the average
queue length is finite and almost surely all queues are empty infinitely often. Moreover,
Jackson networks allow a product form, i.e., the steady-state distribution of the queue lengths
can be expressed as a product of functions 7;(k), where ;(k) is the steady-state probability
that queue ¢ has length k.

» Example 1 (network processor). In [1], Jackson networks are used to model network
processors, i.e., chips that are specifically targeted at networking applications—think of a
router. We describe the model from [1] (sections 4.1 and 4.2, slightly adapted). Before
packets are processed in the “master processor” M, they pass through the “data plane” D,
from which a fraction ¢ of packets needs to be processed first in the “control plane” C"

DM DA CcAM O M«

An “arrival manager” A sends some packets (fraction dy) directly to D, but others (frac-
tions dy, . ..,d, with dg+d; +---+d,, = 1) are sent to “slave processors” Si, ..., S, to assist
the master. Some packets (fraction b) still need the attention of the master after having been
processed by a slave:

AL p  adis s A5D s <R ie. n).

Jackson networks and their extensions have been thoroughly studied, but they are
restricted in their modelling capabilities, as (i) the completion of a job may trigger at
most one job, and (ii) there is no nondeterminism that would allow to control the output
probabilities of a server. Considering (i), it seems unnatural to assume that a distributed
program communicating on a network produces at most one message at the end of its
computation. Considering (ii), the “arrival manager” A in Example 1 may want to flexibly
pass incoming packets to the master or one of the slaves, possibly depending on the current
load. These restrictions have not been fully addressed, not even in isolation. In this paper we
introduce controlled branching queueing networks, which are Jackson-like networks but allow
for both nondeterminism (“controlled”) and the creation of more than one job (“branching”).

Both extensions directly raise computational issues. We show in Example 2 on page 511
that even purely stochastic branching networks do not allow a product form, which illustrates
the mathematical challenge! of this extension and poses the question for an effective criterion
that allows to determine whether the network is stable, i.e., returns to the empty state

1 Tt is noted in [14] that “[...] virtually all of the models that have been successfully analyzed in classical
queueing network theory are models having a so-called product form stationary distribution.”
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infinitely often. Moreover, due to the nondeterminism, we now deal with continuous-time
Markov decision processes (CTMDPs). Our main theorem (Theorem 3) states that if there
exists any scheduler resolving the nondeterminism in such a way that the controlled branching
network is stable, then there exists a randomized static scheduler that achieves stability as
well, where by “randomized static” we mean that the decisions may be randomized but not
dependent on the current state (such as the load) of the system. Moreover, the existence of
such a stabilizing scheduler and the scheduler itself can be determined in polynomial time,
and, finally, the randomized static scheduler is stabilizing in a very strong sense, in particular,
all moments of the queue sizes are finite.

Related work. We use nondeterminism to describe systems whose behaviour is not
completely specified. A system designer can then resolve the nondeterminism to achieve
certain goals, in our case stability. Although nondeterminism is a very well established
modelling feature of probabilistic systems (see e.g. [19]), the literature on automatic design
of stabilizing controllers for queueing networks is sparse. Flow-controlled networks [26, 21]
allow to control only the external arrival stream or the service rates (see also [2] and the
references therein). The authors of [18, 13] consider queueing networks with fewer servers
than job types, so that the controller needs to assign servers to queues. As in [18, 13], we
also use linear programming to design a controller, but our aim is different: we allow the
controller to influence the production of the individual queues, and we study the complexity
of designing stabilizing controllers and the nature of such controllers. There has been a
substantial amount of work in the last years analyzing probabilistic systems with “branching
features”, most prominently on recursive Markov chains [12, 11] and probabilistic pushdown
systems [10, 5]. While these models allow for a probabilistic splitting of tasks by pushing
new procedures on a stack, the produced tasks are processed in a strictly sequential manner,

whereas the queues in a queueing network process jobs in parallel and in continuous time.

