
On the separation question for tree languages
André Arnold1, Henryk Michalewski∗2, and Damian Niwiński†2,3

1 Talence, andre.arnold@club-internet.fr
2 University of Warsaw

Faculty of Mathematics, Informatics, and Mechanics
{H.Michalewski,D.Niwinski}@mimuw.edu.pl

3 Institute of Mathematics
Polish Academy of Sciences

Abstract
We show that the separation property fails for the classes Σn of the Rabin-Mostowski index
hierarchy of alternating automata on infinite trees. This extends our previous result (obtained
with Szczepan Hummel) on the failure of the separation property for the class Σ2 (i.e., for co-
Büchi sets). It remains open whether the separation property does hold for the classes Πn of
the index hierarchy. To prove our result, we first consider the Rabin-Mostowski index hierarchy
of deterministic automata on infinite words, for which we give a complete answer (generalizing
previous results of Selivanov): the separation property holds for Πn and fails for Σn-classes. The
construction invented for words turns out to be useful for trees via a suitable game.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic,
F.4.3 Formal Languages

Keywords and phrases Alternating automata on infinite trees, Index hierarchy, Separation prop-
erty

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.396

1 Introduction

The separation question is whether two disjoint sets A and B can be separated by a set C
(i.e., A ⊆ C and B ⊆ C) which is in some sense simpler. Separation is one of the main issues
in descriptive set theory. A fundamental result due to Lusin is that two analytic sets can
be always separated by a Borel set, but two co-analytic sets in general cannot. The former
implies that if a set is simultaneously analytic and co-analytic then it is necessarily Borel,
which is the celebrated Suslin Theorem (see, e.g., [8] or [7]).

A well-known fact in automata theory exhibits a similar pattern: if a set of infinite
trees as well as its complement are both recognizable by Büchi automata then they are also
recognizable by weak alternating automata (weakly recognizable, for short). This result was
first proved by Rabin [10] in terms of monadic second-order logic; the automata-theoretic
statement was given by Muller, Saoudi, and Schupp [9]. It is not difficult to adapt Rabin’s
proof to obtain the separation property: any two disjoint Büchi recognizable sets of trees can
be separated by a weakly recognizable set (see, e.g., [5]). Quite analogical to the co-analytic
case, the separation property fails in general for the dual class of co-Büchi tree languages

∗ Supported by the Polish Ministry of Science grant nr N N206 567840.
† Supported by the Polish Ministry of Science grant nr N N206 567840.

© André Arnold, Henryk Michalewski, and Damian Niwiński;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 396–407

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.396
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Arnold, H. Michalewski, and D. Niwiński 397

(i.e., the complements of Büchi recognizable sets). In [5], a pair of such sets is presented that
cannot be separated by any Borel set, hence a fortiori by any weakly recognizable set.

A systematic study of the separation property for tree automata has been undertaken by
Santocanale and Arnold [11]. They asked if the above-mentioned result of Rabin can be
shifted to the higher levels of the index hierarchy of alternating automata with an appropriate
generalization of weak recognizability. The question stems naturally from the µ-calculus
version of Rabin’s result which states that if a tree language is definable both by a Π2-term
(i.e., with a pattern νµ) and a Σ2-term (µν), then it is also definable by an alternation free
term, i.e., one in Comp(Π1 ∪ Σ1) [2]. Somewhat surprisingly, Santocanale and Arnold [11]
discovered that the equation

Πn ∩ Σn = Comp(Πn−1 ∪ Σn−1),

which amounts to Rabin’s result for n = 2, fails for all n ≥ 3. Consequently, it is in general
not possible to separate two disjoint sets in the class Σn by a set in Comp(Πn−1 ∪ Σn−1);
similarly for Πn.

There is however another plausible generalisation of Rabin’s result suggested by the
analogy with descriptive set theory. Letting

∆n = Πn ∩ Σn,

we may ask if two disjoint sets in a class Σn can be separated by a set in ∆n; a similar
question can be stated for Πn. By remarks above, we know that the separation property in
this sense holds for Π2 (Büchi) and fails for Σ2 (co-Büchi) class, in a perfect analogy with
the properties of analytic vs. co-analytic classes in the descriptive set theory1.

In the present paper we answer the question negatively for all classes Σn of the Rabin–
Mostowski index hierarchy for alternating automata on infinite trees. (The Σn-classes
correspond to the indices (i, k) with k odd; see the definition below.) By an analogy with
the Borel hierarchy [7, 8], one is tempted to conjecture that the separation property actually
does hold for all classes Πn, but this question seems to be difficult already for n = 3.

