Efficient algorithms for highly compressed data:
The Word Problem in Higman’s group is in P

Volker Diekert!, Jiirn Laun!, and Alexander Ushakov?

1 FMI, Universitat Stuttgart
Universitatsstr. 38, 70569 Stuttgart, Germany
{diekert,laun}@fmi.uni-stuttgart.de

2 Department of Mathematics, Stevens Institute of Technology
Hoboken, NJ 07030, USA
sasha.ushakov@gmail.com

—— Abstract

Power circuits are data structures which support efficient algorithms for highly compressed in-
tegers. Using this new data structure it has been shown recently by Myasnikov, Ushakov and
Won that the Word Problem of the one-relator Baumslag group is is decidable in polynomial time.
Before that the best known upper bound was non-elementary. In the present paper we provide
new results for power circuits and we give new applications in algorithmic group theory: 1. We
define a modified reduction procedure on power circuits which runs in quadratic time thereby
improving the known cubic time complexity. 2. We improve the complexity of the Word Problem
for the Baumslag group to cubic time thereby providing the first practical algorithm for that
problem. 3. The Word Problem of Higman’s group is decidable in polynomial time. It is due to
the last result that we were forced to advance the theory of power circuits.

Thanks. Part of this work was done when the first two authors visited the Stevens Institute
of Technology in September 2010 and March 2011. The support and the hospitality of the Stevens
Institute is greatly acknowledged. The work of the third author was partially supported by NSF
grant DMS-0914773.

1998 ACM Subject Classification F.2.2 Computations on discrete structures, G.2.2 Graph Al-
gorithms

Keywords and phrases Algorithmic group theory, Data structures, Compression, Word Problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.218

1 Introduction

Power circuits have been introduced in [18] as a data structure for integers which supports
+, —, <, and (x,y) — 2%y. Thus, by iteration it is possible to represent, by very small
circuits, huge values (involving the tower function). Efficient algorithms for power circuits
yield efficient algorithms for arithmetic with integers in highly compressed form. This idea of
efficient algorithms for highly compressed data is the main underlying theme of the present
paper. In this sense our paper is simultaneously about compression, data structures and
about algorithmic group theory.

In 1910 Max Dehn [5] formulated fundamental algorithmic problems for groups. The
most prominent one is the Word Problem: “Given a finite presentation of some fixed group
G, decide whether an input word w represents the trivial element 14 in G.” It took until
the 1950’s that Novikov and Boone constructed (independently) finitely presented groups
with an undecidable Word Problem [21, 3]. There are also finitely presented groups with a
Heenscd nder Creative Commons Liconse NC-ND LV 0\ o atmerica
29th Symposium on Theoretical Aspects of Computer Science (STACS’12). m l_ ASPECTS
Editors: Christoph Diirr, Thomas Wilke; pp. 218-229 17 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.218
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

V. Diekert, J. Laun, and A. Ushakov

decidable Word Problem but with arbitrarily high complexity [25, Theorem 1.3]. In these
examples the difficult instances are extremely sparse and, inherently due to the constructions,
these groups never appear in any natural setting.

A finitely presented group has a decidable word problem if and only if there is a recursive
upper bound on its Dehn function. Although the Dehn function gives a lot more of information
about the group (e.g., if it is linear, then the group is hyperbolic and the Word Problem
is linear), the Dehn function is not necessarily a good indicator for the complexity of the
Word Problem [16, 23]. However, for “natural examples” the connection between the Dehn
function and the complexity of the Word Problem was believed to be rather tight.

Such a natural example was the Baumslag group G(,2) (sometimes called Baumslag-
Gersten group). It is a non-cyclic one-relator group all of whose finite factor groups are
cyclic [1]. Being a one-relator group the word problem is decidable. However, the only
known general way to solve the Word Problem in one-relator groups is by a so-called Magnus
break-down procedure [17, 15] which computes normal forms. It was developed in the 1930s
and there has been no progress ever since. Its time-complexity on G(; 2y is non-elementary,
since it cannot be bounded by any tower of exponents. Actually, Gersten showed that the
Dehn function of G(1 2 is non-elementary [9], see also [24]. Therefore (until recently) G4 2
was the simplest candidate for a group with a non-polynomial Word Problem in the worst
case. But then it turned out that its Word Problem is in P: Using the ability of power
circuits to compress huge numbers, Myasnikov, Ushakov and Won showed that the Word
Problem of the Baumslag group is solvable in polynomial time [19].

It should be noted that the question of algorithmic hardness of the Word Problem in
one-relator groups is still wide open, but some researchers conjecture that it is polynomial
(even quadratic, see [2]), based on observations on generic-case complexity [11].

The contributions of the present paper are as follows: In a first part, we give new efficient
manipulations of the data structure of power circuits. We improves the complexity of the
reduction algorithm of power circuits from cubic to quadratic time. With the help of this
improved reduction algorithm (and some other ideas) we can, as our second result, reduce
the complexity of the Word Problem in G ; o) significantly from O(n”) in [19] down to O(n?).
This cubic algorithm is the first practical algorithm which works for that problem on all
reasonably short instances. The algorithm has been implemented and tested. It is available
in the CRAG library [20].