Recently, probabilistic split-join systems were introduced [16], which allow for branching but
not for external arrivals, and assume unlimited parallelism. In [17, chapter 8] a queueing
model with multiple classes of tasks and “feedback” is discussed, which is similar to our
branching except that there is only one server, hence there is no parallelism. Algorithmic
theory of queueing systems has also attracted some attention in the past. In particular, for
closed (i.e., without external arrivals) queueing systems, [24] shows EXP-completeness of
minimizing a weighted throughput of the queues.

2 Preliminaries

Numbers. We use Z,Q, R for the sets of integer, rational, real numbers, respectively, and
N, Q>0,R>¢ for their respective subsets of nonnegative numbers.

Vectors and Matrices. Let n > 1. We use boldface letters for denoting vectors @ =
(T1,...,2,) € R™. Vectors are row vectors per default, and we use superscript 7 for
transpose, so that £ denotes a column vector. If the dimension n is clear from the context,
we write 0 := (0,...,0), 1:=(1,...,1), and e = (0,...,0,1,0,...,0) for the vector with
the 1 at the ith component (1 < ¢ < n). It is convenient to define e® := 0. For two
vectors &,y € R™ we write  ~ y with ~ € {=, <, <, >, >} if the respective relation holds
componentwise. For a vector € R™ we denote its I-norm by || := Y./, |&;|. When
x € N" is a vector of queue sizes, we refer to ||| as the total queue size. For a matrix
A € R" " we write A; for its ith row, i.e., A; = (A1, ..., Ain).
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CTMDP. A continuous-time Markov decision process (CTMDP) consists of an at most
countable set S of states, an initial state s; € S, a set of actions 3 2, and a transition rate
q(s,0,s") > 0 for each pair of states s,s’ € S and each action 0 € X (here ¢(s,0,5") =0
means that the transition from s to s’ never occurs). We define a continuous-time Markov
chain (CTMC) to be a CTMDP whose set of actions ¥ is a singleton (we usually do not
write the only action explicitly, so the transition rates of a CTMC are denoted by ¢(s, s’),
etc.).

Intuitively, a run of a CTMDP starts in s; and then evolves in so-called epochs. Assume
that (after the previous epoch) the system is in a state s. The next epoch consists of the
following phases: First, a scheduler chooses an action o € ¥ to be executed. Second, a waiting
time for transition to each state s’ € S is chosen according to the exponential distribution
with the rate ¢(s,o,s") (here we assume that if ¢(s,o,s’) = 0, then the waiting time is c0).
The transitions compete in a way such that the one with the least waiting time is executed
and the state of the CTMDP is chosen accordingly (the other transitions are subsequently
discarded).

Formally, a run is an infinite sequence s1,01,t1,82,09,t2,... € (S X ¥ x Rxg)¥. We
denote by Run the set of all runs. A scheduler is a function © which assigns to every finite
path si,01,%1,82,09,t2,...5, € (S x X X R>0)* x S a probability distribution ©(w) on
actions (i.e. ©(w) : ¥ — [0, 1] satisfies ) 5, ©(w)(o) = 1). For technical reasons, we have
to restrict ourselves to measurable schedulers (for details see e.g. [23]).

We work with a measurable space of runs (Run, F) where F is the smallest o-algebra
generated by basic cylinders (i.e. sets of runs with common finite prefix) in a standard
way. Every scheduler © induces a unique probability measure Prg on F determined by the
probabilities of the basic cylinders. For detailed definitions see [23]. Then each scheduler ©
induces a stochastic process (z(t) | t € R>g) on the probability space (Run,F,Prg) where
z(t) is the current state of the run in time ¢, i.e., each z(t) is a random variable defined by

i—1 %
LL'(t)(ShO'l,tl,Sg,O'Q,tQ,...):Si 5 Ztigtand Ztizt-
J=1 Jj=1

A scheduler © is memoryless if for every path w = s1,071,t1, S2,092,t2,...8,41 € (S X X X
R>0)* x S we have that ©O(w) = O(sp41)-