To prove our main result, we first study a conceptually simpler case of infinite words
and the Rabin–Mostowski index hierarchy of deterministic automata. In this case we give a
complete answer: the separation property holds for classes Πn and fails for classes Σn. The
argument is based on a uniform construction of an inseparable pair in each class Σn. This
construction is further used in the case of trees. More specifically, we consider labeled trees
whose vertices are divided between two players: Eve and Adam, who wish to form a path in
the tree. For a set on infinite words L, we consider the set Win∃(L) of those trees where
Eve has a strategy to force a path into L. The operation Win∃ allows us to shift the witness
family from words to trees.

It should be noted that in the case of deterministic automata on infinite words, the
separation property of the class (1, 2) was proved earlier by Selivanov [12], who also gave a
hint [13] how this result can be generalized for all classes Πn.

2 Index hierarchy

Throughout the paper, ω stands for the set of natural numbers, which we identify with its
ordinal type. We also identify a natural number n < ω with the set {0, 1, . . . , n− 1}.

1 However, the classical notation plays a trick here, as the analogy matches the classes Σ1
1 ∼ Π2 and

Π1
1 ∼ Σ2.

STACS’12

398 On the separation question for tree languages

(1, 2)

OOO
OOO

OOO
OO

(1, 3)

OOO
OOO

OOO
OO

ooo
ooo

ooo
oo

(1, 4)

OOO
OOO

OOO
OO

ooo
ooo

ooo
oo

(1, 5)

ooo
ooo

ooo
oo

. . .

(0, 1) (0, 2) (0, 3) (0, 4) . . .

Figure 1 The Mostowski–Rabin index hierarchy.

We will consider deterministic automata on infinite words and alternating automata on
infinite trees. For more background, we refer the reader to a survey by Thomas [14].

A deterministic parity automaton over an input alphabet A can be presented by A =
〈A,Q, qI ,Tr , rank〉, where Q is a finite set of states ranked by the function rank : Q→ ω, and
Tr : Q×A→ Q is a transition function. A run of A on a word u ∈ Aω is a word r ∈ Qω whose
first element r0 is the initial state qI , and rn+1 = Tr(rn, un), for n < ω. It is accepting if
the highest rank occurring infinitely often (i.e., lim supn→∞ rank(rn)) is even. The language
L(A) recognized by A consists of those words u ∈ Aω which admit an accepting run. The
Rabin-Mostowski index of A is the pair (min rank(Q),max rank(Q)); we may assume without
loss of generality that min rank(Q) is 0 or 1. It is useful to partially order the indices as
represented on Figure 1. That is, we let (ι, κ) v (ι′, κ′) if either {ι, . . . , κ} ⊆ {ι′, . . . , κ′}, or
ι = 0, ι′ = 1, and {ι+2, . . . , κ+2} ⊆ {ι′, . . . , κ′}. We consider the indices (1, κ) and (0, κ−1)
as dual, and let (ι, κ) denote the index dual to (ι, κ). The above ordering induces a hierarchy,
that is, if a language L is recognized by an automaton of index (ι, κ) and (ι, κ) v (ι′, κ′) then
L is also recognized by an automaton of index (ι′, κ′). Moreover, the hierarchy is strict in
the sense that, for any index (ι, κ), there is a language recognized by an automaton of index
(ι, κ), but not by any (deterministic) automaton of the dual index (ι, κ) [6, 15]. Indeed, the
witness can be the parity condition itself:

Lι,κ = {u ∈ {ι, . . . , κ}ω : lim sup
n→∞

un is even }. (1)

The concept of alternating automaton is best understood via parity games. For the sake
of further application, we present them in a more general setting of graph games. A graph
game is a perfect information game of two players, say Eve and Adam, where plays may have
infinite duration. It can be presented by a tuple

〈V∃, V∀,Move, pI , `, A, L∃, L∀〉.

Here V∃ and V∀ are (disjoint) sets of positions of Eve and Adam, respectively, Move ⊆ V ×V
is the relation of possible moves, with V = V∃ ∪ V∀, pI ∈ V is a designated initial position,
and ` : V → A is a labelling function, with some alphabet A. These items constitute an
arena of the game. Additionally, L∃, L∀ ⊆ Aω are two disjoint sets representing the winning
criteria for Eve and Adam, respectively.

The players start a play in the position pI and then move the token according to the
relation Move (always to a successor of the current position), thus forming a path in the
arena. The move is selected by Eve or Adam, depending on who the owner of the current
position is. If a player cannot move, she/he looses. Otherwise, the result of the play is
an infinite path v0, v1, v2, . . ., inducing the sequence of labels `(v0), `(v1), `(v2), . . . If this
sequence belongs to L∃ then Eve wins, if it belongs to L∀ then Adam wins; otherwise there is
a draw. We say that Eve wins the game if she has a winning strategy, the similar for Adam.