Another new application of power circuits shows that the Word Problem in Higman’s
group H, is decidable in polynomial time. This is our third and main result. Higman’s group
H, is a very interesting group with 4 generators and 4 simple defining relations. Higman [10]
constructed Hy in 1951 as the first example of a finitely presented infinite group where all
finite quotient groups are trivial. This leads immediately to an infinite simple group which is
finitely generated; and no such group was known before Higman’s construction. The group
H, is constructed by amalgamation (see Section 5 or [27]), which yields decidability of the
Word Problem, but the procedure computes normal forms and the length of normal forms
can be a tower function in the input length. Thus, Higman’s group was another natural, but
rather complicated candidate for a finitely presented group with an extremely hard Word
Problem. Our paper eliminates Hy as a candidate: We show that the Word Problem of Hy is
in O(n%). Actually, the algorithm for H, is more complicated than for the Baumslag group
G1,2)-

We obtain this result by new techniques for efficient manipulations of multiple markings
in a single power circuit and their ability for huge compression rates. Compression techniques
have been applied elsewhere for solving word problems, [12, 13, 26]. But in these papers

219

STACS’'12

220

The Word Problem in Higman’s group is in P

the authors use straight-line programs whose compression rates are far too small (at best
exponential) to cope with Baumslag or Higman groups.

Due to lack of space in this conference version of the paper, we present a slightly less
efficient, yet much less technical version of the reduction procedure. In formal statements we
use the “soft-O notation”. Full proofs for the complexity bounds without the poly-logarithmic
factors as stated e.g. in the abstract can be found online [7].

Algorithms and problems are classified by their time complezrity on a random-access
machine (RAM).

The tower function 7 : N — N is defined as usual: 7(0) = 1 and 7(i + 1) = 27® for i > 0.

21
For instance 7(4) = 22° = 26 and 7(6) written in binary cannot be stored in the memory
of any conceivable real-world computer. We use standard notation and facts from group
theory as found in the classical text book [15].

2 Power circuits

This section is based on [18], but with improved time complexities. In addition, we provide
new material such as our treatment of multiple markings which makes the data structure
more versatile. This is used for our results on Higman’s group. Let I" be a set and ¢ be a
mapping 0 : I' x I' = {—1,0,+1}. This defines a directed graph (I, A), where I is the set of
vertices and the set of directed arcs (or edges) is A =06 ={(P,Q) €' xI'| §(P,Q) # 0}
(the support of the mapping ¢). Note that the sign of (P, Q) is to be read as the edge’s
label and has nothing to do with its orientation. Throughout we require that (I', A) is a dag
(directed acyclic graph). In particular, 6(P, P) = 0 for all vertices P.

A marking is a mapping M : ' — {—1,0,41}. We can also think of a marking as a
subset of I where each element in M has a sign (+ or —). (Thus, we also speak about a
signed subset.) Each node P € T is associated with a marking, which is called its A-marking
or successor marking A p, consisting of the target nodes of outgoing arcs from P:

Ap:T'—{-1,0,+1}, @~ 4(P,Q)

Thus, the marking Ap is the signed subset which corresponds to the targets of outgoing arcs
from P. We define the evaluation £(P) of a node (¢(M) of a marking resp.) by imposing:

g(P) = 2°™r) for a node P, e(M) = Z M(P)e(P) for a marking M.
Per

Leaves evaluate to 1. The values €(P) and (M) can be computed bottom-up in the dag,
making ¢(P) and (M) well-defined real numbers. The evaluation of a node P is positive.

» Definition 1. A power circuit is a pair IT = (T,) with § : T' x I' = {—1,0,+1} such that
(T, A) is a dag as above with the additional property that e(M) € Z for all markings M.

We will see in Corollary 8 that it is possible to check in quasi-quadratic time whether a
dag (T, A) is a power circuit. (One checks e(Ap) > 0 for all nodes P.)

» Example 2. We can represent every integer in the range [—n,n| as the evaluation of some
marking in a power circuit with node set {Py, ..., P;} such that e(P;) = 2¢ for 0 < i < ¢ and
¢ = |logy n|. Thus, we can convert the binary notation of an integer n into a power circuit
with O(log |n|) vertices and O((log |n|) loglog |n|) arcs.

» Example 3. A power circuit can realize tower functions, since a chain of n+ 1 nodes allows
us to represent 7(n) as the evaluation of the last node.

V. Diekert, J. Laun, and A. Ushakov

We denote the empty marking (the constant zero mapping) by 0 and for any marking M
there is an obvious definition of —M having e(—M) = —¢(M). The insertion of a new node

CLONE(P) without incoming arcs and with Acyonepy = Ap is called cloning of a node P.

The notion is extended to markings, where CLONE(M) is obtained by cloning all nodes in
(M) and defining CLONE(M)(CLONE(P)) = M(P) for P € o(M) and CLONE(M)(P) =0
otherwise. We say that M is a source, if no node in o(M) has any incoming arcs. Note that
CLONE(M) is always a source.

If M and K are markings, then M + K given by (M + K)(P) = M(P) + K(P) is a
mapping where —2 and 2 may appear as images. For every P with M(P) + K(P) = %2, let
P’ = CLONE(P) and redefine M + K by putting (M + K)(P) = (M + K)(P') = £1. In
this way we can realize addition (and subtraction) in a power circuit by cloning at most
|o(M)No(K)| nodes. Note that any other marking in the power circuit remains unaffected
by this operation.