Networks. Define R(%K) .= {reN"|ri+- - +7r, < K}. A production function for
(n, K) is a function Prob: R — QN (0,1] with R € R™X) such that 3,5 Prob(r) = 1. A
controlled branching network with n queues and branching factor K consists of an arrival
rate pp € QN (0,00), queue rates p; € QN (0,00) for ¢ € {1,...,n}, an arrival production
function Probg : Ry — QN (0, 1] for (n, K), and finite action sets Xq,...,%,, as follows. An
action o; € 3; assigns to queue ¢ a production function Prob;(c;) : R;(o;) — QN (0, 1] for
(n,K). Define ¥ :=%; x -+ xX,,. If 0 = (01,...,0,) € 2, we write R;(0), Prob;(c) and
Ry (o), Probg(c) to mean R;(0;), Prob;(o;) and Rg, Proby. Observe that the rates p; do not
depend on actions. This simplification is without loss of generality.?> We assume a nonzero

2 Usually, each state has its own set of available actions. As this feature is not needed for queueing
networks, we stick to the simpler version in which all actions are always available.

3 To show that this assumption is w.l.o.g. one can employ the standard “uniformization” trick. More
precisely, assume that the actions of a queue ¢ have different rates. Define p; to be the maximum of
all rates of 3; and compensate by “adding self-loops”, i.e., make the actions of ¥; generate a new job
for queue ¢ with a suitable probability. This effectively substitutes a transition with longer delay by
possibly several transitions with delay p;. As static schedulers can be easily translated between the
original and the transformed system, our results remain valid.
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arrival stream, i.e., there is r € Ry with r # 0. We define the size of a controlled network
by n+ K+ (S al) + [ Rol + [ Probo| + 50, 5, e, [Ra(o)]| + | Probi(as)], where [ ete,
means the description size assuming the rationals are represented as fractions of integers in
binary. A controlled branching network induces a CTMDP with state space N™ (the queue

sizes), initial state 0, action set 3, and transition rates

q(x,0,y) = Z Z i Prob;(o)(r) for z,y e N", o € X.
1€{0,1,...,n}:i=0Va;#0 reR;(o):y=z—e()+r

Interpreting this definition, there is a “race” between external arrivals (rate po) and the
nonempty queues (rates p;); if the external arrivals win, new jobs are added according
to Probg(o); if queue i wins, one i-job is removed and new jobs are added according
to Prob;(o).

An purely stochastic branching network is a controlled branching network with ¥ = {o},
i.e., with a unique action for each queue. Hence, the induced CTMDP is a CTMC. In the
purely stochastic case we write only R; for R;(o) etc. If Prob;(r) = p in the purely stochastic
case, we use in examples the notation ¢ L r, where we often write 7 € R("™%) as a multiset
without curly brackets. For instance, if n = 2, we write 1 & 1,2 and 1 & 2,2 and 1 e to
mean Proby(r) = p with » = (1,1) and » = (0,2) and r = (0, 0), respectively.

Fixing a controlled network N and a scheduler © for the CTMDP induced by N, we
obtain a stochastic process Ng = (z(t) | t € R>g), where (0) = 0 € N", which evolves
according to the dynamics of N and the scheduler ©. In the purely stochastic case we drop
the subscript ©, and so we identify a network N with its induced stochastic process.

» Example 2 (no product form). Consider the purely stochastic branching network with

1 1 1
0= 1,2and 1 < ¢ and 2 < e. If its stationary distribution 7 (for a definition of stationary
distribution see before Theorem 3) had product from, the queues would be “independent in

steady-state”, i.e., m(@o2 > 1| x; > 1) = m(xy > 1), where by & we mean x(¢) in steady state.