A. Arnold, H. Michalewski, and D. Niwiński 399

In the games considered in this paper, we always have L∀ = Aω − L∃, hence a draw will
not occur. But it is convenient to consider the winning criteria for both players.

A parity game of index (ι, κ) is defined as above with A = {ι, . . . , κ}, L∃ = Lι,κ (see
equation (1)), and L∀ = L∃ = {u ∈ {ι, . . . , κ}ω : lim supn→∞ un is odd }.

A (full) k-ary tree over a finite alphabet A is a mapping t : k∗ → A. An alternating parity
tree automaton of index (ι, κ) running on such trees can be presented by

A = 〈A,Q∃, Q∀, qI , δ, rank〉

where Q is a finite set of states with an initial state qI , partitioned into existential states
Q∃ and universal states Q∀, δ ⊆ Q×A× {0, 1, . . . , k− 1, ε} ×Q is a transition relation, and
rank : Q→ ω. An input tree t is accepted by A iff Eve has a winning strategy in the parity
game

G(A, t) = 〈Q∃ × k∗, Q∀ × k∗, (q0, ε),Mov, `, Lι,κ, Lι,κ〉, (2)

where Mov = {((p, v), (q, vd)) : v ∈ dom(t), (p, t(v), d, q) ∈ δ} and `(q, v) = rank(q). In-
tuitively, the players follow a path in the tree t, additionally annotated by the states. A
transition is always selected by the owner of the state. The automaton accepts the tree if
Eve can force each such path to be accepting.

The hierarchy of tree languages induced by the indices of alternating parity automata
is strict, as showed by Bradfield [4]. An alternative proof of this difficult result was later
given [1] based on the Banach Fixed-Point Theorem; Both proofs [1, 4] use the same witness
family of sets of binary trees defined by parity games. For the sake of further application, we
will present this concept in a more general setting.

We consider k-ary trees over an alphabet {∃,∀} × A. The labels {∃,∀} are used to
partition the nodes of a tree t into positions of Eve and Adam. In the game, the players form
a path in t, starting from the root. The next move is selected by Eve or Adam, depending on
whether the actual label contains ∃ or ∀. The winning criteria concern the sequence formed
by the second components of the labels occurring in the play, which is a word in Aω .

Each language L ⊆ Aω induces two winning criteria: L∃ = L, and L∀ = L, which give
rise to two games: an L-∃ game, and an L-∀ game. Let us describe formally an L-∃ game
over a tree t : k∗ → {∃,∀} ×A. It is a graph game with the following items:

V∃ = {v ∈ k∗ : t(v) ↓1= ∃} `(v) = t(v) ↓2, for v ∈ k∗
V∀ = {v ∈ k∗ : t(v) ↓1= ∀} L∃ = L

Move = {(w,wi) : w ∈ k∗, i ∈ k} L∀ = L.

p0 = ε (the root of the tree)

An L-∀ game is defined similarly with the winning criteria L∀ = L, and L∃ = L.
The set Win∃k(L) consists of those trees t, for which Eve has a winning strategy in

L-∃-game. The set Win∀k(L) consists of those trees t, for which Adam has a winning strategy
in L-∀-game. The following can be easily verified.
I Fact 1. If a language L of infinite words is recognized by a deterministic automaton of
index (ι, κ) then both languages Win∃k(L) and Win∀k(L) can be recognized by an alternating2
tree automaton of index (ι, κ).

2 In fact, even non-deterministic, but we don’t explore it in this paper.

STACS’12

400 On the separation question for tree languages

A family witnessing the strictness of the index hierarchy of alternating tree automata [1, 4]
consists of the sets of binary trees Wi,k, which can be presented by Wi,k = Win∃2(Li,k).

The following Σ/Π terminology for the index hierarchy,motivated by the connection
with the µ-calculus (see, e.g., [3]); will be convenient to handle dualities. For each m ≥ 1,
we consider two indices: (1,m) and (0,m − 1), and associate the symbol Σm with this
index whose maximum is odd, and Πm with the one whose maximum is even. For example,
(0, 1) ≈ Σ2, (1, 2) ≈ Π2, (1, 3) ≈ Σ3, (0, 2) ≈ Π3, (1, 4) ≈ Π4, (0, 3) ≈ Σ4, etc. We will then
refer to an automaton of index (ι, κ) as to Σm or Πm-automaton with an appropriate m.

3 Deterministic hierarchy over words

In this section we investigate the index hierarchy for deterministic automata on infinite
words. A language of infinite words is in the class Σm if it is recognized by a deterministic
Σm-automaton; similarly for Πm. A language is in the class ∆m if it is simultaneously Σm
and Πm. We show that the separation property holds for classes Πm and fails for Σm, for
m ≥ 2. In fact, both properties will follow from a single construction (parametrized by m).

Note that we do not consider the classes Σ1 and Π1, which are uninteresting from the
point of view of the separation property3.