Next, consider markings U and X with £(U) = u and ¢(X) = x such that u2” € Z (e.g.
due to z > 0). We obtain a marking V with (V) = u2* and |0(V)| = |o(U)| as follows.

First, let V = CLONE(U) and X’ = CLONE(X). Next, introduce additional arcs from every
P’ € o(V) to every Q' € o(X’) with signs given by 6(P’, Q') = X'(Q’). Note that the cloning
of X avoids double arcs from V to X. The cloning of U is not necessary, if U happens to be
a source.

We now introduce the reduction of a power circuit which allows us to compare markings.

» Definition 4. A reduced power circuit consists of

i) a power circuit IT = (T, §) in which no two different nodes evaluate to the same number,
ii) an ordered list [P,..., P,] of the nodes T" such that e(P;) < e(Pi41) for all 1 < i <,
iii) a bit vector [b(1),...,b(n — 1)] where b(i) = 1 if and only if 2¢(P;) = e(P;11).

» Proposition 5 ([18]). There is an O(|T'|) time algorithm which on input a reduced power
circuit and two markings K and M compares £(K) and e(M). It outputs whether the two
values are equal and if not, which one of them is larger. In the latter case it also tells whether
le(K) — e(M)] is exactly 1 or > 2. (This is essentially an argument about binary sums
im0 @i - 2¢ with a; € {—1,0,+1}.) <

Algorithm 1 EXTENDREDUCTION

Input: A dag IT = (I’ U U, §) with no arcs pointing from I" to U, such that (T',d|rxr) is a
reduced power circuit and a list M of markings of II.
Output: The output of the procedure is “no”, if II is not a power circuit (because £(P) ¢ Z
for some node P). Else, the output is a reduced power circuit II' = (T, ¢’) and a list M’ of
markings of ITI' where:

i) T g Ind and 6|F><F = 6/|F><F

i) 7] < |1 + 3|0
iii) For all @ € U there is a node Q' € IV with £(Q) = &(Q’).
iv) For every marking M € M there is a corresponding marking M’ € M’ with e(M’) =

£(M) and |o(M")] < |o(M)].

compute a topological order [Qi,...,Qu|] of U, i.e., an ordering of the nodes such
that for 7 < j there are no arcs from ; to @Q;;

for i=1,...,|U| do
U:=U\{Qi};
let [Pi, Ps,...] be the ordered list of the current node set I';

221

STACS’'12

222

10

11

12

13

14

15

16

17

18

19

20

21

22

23

The Word Problem in Higman’s group is in P

using binary search, find the minimal j such that
e(Qi) <e(Pj); /* check e(Aq,) <e(Ap;) */
if e(Ag;) <0 then return no fij;
if (Q:) <e(P;) then /* check e(Ag,) <e(Ap;) */
I'=TuU {Qz},
insert {Q;} into I'’s sorted list of nodes between P, and Pji1;
set the bit vector for @); according to whether £(Aq,)+1=¢e(Ap;)
else /* e(Q;) =¢e(Pj) */
find the maximum n such that b(1)=...=bn—1)=1;
as in example 2, create a new node B with £(B) =2""! and adjust the
ordered list of I' and the bit vector accordingly;
using the ordered list of I' and the bit vector, find the maximal number k
such that there is a chain of nodes P; = Ro, R1,...,Rr—1 with
e(Re) = e(P;) -2 (for 0 <l <k);
Ry := CLONE(Rk—1) ;
find the maximal ¢ such that Ag, (P1) =...=Ag, (Pi—1) = +1;
remove Pi,...,P;—, from Agr, and set Ag,(P;):=+1 instead;
insert Rj into I'’s ordered list between Pji;_; and Pj;; and set the bit
vector for Rj according to whether e(Ag,)+1=¢e(Ap

i)
foreach M € MU{Aqg:Q € U} with M(Q;) =:s#0 do "
remove (); from M ;
£:=0; while M(R;) =s do remove R; from M od;
let M(Ry) := M(Re)+s
od fi od

» Theorem 6. The procedure EXTENDREDUCTION given in Algorithm 1 is correct and runs
in time O((IT) +|U)) - |U| + |o(M1)| + ... + |o(Mpn)]), where My, ..., My, are the markings
in M whose support contains nodes in U.

Proof. In the outer loop, the nodes are moved from U to I' one by one. The topological
order ensures that arcs originating from the currently processed node @; all end in I'. The
binary search used to determine the right place of U; inside I" takes log(|T'| +|U|) comparisons
(remember that |T| grows in each cycle) and thus O(|T'| + |U|) time.

For the insertion of U; into I', we distinguish two cases. The first one (lines 7 to 10) is
rather easy: If there is no node in I' with the same value as U;, we can just insert U; and
adjust the bit vector using the comparision procedure from 5. No marking involving U; (this
includes A markings of other nodes in U) needs to be changed. The second case (lines 11
to 23) is somewhat more complicated. Here we have ¢(U;) = €(V;). The general idea is to
remove U; and use Vj instead in all markings M having U; in their support. However, this
does not work when M (U;) = M(V}) (M would become doubly marked or target of a double
arc). In that case, we remove both U; and V; from M and replace them by a node R; with
value 2 - ¢(P;). If again, Ry becomes doubly marked by M, repeat (lines 19 to 23). This
continues until we reach a node unmarked by M (or marked with the opposite sign) or when
the sequence of nodes starting at P; and each node having double the value of its predecessor
(we call such a sequence a chain) ends. In order to cope with the latter, we create a new node
Ry (which is, of course, completely unmarked) in lines 12 to 18. Doubling a node is done by
increasing its A-marking by one in the obvious way. An extension of the chain starting at
the 1-node might be needed, so we create that first (new node B).

