
Stronger Lower Bounds and
Randomness-Hardness Trade-Offs Using
Associated Algebraic Complexity Classes
Maurice Jansen and Rahul Santhanam

School of Informatics, The University of Edinburgh
Informatics Forum, 10 Crichton Street
Edinburgh, EH8 9AB, United Kingdom
maurice.julien.jansen@gmail.com, rsanthan@inf.ed.ac.uk

Abstract
We associate to each Boolean language complexity class C the algebraic class a·C consisting of
families of polynomials {fn} for which the evaluation problem over Z is in C. We prove the
following lower bound and randomness-to-hardness results:

1. If polynomial identity testing (PIT) is in NSUBEXP then a·NEXP does not have poly size
constant-free arithmetic circuits.

2. a·NEXPRP does not have poly size constant-free arithmetic circuits.
3. For every fixed k, a·MA does not have arithmetic circuits of size nk.
Items 1 and 2 strengthen two results due to Kabanets and Impagliazzo [7]. The third item
improves a lower bound due to Santhanam [11].

We consider the special case low-PIT of identity testing for (constant-free) arithmetic circuits
with low formal degree, and give improved hardness-to-randomness trade-offs that apply to this
case.

Combining our results for both directions of the hardness-randomness connection, we demon-
strate a case where derandomization of PIT and proving lower bounds are equivalent. Namely,
we show that low-PIT ∈ i.o-NTIME[2no(1)]/no(1) if and only if there exists a family of multilinear
polynomials in a·NE/lin that requires constant-free arithmetic circuits of super-polynomial size
and formal degree.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes.

Keywords and phrases Computational Complexity, Circuit Lower Bounds, Polynomial Identity
Testing, Derandomization.

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.519

1 Introduction

In this paper we study the arithmetic circuit complexity of families of multivariate polyno-
mials {fn} in terms of the computational hardness of the underlying evaluation problem.
Towards this end we associate to each Boolean language complexity class C the class a·C
consisting of all families of polynomials {fn} with integer coefficients, such that given an
integer input tuple x to fn, an integer i and a bit b, it can be decided within the resources
of the class C whether the ith bit of fn(x) equals b. We restrict the number of variables, the
degree, and the bit size of coefficients of such families to be polynomially bounded in n (See
Section 2 for the formal definition). We note that a similar notion was suggested by Koiran
and Perifel [9].

© Maurice Jansen and Rahul Santhanam;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 519–530

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.519
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

520 Stronger Lower Bounds and Randomness-Hardness Trade-Offs

One of our main motivations is to find an elegant way to state “hybrid” results involv-
ing Boolean and arithmetic circuit lower bounds, such as the trade-offs of Kabanets and
Impagliazzo [7] or the lower bound of Santhanam [11]. These are examples where people,
perhaps unknowingly, have been proving lower bounds and randomness-hardness tradeoffs
geared towards associated algebraic classes, while in our opinion lacking the proper language
to describe, and consequently interpret, the results. The a·C notions provides a language for
succinctly expressing these results, and leads to natural questions for making improvements.
Consequently we have strengthened several important results from the literature.

A prime example of the above situation is the celebrated theorem by Kabanets and
Impagliazzo [7], which says that if polynomial identity testing (PIT) is in NSUBEXP, then
either NEXP 6⊆ P/poly, or permanent does not have poly-size arithmetic circuits. PIT is the
problem of deciding for a given arithmetic circuit Φ whether it computes the zero polynomial.
We refer to a recent survey by Saxena [12] for more on this problem. The quoted theorem
tells us that derandomization of polynomial identity testing yields lower bounds of some
sort. However, it doesn’t tell us whether these will be Boolean lower bounds or arithmetic
lower bounds. We make the observation1 that the theorem by Kabanets and Impagliazzo
is equivalent to the statement PIT ∈ NSUBEXP ⇒ a·NEXP/lin 6⊆ ASIZE′(poly). Here
ASIZE′(poly) denotes the class of polynomial families {fn} computable by constant-free
arithmetic circuit of size poly(n) using addition, multiplication, and division by computed
constants (See Section 2). Hence, to answer the above question, putting PIT in NSUBEXP
gives arithmetic lower bounds for families of polynomials that can be evaluated in NEXP
with linear advice. A natural improvement to the result would be to drop the linear advice.
We show that this can indeed be done2, resulting in the following stronger theorem:

I Theorem 1. PIT ∈ NSUBEXP⇒ a·NEXP 6⊆ ASIZE′(poly).