For m ≥ 2, we fix an alphabet

mπ =
{
{1, . . . ,m} if m is even
{0, . . . ,m− 1} if m is odd.

Note that maxmπ is always even. Let Im ⊆ mω
π be the set of infinite words where maxmπ

occurs infinitely often. Let Km be a superset of Im consisting of the words satisfying parity
condition,

Km = {u ∈ mω
π : lim sup

n→∞
un is even }.

That is, Km coincides with L1,m or L0,m−1 of (1), depending on whether m is even or odd.
It is straightforward to see that Km is in the class Πm.

In the sequel we consider words over a product alphabet m2
π. We identify a pair of words

〈u, v〉 ∈ (mω
π)2 with a single word over

(
m2
π

)
in an obvious manner. The subsequent lemma

is the heart of our paper.

I Lemma 1. For each m ≥ 2, there exist disjoint sets U1, U2 ⊆ mω
π of class Σm, satisfying

the following:

Km ×Km ⊆ U1
Km ×Km ⊆ U2
Km ×Km ⊆ U1 ∪ U2 = Im × Im.

Proof. We first present the construction in the case when m is odd; thus the Σm-automata
have index (1,m), and Πm-automata have index (0,m− 1).

Let Pm be an automaton over the alphabet mπ with the set of states also equal to mπ,
and the transition function Tr(q, s) = s, for any q and s. (We leave the remaining items
temporarily unspecified.) Let Pm × > be an automaton over m2

π which behaves like Pm
reading only the first component. Similarly, >× Pm reads only the second component.

A. Arnold, H. Michalewski, and D. Niwiński 401

U1 U2

P +2
m ×>

(m−1,.)
��

>× P +1
m

(.,m−1)

\\ P +1
m ×>

(m−1,.)
��

>× P +2
m

(.,m−1)

\\

Figure 2 Automata for U1 and U2 for m odd.

We represent the Σm-automata recognizing U1 and U2 on Figure 2. The states of the
automaton for U1 are {0, 1, . . . ,m− 1} (upper component) and {0′, 1′, . . . , (m− 1)′} (lower
component). In its upper component, the automaton reads the left component of the input
symbols until it eventually encounters a symbol (m − 1, s), for some s. Then the edge is
directed to the state (m− 1)′ in the lower component. Here the automaton reads the right
component of the input symbols until it eventually encounters a symbol (s,m− 1), for some
s, in which case it moves to the state m− 1 in the upper component. The ranks in the upper
component are rank(i) = i+ 2, for i = 0, 1, . . . ,m− 2, and rank(m− 1) = m. The ranks in
the lower component are rank(i′) = i+ 1, for all i. For the initial state we set 0.

The automaton for U2 is defined analogously; the difference concerns only rankings4,
namely rank(i) = i+1, for all i, and rank(i′) = i+2, for i = 0, 1, . . . ,m−2 and rank((m−1)′) =
m. Note that the states m− 1 and (m− 1)′ can be reached only while changing the levels
and, whenever it happens, both automata assume the highest odd rank m.

Each word u ∈
(
m2
π

)ω induces the same run in both automata up to the rankings. Clearly,
a word u causes infinitely many changes of the level if and only if it contains infinitely many
occurrences of m− 1 on both left and right track. By remark above, such a word is accepted
by neither of the automata. On the other hand, if the run on u stabilizes on some level
then one of the automata necessarily accepts, as the ranks they assume in their runs (after
stabilization) differ precisely by 1.

This shows that U1 and U2 are disjoint and U1 ∪ U2 = Im × Im. The inclusion
Km ×Km ⊆ Im × Im is obvious.

If u ∈ Km ×Km then the run on u stabilizes in the upper or lower component (as clearly
u 6∈ Im × Im). Then the automaton for U1, from some moment on, either reads a word
in Km in the upper component or a word in Km in the lower component; in either case it
accepts. A similar argument shows the second inclusion, which completes the proof of the
lemma in case m is odd. The construction for the case of m even is analogous. We leave it
to the reader with Figure 3 as a hint.

J

The properties of U1 and U2 mentioned in Lemma 1 imply a kind of hardness of these sets.
Generally, for an automaton A over an alphabet A of some index (ι, κ), let rankA denote the
function sending a word u ∈ Aω onto the sequence of ranks assumed by A. More precisely,

3 By definition, a deterministic automaton of index (1, 1) accepts no words, and an automaton of index
(0, 0) accepts all words.

4 The somewhat awkward exceptions in ranking of (m− 1) in the first automaton and (m− 1)′ in the
second follow from our desire of having the graphs of both automata the same. Otherwise we could
merge the “nasty” states with their companions.