Now, let us look at the time complexity. Topological ordering of U takes linear time in
the number of arcs which is bounded by |U| - (|I'| + |U|). For the analysis of the main loop,
let us first ignore lines 19 to 23. Apart from the log(|T'| +|U|) comparisons used in the binary
search (each O(|T| time), we only need a constant number of comparisons and O(|T| + |U])
time e.g. for going through the bit vector. This is O((|T| + |U])) per iteration.

V. Diekert, J. Laun, and A. Ushakov

Now to lines 19 to 23: As for the adjustment of markings, note that in every cycle
of the inner while loop, we lose one mark or one edge originating in U. This adds up to
O+ 1U)) - |U| + |o(M1)| + ... 4+ |o(My)]). Note that markings having their support
entirely in I" never have to be altered during the whole process. |

» Corollary 7. There is a O(|T|> + Y mem |o(M)]) time procedure REDUCE that reduces a
power circuit II = (f, 3) with markings M. The number of nodes at most triples. This is a
special case of Theorem 6 where T =0 and U = I. <

» Corollary 8. As a by-product, the procedure REDUCE tests whether a dag (T',d) defines a
power circuit (i.e., all markings evaluate to integers). |

By introducing a more sophisticated data structure, one gets rid of the log factors in the
time complexity of EXTENDREDUCTION and REDUCE, see [7]. Note that quadratic time is
optimal, since the the number of arcs can be quadratic in the number of nodes.

3 Arithmetic in the semi-direct product Z[1/2] x Z

The basic data structure for this paper deals with the semi-direct product Z[1/2] x Z. Here
7[1/2] denotes the ring of rational numbers with denominators in 2V (It is also known as
the ring of dyadic rationals.) Thus, an element in Z[1/2] is a rational number r which can

be written as r = u2® with u,x € Z. We view Z[1/2] as an abelian group with addition.

Multiplication by 2 defines an automorphism of Z[1/2], and hence the semi-direct product
Z[1/2] x Z becomes a (non-commutative) group where elements are pairs (r,m) € Z[1/2] x Z
and with the following explicit formulae for multiplication and inverses:

(rym)-(s,n) = (r+2ms,m+n), (r,m)~t = (=r27™ —m)

The group Z[1/2] x Z is isomorphic to the Baumslag-Solitar group BS(1,2) = (a,t | tat ™! =
a?) via the mapping a <> (1,0),t <> (0,1).

A sequence of s group operations may lead to exponentially large or exponentially small
values in the first component. Binary representation can cope with these values. We equip
Z[1/2] x Z with a partially defined swap operation. For (r,m) € Z x Z C Z[1/2] X Z we
define swap(r,m) := (m,r). This looks innocent, but note that a sequence of 29 defined
operations starting with (1,0) may yield a pair (0, 7(n)) where 7 is the tower function. Indeed
swap(1,0) = (0,1) = (0,7(0)) and

swap((0,7(n))(1,0)(0, —7(n))) = swap(r(n + 1),0) = (0,7(n + 1)). (1)

We also use triples to denote elements in Z[1/2] x Z. A triple [u,z, k] with u,z,k € Z
and z < 0 < k denotes the pair (u2?,k + x) € Z[1/2] x Z. For each element in Z[1/2] x Z
there are infinitely many corresponding triples. Using the generators a and ¢ of BS(1,2) one
can write:

[u,z, k] = (u2%, k+) = (0,z)(u, k) € Z[1/2) X Z
= t*a"t* € BS(1,2) and
[w,z,k] - [v,9,0] = [u27Y + 02" 2 4y, k + (]
In what follows we use power circuits with triple markings for elements in Z[1/2] x Z. For
T = [U, X, K], where U, X, K are markings in a power circuit with e(U) = u, ¢(X) =2 <0,
e(K) =k >0, we define (T) € Z[1/2] x Z to be the triple e(T') = [u, z, k] = (u2%,x + k).
Let us note that the Word Problem of (Z[1/2] x Z, -,swap) is solvable in polynomial time

7).

223

STACS’'12

224

The Word Problem in Higman’s group is in P

4 Solving the Word Problem in the Baumslag group

The Baumslag group! G(1,2) is a one-relator group with two generators a and b and the
defining relation a?’ = a2. (The notation g" means conjugation, here g" = hgh~'. Hence
a? = bab=taba=tb=1.) The group G (1,2) can be written as an HNN extension of BS(1,2) ~
Z[1/2] x Z with stable letter b; and BS(1,2) is an HNN extension of Z ~ (a) with stable
letter t:

(a,b| a” = a®) ~ {a,t,b | a' = a?,a® = t) ~ HNN((a,t | a' = a?),b, (a) ~ (t))
~ HNN (HNN((a), t, (a) ~ (a®)),b, (a) ~ (t))

Before the work of Myasnikov, Ushakov and Won [19], G(; 2y had been a possible candidate
for a one-relator group with an extremely hard (non-elementary) word problem in the worst
case by the result of Gersten [9]. (Indeed, the tower function occurs as follows: Let T'(0) = ¢
and T(n + 1) = bT(n)aT(n)~'b~'. Then T(n) = t"™) by a translation of Equation 1.) The
purpose of this section is to improve the O(n”) time-estimation of [19] to (quasi-)cubic time.
Theorem 9 yields the first practical algorithm to solve the Word Problem in G(; o) for a
worst-case scenario?. It has been implemented and runs in reasonable time on instances of
several thousand letters.