However, if pg is much smaller than py = po, then we have m(xo > 1| @y > 1) > w(xe > 1),
intuitively because &1 > 1 probably means that there was an arrival recently, so that x5 > 1
is more likely than usual. More concretely, let pug = 1 and pu; = pe = 3 and consider the
2-state Markov chain obtained by assuming that each arrival leads to the state (1, 1) and each
completion of any job leads to the state (0,0). By computing the stationary distribution 7" of

this 2-state Markov chain in the standard way, we obtain 7/((0,0)) = 6/7 and #n'((1,1)) = 1/7.

Since this 2-state Markov chain “underapproximates” the CTMC induced by the network,
we have m(x; > 1 A @2 > 1) > 1/7. On the other hand, by considering the two queues

separately, the standard formula for the M/M/1 queue gives w(x; > 1) = (22 > 1) = 1/3.

Product form would imply w(x; > 1 A @3 > 1) = 7w(x1 > 1)-7(x2 > 1) = 1/9, contradicting
the inequality above.

3 Results

We focus on the stability of purely stochastic and controlled branching networks. Our notion
of stability requires that the network is completely empty infinitely many times. Given a
stochastic process (z(t) | t € R>¢), we say that the process is ergodic if the expected return
time to 0 is finite. More formally, define a random variable R by

R o= (]e() =03 <1:a) £0}.

Then the process is ergodic iff E [R] < oo. In the controlled case, we say that a scheduler ©
for N is ergodic for N if Ng is ergodic. In the following we use stability and ergodicity
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interchangeably. A scheduler © is static if it always chooses the same fixed distribution on
actions. Note that static schedulers are memoryless. If in a stochastic process ((t) | t € R>q)
the limit 7(x) := lim; o Pr(z(t) = ) exists for all x € N* and )y 7(x) = 1, then
7 R>o — [0,1] is called the stationary distribution.

» Theorem 3. Let N be a controlled branching network. It is decidable in polynomial time
whether there exists an (arbitrary) ergodic scheduler for N'. If it exists, one can compute, in
polynomial time, a static randomized ergodic scheduler for N with stationary distribution m
such that there exists an exponential moment of the total number of waiting jobs, i.e., there

is 6 > 0 such that ) cn» exp(0 ||z|)7(x) exists.

To prove Theorem 3 we generalize the concept of traffic equations (see e.g. [6]) from the
theory of Jackson networks. Intuitively, the traffic equations express the fact that the inflow
of jobs to a given queue must be equal to the outflow. Remarkably, the traffic equations
characterize the stability of the Jackson network. More precisely, a Jackson network is stable
if and only if there is a solution of the traffic equations whose components are strictly smaller
than the rates of the corresponding queues (we call such a solution deficient).

We show how to extend the traffic equations so that they characterize the stability of
controlled branching networks. For a smooth presentation, we start with purely stochastic
branching networks and add control later on. Hence, the overall plan of the proof of Theorem 3
is as follows: Set up traffic equations for purely stochastic branching networks and show
that if there is a deficient solution of these equations, then the network is stable. This
result, presented in Section 3.1 (Proposition 4), is of independent interest and requires the
construction of a suitable Lyapunov function. Then, in Section 3.2, we generalize the traffic
equations to controlled branching networks and show that any ergodic scheduler determines
a deficient solution (Proposition 10). This solution naturally induces a static scheduler,
which, when fixed, determines an purely stochastic network with deficiently solvable traffic
equations. Propositions 4 and 10 imply Theorem 3 and provide some additional results.