STACS’12

402 On the separation question for tree languages

U1 U2

Pm ×>

(m,.)
��

>× P−1
m

(.,m)

\\ P−1
m ×>

(m,.)
��
>× Pm

(.,m)

\\

Figure 3 Automata for U1 and U2 for m even.

rankA : Aω → {ι, . . . , κ}ω, and

rankA(u) = rank(r0)rank(r1) . . . , (3)

where r0r1 . . . is the unique run of A on u. If B is another automaton over A with index
(ι, κ), we define rankA×B : Aω →

(
{ι, . . . , κ}2)ω, by

rankA×B(u) = 〈rankA(u), rankB(u)〉.

I Lemma 2. Let A and B be automata of class Πm over some alphabet A, such that
L(A) ∩ L(B) = ∅. Let U1 and U2 satisfy the properties of Lemma 1. Then, for each word
u ∈ Aω,
1. if u ∈ L(A) then rankA×B(u) ∈ U1,
2. if u ∈ L(B) then rankA×B(u) ∈ U2,
3. rankA×B(u) ∈ U1 ∪ U2.

Proof. Generally, if D is a deterministic parity automaton of index (ι, κ) then, by definition
of acceptance,

u ∈ L(D) ⇔ rankD(u) ∈ Lι,κ.

Hence, in our case, u ∈ L(A) ⇒ rankA(u) ∈ Km, and u 6∈ L(B) ⇒ rankB(u) ∈ Km. As
L(A) and L(B) are disjoint, u ∈ L(A) implies rankA×B(u) ∈ Km ×Km, but we know from
Lemma 1 that Km ×Km ⊆ U1. The argument for 2 is similar. Finally, again by disjointness
of L(A) and L(B), we have rankA×B(u) ∈ Km ×Km, for any u, but we know from Lemma 1
that Km ×Km ⊆ U1 ∪ U2, which completes the proof. J

We are now ready to state the main result of this section. Recall that the separation property
for the class Π2 was proved earlier by Selivanov [12], who also gave5 a hint [13] how this
result can be generalized for all classes Πn.

I Theorem 3. The separation property holds for classes Πm and fails for classes Σm of the
index hierarchy of deterministic word automata.

Proof. We will show that any pair of disjoint languages of class Πm over some finite alphabet
A is separable by a language of class ∆m, whereas this property fails for the pair of sets
U1, U2 of Lemma 1 (which are of class Σm).

Let A and B be as in Lemma 2. It follows from 1 and 2 that the inverse image of U1
under the mapping rankA×B, i.e.,(

rankA×B
)−1

(U1) = {u ∈ Aω : rankA×B(u) ∈ U1}

5 More precisely, that author considered the reduction property for the dual classes Σm. See a comment
after Proposition 3.5 in [13].

A. Arnold, H. Michalewski, and D. Niwiński 403

separates L(A) and L(B). Let us see that this set is recognizable by an Σm-automaton.
For an input u, we just use the automaton for U1 reading the subsequent values of the
function rankA×B; the construction is straightforward. In a similar vein we can show that(

rankA×B
)−1

(U2) is in the class Σm as well. Clearly these sets are disjoint as U1 and U2

are disjoint. But it follows from condition 3 of Lemma 2 that they sum up to Aω, hence they
both are of class ∆m.

To show that U1 and U2 are inseparable, we start with the following observation. Suppose
that A and B are Πm-automata over the alphabet m2

π. Then the function rankA×B, which
in this case has type rankA×B :

(
m2
π

)ω → (
m2
π

)ω, has a fixed point. Indeed, a fixed point f
can be defined6 by an inductive formula

f0 =
(
rank(qAI), rank(qBI)

)
fn+1 =

(
rank

(
T̂r
A

(qAI , f0 . . . fn)
)
, rank

(
T̂r
B

(qBI , f0 . . . fn)
))

(where T̂r is the standard extension of Tr from letters to finite words).
Now suppose, for the sake of contradiction, that there is a set C ⊆ mω

π of class ∆m, such
that U1 ⊆ C and U2 ⊆ C. Let A and B be two automata of class Πm, such that

L(A) = C

L(B) = C.

By remark above, the function rankA×B has the fixed point (f0, f1, . . .). On the other hand,
by conditions 1 and 2 of Lemma 2, it reduces C to U1 ⊆ C, and C to U2 ⊆ C. This
contradiction completes the proof. J

4 Alternating hierarchy over trees

In this section we investigate the Rabin-Mostowski index hierarchy for alternating automata
on k-ary trees. A tree language is in the class Σm if it is recognized by an alternating
Σm-automaton; similarly for Πm. A tree language is in the class ∆m if it is simultaneously
Σm and Πm. We show that the separation property fails in general for the classes Σm, for
m ≥ 1.