» Theorem 9. The Word Problem of the Baumslag group G2y is decidable in time 5(n3)

Proof. We assume that the input is already in compressed form, given by a sequence of
letters b, b~! and triple markings [U, X, K|, the latter representing elements in Z[1/2] x Z,
which in turn encode words over a™’s and t*1’s. We use the following invariants:

i) U, X, K have pairwise disjoint supports.
ii) U is a source.

)
iii) All incoming arcs to X U K have their origin in U.
iv) Arcs from U to X have the opposite sign of the corresponding node-sign in X.

These are clearly satisfiable in case we start with a sequence of a*!’s, t*1’s, and b*!’s
(e.g. create disjoint power circuits, one for each marking, as in Example 2). The formula
[u, 2, k] - [v,y,€] = [u27Y +v2% 2 +y, k+ £ allows to multiply elements in Z[1/2] x Z without
destroying the invariants or increasing the total number of nodes in the power circuits (the
invariants make sure that cloning is not necessary). The total number of multiplications is
bounded by n. Taking into account that there are at most n? arcs, we are within the time
bound O(n?).

Now we perform leftmost Britton reductions, see [15]. In terms of group generators
this means replacing factors ba®*b~! by t* and b=t*b by a® (always replacing the leftmost
occurance first). Thus, if we see a subsequence b[u, x, k]b~!, then we must check if x + &k = 0
and after that if u2® € Z. If we see a subsequence b~ ![u, z, k]b, then we must check u = 0.
In the positive cases we swap, in the other case we do nothing. Let us give the details: For a
test we reduce a copy of the circuit using REDUCE which takes time 6(n2) After each test
for a Britton reduction, the copy is deleted. There are two possibilities for necessary tests.

1.) w = 0. If yes, remove in the original power circuit the source U, this makes X U K a
source; replace [u,x, k] by [z + k,0,0]. The invariants are satisfied.

! sometimes called Baumslag-Gersten group, not to be confused with the Baumslag-Solitar group BS(1,2)

2 It is easy to design simple algorithms which perform extremely well on random inputs. But all these
algorithms fail on short instances, e.g. in showing ¢tT'(6) = T'(6)t.

V. Diekert, J. Laun, and A. Ushakov

2.) z+k = 0. If yes, check whether u2® € Z. If yes, replace [u, z, k] in the original power

circuit by either [0, u2%,0] or [0,0,u2%] depending on whether u2” is negative or positive.

We get u2® without increasing the number of nodes, since arcs from U to X have the
opposite signs of the node-signs in X. Thus, if E has been the set of arcs before the test,
it is switched to U x X \ E after the test. The new marking for u2® is a source and does
not introduce any cycle, because its support is still the support of the source U.
It is easy to see that computing a Britton reduction on an input sequence of size n, we need
at most 2n tests and at most n of them are successful. Hence we are still within the time
bound O(n?). <

5 Solving the Word Problem in Higman’s group H,

The Higman group H, has a finite presentation with generators ai,...,a, and defining
relations apa,_1a,' = a2, for all p € Z/qZ. It is known [27] that H, is trivial for ¢ < 3 and
infinite for ¢ > 4. From now on, we focus on the group H,; which is the one usually referred
to as the Higman group. This group was the first example of a finitely generated group where
all finite quotient groups are trivial. It was another potential natural candidate for a group
with an extremely hard (non-elementary) word problem in the worst case. Indeed, define:

w(p,0) = a, (p € Z/AZ), w(p — 1,5+ 1) = w(p,i)a,—1w(p,i)~* (i € N,p € Z/AZ)
By induction, w(p,n) = a;(n) € Hy, where 7(n) is the n-th value of the tower function, but
the length of the words w(p,n) is 2"+! — 1, only. Hence there is a “tower-sized gap” between
input length and length of a canonical normal form.

We define the group G2 by the generators a; and as, and definining relation asaiay L= a%.

In the same way we define Ga3, G34, and G41. As we saw in Section 3, each of these groups
is isomorphic to the Baumslag-Solitar group BS(1,2) and to Z[1/2] x Z. Furthermore, we
define the group G123 by the generators a;,as, as and defining relations asajay ' — 42 and
a3a2(13_1 = a3. (Similarly define G34;.) We have G123 = G2 *, Gao3 where Fy is the free
subgroup of both Gi2 and Gas generated by as. Finally, we get Hy as an amalgamated
product

Hy ~ Gia3 *py, G341,

where Fy3 is the free subgroup of rank two of G123 and G341 with basis {a1, a3}, see [27].