3.1 Purely stochastic branching networks

Assume that A is purely stochastic, i.e., there is a single action for each queue. In such a case
the CTMDP induced by the network is in fact a CTMC. We associate the following quantities
to a network, which will turn out to be crucial for its performance. Let p := (u1,. .., ttn).
Let a € Rgo be the vector with a; := g Z’I‘GRQ Proby(r)r;; i.e., a; indicates the expected
number of external arrivals at queue ¢ per time unit. Note that a # 0, as we assume a
rer, Probi(r)rj; ie., Aij
indicates the expected production of j-jobs when queue 7 fires. W.l.o.g. we assume that all

nonzero arrival stream. Let A € RIF™ be the matrix with A;; := 37

queues are “reachable”, i.e., for all queues i there is j € N with (aA7); # 0. We define a set
of traffic equations

A= o+ XAy, je{l...n}, (1)
=1

in matrix form:
A=a+AA. (2)

We prove the following proposition.
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» Proposition 4. Assume that X € RY solves the traffic equations (2) and satisfies A < p.

Then the following conclusions hold: -

1. The process N is ergodic, i.e., the expected return time to O is finite.

2. There exists a stationary distribution w such that there exists an exponential moment of
the total queue size, i.e., there is 0 > 0 such that ) . exp(0 |x||)7(x) exists.

The key step to the proof of Proposition 4 is to construct a so-called Lyapunov function with

respect to which the process N exhibits a “negative drift”. This is in fact a classical technique

for showing the stability of queueing systems [22]; the difficulty lies in finding a suitable

Lyapunov function. The “drift” of N is given by the mean velocity vector A(x) € RZ,

of N, defined by A(z) := limy_,o+ E[z(t + h) — () | (t) = «] /h. The limit exists, is

independent of ¢, and we have

Alx)=a+ Y pi(—e?+4;). (3)
i #0

The following lemma is implicitly proved in [9, theorem 1].

» Lemma 5. Suppose that a function v R%, — R>q is two times continuously differentiable,
17(w) = 0 implies © = 0, and that there is v > 0 such that we have

< —7 for all x # 0,

where ‘7’(:1:) denotes the gradient of\N/ at x. Then the conclusions of Proposition 4 holds.

Following [9], we construct the Lyapunov function V in two stages: we first define a suitable
piecewise linear function V : N® — R>¢; then V' is smoothed to obtain V. For the definition
of V' we need the following lemma.

» Lemma 6. The matriz series A* := 2 A* converges (“exists”) in RLG™ and is equal to
(I —A)~1L.

Define vectors ¢V, ..., q™ € RY, by setting g7 = a(i)T/ Ha(i) H, where a®7 is the ith
column of A*. Observe that we have 1¢(Y7 = 1 for all i. Define the function V : R%y = Rxo
by V(z) := max;{xq®T}. We will use the following property of V:

> Lemma 7. If0 # x € RY, and x; = 0, then xq7T < V(x).

Lemma 7 is not obvious; in [4] we use Farkas’ lemma for the proof. The following lemma
describes the crucial “negative drift” property of V:

» Lemma 8. There is v > 0 such that we have
A@) (V@) <=y forala#0

and all subgradient vectors V'(x) of V at &. More precisely, one can choose

7 = min(p; — Ai)/ Ha(i) )

where a DT is the ith column of A*.

» Example 9. Consider the network with

1/5 1/6
1 1—22 2—1,2
0—=1 475
/5 5/6 J
l—>e 2—> ¢
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Figure 1 Illustration of negative drift.

arrival rate po = 7/30, and p = (5/12,7/20), so that pg + p1 + p2 = 1. Let us write
[0] := a = po(1,0), [1] == pu(—eM + A1), [2] == pa(—e® + A3), [01] := [0] + [1],
[02] := [0] 4+ [2], [012] := [0] + [1] + [2]. These vectors are shown in Figure 1 (a). The
mean velocity vector A(x) is one of the vectors [0],[01],[02],[012], depending on which
components of & are nonzero. The vector field in Figure 1 (b) shows the corresponding
vectors for several & € N2. The connected line segments indicate points & with the same
value of V(z) = max{zqMT, 2gPT} = max{2x + 2z,, 21 + 222} (values 0.5,1,1.5,...).
It can be seen from the figure that the drift is negative with respect to the gradient of V if
x #£0.