It will be convenient to have some normal form of alternating automata. We call an
alternating automaton on k-ary trees, A = 〈A,Q∃, Q∀, qI , δ, rank〉, an ∃∀-automaton if it
satisfies the following conditions:
1. qI ∈ Q∃,
2. if (p, s, d, q) ∈ δ is a transition then p ∈ Q∃ iff q ∈ Q∀,
3. for any pair (p, s) ∈ Q×A, there are exactly two transitions (p, s, d, q), (p, s, d′, q′) ∈ δ.
These conditions imply that the graph of the game G(A, t) (see equation (2)) unravels to a
full binary tree, where ∃ and ∀ alternate starting with ∃.

We will focus on the ranks of the states occurring in this tree. More precisely, let the
index of A be (ι, κ). With any tree t : k∗ → A, we associate a binary tree

T (A, t) : 2∗ → {∃,∀} × {ι, . . . , κ}

6 The existence and uniqueness of this fixed point can be also inferred from the Banach Fixed-Point
Theorem.

STACS’12

404 On the separation question for tree languages

as follows. We define an auxiliary function γ : 2∗ → Q× k∗, using the notation own(q) = ξ ∈
{∃,∀}, whenever q ∈ Qξ. The value of γ represents the state and the current position in the
game-play on the tree t. Let γ(ε) = (qI , ε), and T (A, t)((ε) = (own(qI), rank(qI)). Suppose
T (A, t)(v) and γ(v) are defined, say γ(v) = (p, w). By condition 3 above, there are exactly
two pairs that extend (p, t(w)) to a transition in δ. Suppose they are (d, q) and (d′, q′) (in
this pre-defined order, for definiteness). We let γ(v0) = (q, wd) and γ(v1) = (q′, wd′). We
further define T (A, t)(v0) = (own(q), rank(q)) and T (A, t)(v1) = (own(q′), rank(q′)). It is
straightforward to see that

t ∈ L(A) ⇔ T (A, t) ∈Wι,κ (4)

(see page 400 for the definition of Wι,κ). We leave to the reader the proof of the following
simple observation.

I Lemma 4. Any alternating tree automaton can be transformed to an ∃∀-automaton of the
same index, recognizing the same language.

A ∀∃-automaton is defined similarly, with the only difference that qI ∈ Q∀. Clearly, an
analogue of Lemma 4 for ∀∃-automata holds as well.

We are going to define a tree version of the “hard pairs” from Section 3. Let m ≥ 1, and
let U1 and U2 be the languages defined in the proof of Lemma 1. We let

∇1 = Win∃4(U1)
∇2 = Win∀4(U2).

By Fact 1, the sets ∇1 and ∇2 are of class Σm. To have some analogue of Lemma 2, we need
some analogue of the function rankA×B; we will define it only for automata in a special form.

We call a tree t : k∗ → {∃,∀} ×A a ∃∀-tree if

t(v) ↓1=
{
∃ if |v| is even
∀ if |v| is odd.

The concept of a ∀∃-tree is defined analogously. Note that the trees T (A, t) defined above
are ∃∀-trees or ∀∃-trees, whenever A is an ∃∀-automaton or ∀∃-automaton, respectively.

At first, we define a product of a binary ∃∀-tree t1 and a binary ∀∃ tree t2 as a 4-ary
∃∀-tree t1 ? t2 : 4∗ → {∃,∀} ×A×A. It is convenient to fix some bijection 4 ∼ 2× 2, so that
a (finite) word w in 4∗ can be identified with a pair of words v, u in 2∗ of the same length
(such that wi = (vi, ui)); we then use the notation w = (u ◦ v). We then let7

t1 ? t2(u ◦ v) = (t1(u) ↓1, t1(u) ↓2, t2(v) ↓2) .

Now fix k and an alphabet A. Let A and B be two automata on k-ary trees over the alphabet
A, both of the class Πm. Assume moreover that A is an ∃∀-automaton and B a ∀∃-automaton.
For a tree t : k∗ → A, consider an ∃∀-tree T (A, t) and a ∀∃-tree T (B, t). We let

gA×B(t) = (T (A, t) ? T (B, t)). (5)

The following is a (partial) analogue of Lemma 2.

7 Figure 4 at the end of the paper shows how from a green ∃∀ tree t1 and a red ∀∃ tree t2 we obtain a
blue 4-ary tree t1 ? t2.

A. Arnold, H. Michalewski, and D. Niwiński 405

I Lemma 5. With the notations above,
1. if t ∈ L(A) then gA×B(t) ∈ ∇1,
2. if t ∈ L(B) then gA×B(t) ∈ ∇2.

Proof. Assume that t ∈ L(A). It implies, that Eve has a winning strategy σA showing that
T (A, t) ∈Wι,κ. Since L(A) and L(B) are disjoint, Adam has a winning strategy σB showing
that T (B, t) 6∈Wι,κ.