This isomorphism yields a direct proof that Hy is an infinite group, see [27]. In the
following we use some well-known facts about amalgamated products, see [15, 27, 6]. In
order to solve the Word Problem, we start with an alternating sequence of group elements
from G123 and G341. The sequence can be shortened, only if one factor happens to be in the
subgroup Fi3. In this case we swap the factor from G123 to G341 and vice versa. By abuse
of language we call this procedure again a Britton reduction. (This is perhaps not standard
notation, but it conveniently unifies the same phenomenon in amalgamated products and
HNN-extensions.) A sequence evaluating to 1 in H4 can be entirely eliminated using these
kinds of Britton reductions.

Elements in the groups G; ;11 (i € Z/4Z) are represented by triple markings T' = [U, X, K|
in some power circuit. In order to remember that we evaluate 7" in the group Gj 41, we give
each T a type (i,i+ 1), which is recorded as a subscript. For (T") = [u, z, k| we obtain:

T k
e(Ti,i+1)) = ai1aiaiy, € Gy it1
= a??afilk if u2® e Z

225

STACS’'12

226

The Word Problem in Higman’s group is in P

From now on we work with a single power circuit IT together with a sequence (T});cs
of triple markings of various types. This is given as a tuple 7 = (I', §; (7)) jes). If (T, 9) is
reduced, then 7 is called a main data structure .

» Definition 10. The weight w(T') of a triple marking T' = [U, X, K] is defined as w(T') =
lo(U)] + |o(X)| + |o(K)|. The weight w(T) of a main data structure 7 is defined as
w(T) =2 e w(T}). Its size||T]| is defined by [T = |T'[.

The following basic operations are defined on a main data structure. Applying a basic
operation means replacing the left-hand side of the equation by the right-hand side, thus
forgetting any markings of the replaced triple(s). To improve readability, we write them
down only for G123, but they are also defined for G341.

Multiplication: [u,z,k]12) - [v,y,](1,2) = [u27Y + w2k x4y k4 1,2

Swapping from (1,2) to (2,3): [0,z,k]12) = [z + k,0,0](2,3
[0,0,2](1,2) forz>0
[0, z, 0](1’2) for z < 0.

Splitting: [u, z, k](1,2) = [u2,0,0](1,2) - [0, 2, k](1 2) for u2® € Z

[, 2z, k](2,3) = [0,2, K] (2.3) - [u27",0,0](2,3) for u2™* € Z
We allow splitting operations only when immediatelly followed by a multiplication, thus
we never increase the number of triple markings inside 7T .

Swapping from (2, 3) to (1,2): [2,0,0]2,3) = {

We keep T as a main data structure by doing addition and multiplication by powers of 2
using clones (as described in Section 2) and calling EXTENDREDUCTION on these after each
basic operation.

» Proposition 11. Let 7 = (I, §; (T})jes) be a main data structure of size at most m,
weight at most w (and with |J| +w < m). The following assertions hold.

i) No basic operation increases the weight of 7.
ii) Each basic operation increases the size || T|| by O(w).
i) Bach basic operation takes time O(mw).

) A sequence of s basic operations takes time (5(32m2) and the size of 7 remains bounded

by O(m + sw).

v

Proof. We can do the necessary tests, because the power circuit is reduced (Proposition 5).
Before each operation we replace the involved markings in (T});es by clones, which increases
the size by O(w), but does not increase the weight. Note that there is enough time to create
the clones with all their outgoing arcs. With the new clones we can perform the operations
by using the algorithms described in Section 2. We regain the main data structure by calling
EXTENDREDUCTION which integrates the modified clones into the reduced representation.
In order to get iv), we observe that the final size of the circuit is bounded by O(m + sw),
so we need at most s - O((m + sw) - w) C O(s2m?2) time for all s operations. <

» Theorem 12. The Word Problem of Hy can be solved in time O(n®).

The traditional input for a Word Problem solving algorithm is a word over the generators
ap and their inverses a,, L. We solve a slightly more general problem by assuming that the
input consists of a power circuit IT = (T, d) together with a sequence of s triple markings of
various types. Each triple marking [U, X, K], ,+1) corresponds to a;ﬁ)a;w)a;ﬁ) € Hy.

Let w be the total weight of 7 = (T, ; (T})1<<s). For simplicity we assume s < w and
that w and sizes of clones are bounded by ||T|| = |T'|. Having s < w < n € O(w), we can
think of n = |T'| as our input size. We transform 7 into a main data structure by invoking

REDUCE.

V. Diekert, J. Laun, and A. Ushakov

During the procedure |T'| increases, but the number of triple markings remains bounded
by s and the weight by w. In order to achieve our main result we show how to solve the
word problem with O(s?) basic operations on the main data structure 7. Assuming this,
by Proposition 11, the final size will be bounded by m € O(s?w); and the time for all basic
operations is O(s*w?) C O(nf).

We collect sequences of triple markings of type (1,2) and (2, 3) in intervals L, which in
turn receive type (1,2, 3); and we collect triple markings of type (3,4) and (4,1) in intervals
of type (3,4,1). Each interval has (as a sequence of triple markings) a semantics £(£) which
is a group element either in G123 or in G347 depending on the type of £. Thus, it makes
sense to ask whether (L) € Fi3. These tests are crucial and dominate the runtime of the
algorithm.

Now the sequence (T})1<;<s of triple markings appears as a sequence of intervals:

(El,...,ﬁf;ﬁjurh...,ﬁt).

We introduce a separator “;” dividing the list in two parts. The following invariants are kept
up:

i) All £4,..., Ly satisfy e(£;) ¢ Fi3. In particular, these intervals are not empty and they
represent non-trivial group elements in (G123 U Gs41) \ Fi3.
ii) The types of intervals left of the separator are alternating.