Proof of Lemma 8. Let « # 0. We need to show A(z)g®” < — for all i with 2¢)7 =
V(z). W.lo.g. we assume that q(V7 = V() and show only A(x)g"" < —v. By Lemma 7
we have ¢, # 0. It follows from the property (I — A)A* = I and the definition of g(!) that
we have

(e + A1) = —1/ Ha(”H and  (—e® +A4)gWT =0 for2<i<n. (4)

Hence we have:

A@)g"" = a+ > m(=e?+4) | g7 by (3)
;70
=aqW? — py/ Ha(l) H by (4) and @ # 0
< —v+agVT — X/ Ha(l)H by the definition of
=7+ <a +) (- + Ai)> qgMT by (4)
i=1
= v+ (a+ A(—T+ A)gPT
=7+ 0gW7T = - by the traffic equation.
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Using integration, one can obtain a two times continuously differentiable function 1%
satisfying the conditions in Lemma 5: the function V is smoothed by defining I7(w), for
all , as an “average” of the values V(y) where y belongs to a small ball around x; see the
appendix of [9] for the formal details. This concludes the proof of Proposition 4.

3.2 Controlled branching networks

In this subsection we generalize the traffic equations (2) to deal with an arbitrary controlled
branching network A/. To obtain a distribution on actions for a static randomized ergodic
scheduler, we assign variables to actions instead of queues, i.e., for every action £ of the
network we introduce a variable A\¢ capturing the rate of firing the action . Denote by )
the set |J;—, ¥;. Given ¢ € > and j € {1,...,n}, we denote by A¢j the average number of
jobs added to the queue j when the action ( fires, i.e., for { € ¥; we set

We generalize (2) to the traffic LP presented in Figure 2, where the variable § is intended to
bound, for all j, the probability that queue j is busy.

min ¢ subject to

Z)\E = Otj-l-ZZ)\C'ACj jE{l,...,n}

cex; i=1¢ex,
Sees A
5 > %ﬁ jefl,...,n}
J
Ae =20 ¢ e ¥

Figure 2 The traffic LP.

We prove the following

» Proposition 10.

1. If there exists an arbitrary ergodic scheduler for N, then the traffic LP can be solved with
mind < 1.

2. If the traffic LP is solved with mind < 1, ome can compute in polynomial time a
static randomized ergodic scheduler ©, for N'. Moreover, denoting by p; the utiliza-
tion lim; o Pr(x;(t) # 0) of the queue i, the scheduler ©5 minimizes max; p; among all
memoryless ergodic schedulers.

Hence one can decide in polynomial time whether an arbitrary ergodic scheduler exists; if

yes, one can compute in polynomial time a static randomized ergodic scheduler.

Let us first concentrate on part 1. Let © be an ergodic scheduler. Roughly speaking, we
prove that a feasible solution of the traffic LP can be constructed using (limit) frequencies of
firing individual actions in NMg. Formally, given a run w of Ng, t € R>g and € € %, we denote
by O?t(w) the number of times the action £ is fired up to time ¢ on w. For memoryless © we
have the following result.
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» Lemma 11. Assume that © is a memoryless ergodic scheduler. For every &€ € ¥ there is a
constant O¢ such that for almost all runs w of Ng the limit

<t
lim 05 )

t—00 t

exists and is equal to O¢. There is 6 < 1 such that (5, O¢ | €€ 2_]) solves the traffic LP.

o
Moreover, for everyi € {1,...,n} the utilization p; of the queue i in Ng is equal to #
We prove Lemma 11 in [4]. If there exists an arbitrary (i.e. possibly history-dependent) ergodic
scheduler, then by Theorem 7.3.8 of [25] there exists also a memoryless (and deterministic)
ergodic scheduler.* This fact, combined with Lemma 11, implies part 1. of Proposition 10.

Now let us concentrate on part 2. of Proposition 10.