Let σ be the strategy for Eve on the tree T (A, t) ? T (B, t) which combines σA and σB.
Namely, σA, σB choose one of the two options available for respectively Eve and Adam and σ
chooses the uniquely defined combination of these two options. Since σA leads to a sequence
in Km, σB leads to a sequence in the complement of Km, the resulting sequence defined by
σ belongs to Km ×Km, in particular it belongs to U1.

Assume now that t ∈ L(B). It implies, that Eve has a winning strategy σB showing that
T (B, t) ∈Wι,κ. Since L(A) and L(B) are disjoint, Adam has a winning strategy σA showing
that T (A, t) 6∈Wι,κ.

Let σ be the strategy for Adam on the tree T (A, t) ? T (B, t) which combines σA and σB.
Namely, σA, σB choose one of the two options available for respectively Adam and Eve and σ
chooses the uniquely defined combination of these two options. Since σA leads to a sequence
in the complement of Km, σB leads to a sequence in Km, the resulting sequence defined by
σ belongs to Km ×Km, in particular it belongs to U2. J

The reader may have noticed that the point 3 of Lemma 2 is missing in Lemma 5. This is
precisely why we fail to extend the positive results on the classes Πm from words to trees.

We can state the main result of the paper.

I Theorem 6. The separation property fails for classes Σm of the index hierarchy of altern-
ating tree automata. More specifically, for any m ≥ 2, there exists a pair of sets of 4-ary
trees of class Σm inseparable by any set of class ∆m.

Proof. The proof is similar to the proof of Theorem 3. To show that ∇1 and ∇2 are
inseparable, we start with the following observation. Suppose that A and B are Πm-automata
over the alphabet {∃,∀} × (ι, κ)2. Suppose moreover that A is an ∃∀-automaton and B is a
∀∃-automaton. We will show that the mapping gA×B has a fixed point t. Since the range of
the mapping gA×B consists of ∃∀ trees, it implies the first coordinate of t(u ◦ v) has to be ∃
for u ◦ v of even length and ∀ otherwise. The second and third coordinates of t(u ◦ v) for
u = u0 . . . un+1 and v = v0 . . . vn+1 will be defined along the same lines as in the proof of
Theorem 3, however we have to take care of ε-transitions. For this sake we will define the
token mappings γA and γB like the token mapping γ used in the definition of T (A, t) (see
(4)). The mappings will be defined successively together with the tree t.

Let us define

t(ε) ↓2= rank(qAI), t(ε) ↓3= rank(qBI).

The A- and B- tokens are placed in the root. In automaton A there are two transitions
from qI on the letter t(ε). Similarly, there are two transitions in B. The root of t has four
successors uniquely defined by these two pairs of transitions. Assume now that Eve in A and
Adam in B made their first moves. These two moves uniquely define a vertex u0 ◦ v0 in the
tree t, that is one of the four successors of the root of t. If Eve decided for an ε-transition
then the second coordinate of γA remains unchanged. Otherwise we move the token to
u0 ◦ v0. Similarly if Adam decided for an ε-transition then the second coordinate of γB
remains unchanged, otherwise we move the token to u0 ◦ v0. In automaton A there are two

STACS’12

406 On the separation question for tree languages

transitions from the state γA(u0) ↓1 on the letter t(γA(u0) ↓2). Similarly, there are two
transitions in B from the state γA(v0) ↓1 on the letter t(γB(v0) ↓2). The vertex t(u0 ◦ v0)
has four successors uniquely defined by these two pairs of transitions. We extend γA and γB
accordingly and continue building a full 4-ary tree t.

It is easy to verify that the tree t is a fixed point8 of gA×B. Now suppose, for the sake of
contradiction, that there exists a set C of trees over the alphabet {∃,∀} × (ι, κ)2 such that

C belongs to the class ∆m,
∇1 ⊆ C and ∇2 ⊆ C.

Let A and B be two automata of class Πm, such that

L(A) = C

L(B) = C.

By the remark above, the function gA×B has the fixed point t. On the other hand, by
conditions 1 and 2 of Lemma 5, it reduces C to ∇1 ⊆ C, and C to ∇2 ⊆ C. This
contradiction completes the proof. J

Figure 4 Operation ? on a green ∃∀ tree t1 and a red ∀∃ tree t2 gives the blue 4-ary tree.

The consideration of 4-ary trees in Theorem 6 made the proof more transparent, but the
result can be adapted to binary trees as well.

I Corollary 7. There exists a pair of sets of binary trees of class Σm inseparable by any set
of class ∆m.