In the beginning each interval consists of exactly one triple marking, thus f = 0 and
t = s. The algorithm will stop either with 1 < f =t or with f =0 and ¢t = 1.

Now we describe how to move forward: First, assume f =0 (thus t > 1). If ¢(£1) ¢ Fis,
then move the separator to the right, i.e. we obtain f = 1. If ¢(£;) € Fi3, then, after
swapping L1, we can join the intervals £, and L5. In this case we still have f = 0, but ¢
decreases by 1.

Now assume that 0 < f < ¢. If Ly and L4, have the same type, then append Ly, to
Ly, and move the separator to the left of L. Thus, f and ¢ decrease by 1.

If £ and £;14 have different types, then we test whether e(L41) € Fis. Ife(Lyy1) ¢ Fis,
then move the separator to the right, i.e. f increases by 1. If e(L;11) € Fi3, then we swap
L1 and join the intervals L7 and L;;; into one new interval. Since we do not know
whether the new interval belongs to Fi3, we put the separator in front of it, decreasing both
fand t by 1.

If we terminate with 1 < f = ¢, then (L) ---e(L;) € Hy is a Britton-reduced sequence
in the amalgamated product. It represents a non-trivial group element, since ¢t > 1.

In the other case we terminate with f = 0 and t = 1. We will make sure that the subgroup
membership test for Fi3 can as a by-product also answer the question whether a sequence
e(L) represents the trivial group element. If we do so, one more test on (£1) yields the
answer we need.

The number of membership tests for Fi3 is bounded by 2s. All that remains, is to prove:

» Lemma 13. The test for membership of (L) in the subgroup Fi3 can be realized with O(s)
basic operations in the main data structure T. The test yields either “no” or it says “yes”
with the additional information whether or not (L) is the trivial group element. Moreover,
in the “yes” case we can also swap the type of L within the same bound on basic operations.

Proof. Assume that £ is of type (1,2,3), so it contains only triples of types (1,2) and (2, 3).
Let s be the length of £. In a first round we create a sequence of triple markings (77, ...,7T})
with ¢ < s such that for 1 < i < t the type of T; is (1,2) if and only if the type of T;11 is

227

STACS’'12

228

The Word Problem in Higman’s group is in P

(2,3). We can do so by s —t multiplications from left to right without changing the semantics
of g=e(Th)---e(Ty) € Gpas.

Next, we make this sequence Britton-reduced (which also gives us the information whether
the sequence represents the identity in the group). Again, we scan from left to right. If we are
at T' = T; with value [u, , k] we have to check whether either [u, z, k] 2y = (0,2) € Z[1/2]xZ
or [u,x,k](2,3) = (2,0) € Z[1/2] x Z for some integer z € Z.

For the type (1,2) we have [u,z,k],2) = (0, 2) if and only if v = 0, which in a reduced
circuit means that the support of the marking for w is empty. Hence this test is trivial. If
the test is positive, we can replace [u, x,k](1,2) by [0, 7, k(1 2) and perform a swap to type
(2,3). If t > 1 we perform multiplications with its neighbors, thereby decreasing the value ¢.

For the type (2,3) we have [u,z,k]2,3) = (2,0) if and only if both k£ +2 = 0 and u2* € Z.
These tests are possible in linear time and if successful, we continue as in the precedent case.

The final steps are more subtle. Let ¢(7T};) = g; € G12 U Goz. Recall that (g1,...,9:) is
already a Britton-reduced sequence. We have g; - - - g; € Fy3 if and only if there is a sequence
(ho, h1,-..,ht) with the following properties:

i) ho =hy =1and h; € (az) for all0 < j <t.
ii) hj_19; = g}h; with g € F1 UF3 forall 1 <j <t.

Assume that such a sequence (ho, hi,...,h) exists. Then we have g € (a;) if and only
if g; € G12. Moreover, whenever gh = ¢'h' € G1a3 with g,¢’ € Fy U F5 and h,h' € (as),
then g = ¢’ and h = h/. This follows because ¢'"1g = K'h™! € Fi3N (a2) = {1}. Thus, the
product h;_1g; uniquely defines gg» € F1 U F3 and h; € (as), because hy = 1 is fixed.

The invariant during a computation from left to right is that (7;) = h;_1g;. We obtain
e(Tj) = gjh; by a splitting operation. If no splitting is possible we know that g ¢ F13 and
we can stop. If, however, a splitting is possible, then we have two cases. If j is the last
index (j = t), then, in addition, we must have h; = 1. We can test this. If the test fails,
we stop with g ¢ Fi3. If we are not at the last index we perform a swap of the right-hand
factor and multiply it with the next triple marking, which has the correct type to do so.
As our sequence has been Britton-reduced, the total number of triple markings remains
constant. There can be no cancelations at this point. Thus, the test gives us the answer to
the subgroup membership problem using O(s) basic operations. <

6 Conclusion and future research

The Word Problem is a fundamental problem in algorithmic group theory. In some sense
“almost all” finitely presented groups are hyperbolic [22] and satisfy a “small cancelation’
property, so the Word Problem is solvable in linear time! For hyperbolic groups there are
also efficient parallel algorithms and the Word Problem is in NC?2 [4]. On the other hand,
for many naturally defined groups little is known. Among one-relator groups the Baumslag
group G(1,2) was supposed to have the hardest Word Problem [19], but we solved it in cubic
time. The method generalizes to the higher Baumslag groups G/,) in case that m divides n,

)

but this requires more “power circuit machinery” and has not been worked out in full details
yet, see [19]. The situation for G, 3y is open and related to questions in number theory.
Baumslag and Higman groups are built via HNN extensions and amalgamated products.
Many algorithmic problems are open for such constructions, for advances about theories of
HNN-extensions and amalgamated products we refer to [14].