» Lemma 12. Any feasible solution (5, 5\5 | € e i) of the traffic LP with 6 < 1 induces a

by
static randomized ergodic scheduler whose utilization of any queue i is equal to @
Proof. We construct a static randomized scheduler © which chooses an action & € 3; for
the queue i with probability

A -
PRSI o W &)
ZCEEi )\C Cex;

Otherwise, if ZCE&: 5\4 = 0, we may control the queue ¢ arbitrarily because no jobs ever
come to the queue. We further assume (w.l.o.g.) that such queues have been removed from
the network, i.e., that P is defined using (5) for all £ € ¥. Note that dezi P: =1 for every
ie{l,...,n}.

Fixing the scheduler © we obtain a purely stochastic branching network whose traffic
equations are deficiently solvable. Formally, we define a new purely stochastic branching
network A’ with n queues with the same arrival rate, the same arrival production function
and the same queue rates as N. Further, N’ has R, = Ugezi R;(¢) and the following
production functions Prob) associated to queues:

Prob( Z Pe - Prob;(¢)(r) , r€ER;
§EX;

(Here we formally assume Prob;(§)(r) = 0 for r ¢ R¢.) The traffic equations (1) for N have
the following form:

A, = aj—&-Z)\ A, jed{l,...n} (6)

with

= ) Proby( =Y P> Prob(

TER] §EX;  TER]
A
POl e D ILUC D O s ey
£ex; ZCGE reR’ ey ZCGE

4 To be formally correct, we apply Theorem 7.3.8 of [25] to the embedded discrete time MDP and obtain
a scheduler which returns to the state 0 in finitely many steps (on average). As there are only finitely
many rates in our system, this means that also the expected return time to O is finite.
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Setting A == ey, A¢ for every i € {1,...,n}, we obtain ANiAy =3 s, AeAgj. If we put
this equality into the first equation of the traffic LP, we see that (A1,...,\,) solves (6). Also,
Aj < pj for all j € {1,...,n}. Proposition 4 then implies that the scheduler © is ergodic.
Finally, let us concentrate on the utilization. Note that the utilization of any queue i is
the same in N’ as in Mg, so it suffices to concentrate on N’. Observe that the matrix I — A’
is invertible by Lemma 6. This means that (A1,...,A,) is, in fact, the unique solution of (6).
Then however, by Lemma 11, the utilization p; of queue 4 in A7 (and thus also in Ng) is

Zsezi A

Hi <

Py
equal to =

To complete the proof of Proposition 10, we consider the problem of minimizing the maximal
utilization max; p;. Let ©4 be a static randomized ergodic scheduler induced by a solution
of the traffic LP in the sense of Lemma 12 (here we consider a solution which minimizes §).
Observe that the scheduler ©4 minimizes max; p; among all schedulers induced by solutions
of the traffic LP. However, by Lemmas 11 and 12, for every memoryless scheduler © there
exists a static randomized scheduler induced by a solution of the traffic LP which has the
same utilization of each queue as ©. Thus ©4 minimizes max; p; among all memoryless
ergodic schedulers.

4  Conclusions

We have suggested and studied controlled branching networks, a queueing model which
extends Jackson networks by nondeterministic and branching features as required to model
parallel systems. Although much of the classical theory (such as product-form stationary
distributions) no longer holds for controlled branching networks, we have shown that the
traffic equations can be generalized. This enabled us to construct a suitable Lyapunov
function which we have used to establish strong stability properties. We have shown for
the controlled model that static randomized schedulers are sufficient to achieve those strong
stability properties. Linear programming can be used to efficiently compute such a scheduler,
which at the same time minimizes the maximal queue utilization.

Future work should include the investigation of more performance measures, e.g., the
long-time average queue size. Can non-static schedulers help to minimize it?

Acknowledgements: The authors thank Javier Esparza for helpful discussions, and anony-
mous reviewers for valuable comments.
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