Sketch of proof. Let ∇1,∇2 be as in Theorem 6. We define languages V1, V2 of binary trees
and a mapping η such that ∇i = η−1[Vi]. Let V1 consist of binary trees t over the alphabet
{∃,∀} ×mπ such that
1. the first two levels of t, that is the root and its children, belong to Eve, as well as all the

levels 4k, 4k + 1, for k = 0, 1, 2, . . .,
2. the levels 4k + 2, 4k + 3, for k = 0, 1, 2, . . ., belong to Adam,
3. Eve has a strategy, such that if the sequence (∃, w0), (∃, v0), (∀, w1), (∀, v1), (∃, w2), (∃, v2), . . .

represents a game-play then (w0, v0), (w1, v1), (w2, v2), . . . belongs to U1.

8 As in Theorem 3, the existence and uniqueness of this fixed point can be also inferred from the Banach
Fixed-Point Theorem.

A. Arnold, H. Michalewski, and D. Niwiński 407

The set V2 satisfies the same conditions 1, 2, and 3 is replaced by the requirement that Adam
has a strategy, which forces represents a game-play (w0, v0), (w1, v1), (w2, v2), . . . into U2.

To a 4-ary tree t over the alphabet {∃,∀} × (mπ)2, we now assign a binary tree t′ = η(t)
over the alphabet {∃,∀}×mπ. As before, it is convenient to use a bijection 4 ∼ 2× 2, so that
a node of t of level ` can be presented by (x0, y0)(x1, y1), . . . , (x`−1, y`−1), with xi, yi ∈ 2.
The root of t′ is labeled (t(ε) ↓ 1, t(ε) ↓ 2), and the second level is labeled by (t(ε) ↓ 1, t(ε) ↓ 3)
in both directions. More specifically, whenever

t ((x0, y0)(x1, y1), . . . (x`−1, y`−1)) = (ξ, a, b),

we let

t′ (x0, y0, x1, y1, . . . , x`−1, y`−1) = (ξ, a)
t′ (x0, y0, x1, y1, . . . , x`−1, y`−1, z) = (ξ, b) for z = 0, 1.

It is straightforward to verify that ∇i = η−1[Vi], for i = 1, 2. Suppose that V1, V2 are
separated by a set C of class ∆m. It is easy to check that the preimage under the mapping η
of a tree language recognized by an alternating automaton of an index (i, n) can be itself
recognized by an automaton of the same index. Hence η−1[C] is in the class ∆m and separates
∇1 and ∇2, which contradicts Theorem 6. J

References
1 Arnold, A., The µ-calculus alternation-depth hierarchy is strict on binary trees. RAIRO-

Theoretical Informatics and Applications 33 (1999), 329–339.
2 Arnold, A., and Niwiński, D., Fixed point characterization of weak monadic logic definable

sets of trees. In M.Nivat, A.Podelski, editors, Tree Automata and Languages, Elsevier, 1992,
159-188.

3 Arnold, A., and Niwiński, D., Rudiments of µ-Calculus. Elsevier Science, Studies in Logic
and the Foundations of Mathematics, 146, North–Holland, Amsterdam, 2001.

4 Bradfield, J.C., Simplifying the modal mu-calculus alternation hierarchy. In:
Proc. STACS’98, Lect. Notes Comput. Sci. 1373 (1998), 39–49.

5 Hummel, S., Michalewski, H., and Niwiński, D., On the Borel Inseparability of Game Tree
Languages. STACS 2009:565-575.

6 Kaminski, M., A Classification of omega-Regular Languages. Theor. Comput. Sci. 36:
217-229 (1985).

7 Kechris, A.S., Classical descriptive set theory. Springer-Verlag, New York, 1995.
8 Moschovakis, Y. N., Descriptive Set Theory. North Holland, 1980.
9 Muller, D.E., Saoudi, A., and Schupp, P.E., Alternating Automata, the Weak Monadic

Theory of Trees and its Complexity. Theoret. Comput. Sci. 97(2): 233-244 (1992).
10 Rabin, M.O., Weakly definable relations and special automata. In: Mathematical Logic

and Foundations of Set Theory, Y. Bar-Hillel ed., 1970, 1-23.
11 Santocanale, L., and Arnold, A., Ambiguous classes in µ-calculi hierarchies. Theoret. Com-

put. Sci. 333 (2005), 265-296.
12 Selivanov, V., Fine hierarchy of regular ω-languages. Theoret. Comput. Sci. 191 (1998),

37–59.
13 Selivanov, V., Fine hierarchy and m-reducibilities theoretical computer science. The-

oret. Comput. Sci. 405 (2008), 116–163.
14 Thomas, W., Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, volume 3, Springer-Verlag, 1997, pp. 389–455.
15 Wagner, K., On ω-regular sets. Information and Control, 43:123–177 (1979).

STACS’12

	Introduction
	Index hierarchy
	Deterministic hierarchy over words
	Alternating hierarchy over trees