Another interesting open problem concerns the Word Problem in Hydra groups. Doubled
hydra groups have Ackermannian Dehn functions [8], but still it is possible that their Word
Problem is solvable in polynomial time.

V. Diekert, J. Laun, and A. Ushakov

—— References

1

10
11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26
27

G. Baumslag. A non-cyclic one-relator group all of whose finite quotients are cyclic. J.
Austr. Math. Soc., 10(3-4):497-498, 1969.

G. Baumslag, A. G. Myasnikov, and V. Shpilrain. Open problems in combinatorial group
theory. Second Edition. In Combinatorial and geometric group theory, volume 296 of Con-
temporary Mathematics, pages 1-38. American Mathematical Society, 2002.

W. W. Boone. The Word Problem. Annals of Mathematics, 70(2):207-265, 1959.

J.-Y. Cai. Parallel computation over hyperbolic groups. In Proc. 24th ACM Symp. on
Theory of Computing, STOC 92, pages 106-115. ACM-press, 1992.

M. Dehn. Uber unendliche diskontinuierliche Gruppen. Math. Ann., 71(1):116-144, 1911.
V. Diekert, A. J. Duncan, and A. G. Myasnikov. Geodesic rewriting systems and pregroups.
In O. Bogopolski et al. (eds.), Combinatorial and Geometric Group Theory, Trends in
Mathematics, pages 55-91. Birkhauser, 2010.

V. Diekert, J. Laun, and A. Ushakov. Efficient algorithms for highly compressed data: The
Word Problem in Higman’s group is in P. ArXiv e-prints, Mar. 2011.

W. Dison and T. R. Riley. Hydra groups. ArXiv e-prints, abs/1002.1945, Feb. 2010.

S. M. Gersten. Isodiametric and isoperimetric inequalities in group extensions. 1991.

G. Higman. A finitely generated infinite simple group. J. LMS, 26:61-64, 1951.

I. Kapovich, A. G. Miasnikov, P. Schupp, and V. Shpilrain. Generic-case complexity, de-
cision problems in group theory and random walks. J. Algebra, 264:665—-694, 2003.

M. Lohrey. Word problems and membership problems on compressed words. SIAM J.
Comput., 35(5):1210-1240, 2006.

M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In V. Diekert
et al. (eds.), CSR, LNCS, 4649:249-258. Springer, 2007.

M. Lohrey and G. Sénizergues. Theories of HNN-extensions and amalgamated products.
In M. Bugliesi et al. (eds.), ICALP, LNCS, 4052:504-515. Springer, 2006.

R. Lyndon and P. Schupp. Combinatorial Group Theory. Springer, 2001.

K. Madlener and F. Otto. Pseudo-natural algorithms for finitely generated presentations
of monoids and groups. J. Symb. Comput., 5:339-358, 1988.

W. Magnus. Das Identitédtsproblem fiir Gruppen mit einer definierenden Relation. Math.
Ann., 106:295-307, 1932.

A. G. Myasnikov, A. Ushakov, and D. W. Won. Power circuits, exponential algebra, and
time complexity. ArXiv e-prints, abs/1006.2570, 2010. To appear in IJAC.

A. G. Myasnikov, A. Ushakov, and D. W. Won. The Word Problem in the Baumslag group
with a non-elementary Dehn function is polynomial time decidable. Journal of Algebra,
345(1):324-342, 2011.

A. G. Myasnikov and S. Ushakov. Cryptography And Groups (CRAG). Software Library.
P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory. Trudy
Mat. Inst. Steklov, pages 1-143, 1955. In Russian.

A. Y. Ol’shanskii. Almost every group is hyperbolic. Int. J. Alg. Comp., 2:1-17, 1992.

F. Otto, D. E. Cohen, and K. Madlener. Separating the intrinsic complexity and the
derivational complexity of the word problem for finitely presented groups. Math. Log. Q.,
39:143-157, 1993.

A. N. Platonov. Isoparametric function of the Baumslag-Gersten group. Vestnik Moskov.
Univ. Ser. I Mat. Mekh., 3:12-17, 2004. Russian. Engl. transl. Moscow Univ. Math. Bull.
59 (3) (2004), 12-17.

M. V. Sapir, J.-C. Birget, and E. Rips. Isoperimetric and Isodiametric Functions of Groups.
Ann. Math., 156:345-466, 2002.

S. Schleimer. Polynomial-time word problems. Comm. Math. Helv., 83:741-765, 2008.
J.-P. Serre. Trees. Springer, 1980.

229

STACS’'12

	Introduction
	Power circuits
	Arithmetic in the semi-direct product Z[1/2] Z
	Solving the Word Problem in the Baumslag group
	Solving the Word Problem in Higman's group H4
	Conclusion and future research
	Bibliography