In the above, on the right hand side, the associated algebraic class gives us a measure of
the explicitness of the lower bound. We have improved this explicitness from evaluable in
NEXP/lin down to evaluable in NEXP. As it is generally undesirable to have non-uniform
dependencies appearing in the explicitness measure of a lower bound, the main significance
of our result is that we have managed to remove the non-uniformity.

Similar to Theorem 1 we observe that Theorem 5.2 of Ref. [7], which states that either
NEXPRP 6⊂ P/poly or Permanent does not have poly-size arithmetic circuits, is equivalent
to the statement that a·NEXPRP/lin 6⊆ ASIZE′(poly). We also improve the explicitness of
this lower bound and obtain that

I Theorem 2. a·NEXPRP 6⊆ ASIZE′(poly).

Furthermore, we improve a theorem by Santhanam [11] which states that for every k,
either MA 6⊆ SIZE(nk), or there exists a family polynomial {fn}, whose graph is decidable
in MA, that is not in ASIZE(nk). We show the following stronger result:

I Theorem 3. For every k, a·MA 6⊆ ASIZE(nk).

The above results demonstrate the usefulness of the a·C notion. There are further reasons
why the notion is worth exploring. It gives a way of bringing uniformity into the algebraic
complexity setting. Note that traditional algebraic complexity classes such as VP and VNP

1A proof will appear in the full version of this paper.
2An obvious way to do this would be to ‘just’ show that a·NEXP ⊆ ASIZE′(poly)⇒ a·NEXP/lin ⊆

ASIZE′(poly). It is not clear whether this is true.

M. Jansen and R. Santhanam 521

are inherently non-uniform. We also feel the notion could facilitate more interactions of
techniques from structural complexity and algebraic complexity. Given how few lower bound
techniques we have available, and given the well-known barriers such as natural proofs
and algebrization to finding new ones, we need to make the best use of the ones we have.
The recent lower bounds success of Williams [17] is an instructive example of how known
techniques from different domains can be combined to give an interesting new result.

In general, one might ask for any known separation C 6⊆ D in the Boolean world whether it
can be strengthened to show that a·C 6⊆ a·D. Note that this would indeed be a strengthening
as C ⊆ D trivially implies a·C ⊆ a·D. Arithmetic analogues of time hierarchy results, eg.,
a·DTIME[n2] (a·DTIME[n3] and a·NTIME[n2] (a·DTIME[n3] can be proved quite easily
using the fact that the separation can be witnessed by a unary language. However, we don’t
know whether arithmetic analogues of results such as Williams’ lower bound hold. There
could be a connection between proving the arithmetic analogue of a Boolean result and
whether the techniques used to prove the Boolean result algebrize in the sense of Aaronson
and Wigderson [1]. We have not properly explored this yet.

One of the advantages of using associated algebraic classes is that this enables us to
derive tighter hardness-randomness trade-offs. This is especially striking for the case of the
low-formal-degree polynomial identity testing problem (low-PIT). We define low-PIT as the
special case of PIT for circuits Φ whose formal degree deg(Φ) is less than or equal to the
size |Φ|. Formal degree is a syntactic notion, easily computed for a circuit (See Section 2).
Examples of types of circuits that automatically satisfy the degree restriction deg(Φ) ≤ |Φ|
are formulas and skew-circuits, the latter being equivalent to algebraic branching programs.
This makes low-PIT an important special case of the general problem. We show that we
can specialize Theorem 1 to obtain the following low-degree version:

I Theorem 4. low-PIT ∈ NSUBEXP⇒ a·NEXP 6⊆ ASIZEDEG′(poly).

In the above ASIZEDEG′(poly) is the class of families of polynomials {fn} computable
by constant-free arithmetic circuits of size poly(n) and formal degree poly(n) (The ‘prime’
indicates that we allow a single division by a previously computed constant at the output
gate).

For the special case of low-PIT, we also make progress on trade-offs that go in the
opposite direction. Namely, we show that derandomization can be achieved under weaker
hardness assumptions than was known previously. For example using our techniques we can
prove the following theorem:

I Theorem 5 (Proof to appear in full version). Suppose there exists a family {pn} ∈ ml·NEXP
with {pn} 6∈ i.o-ASIZEDEG′(ne(n)), where e(n) is a monotone non-decreasing time con-
structible function with e(n) = ω(1). Then low-PIT ∈ NTIME[2no(1)].

In the above, ml·NEXP is the subclass of a·NEXP consisting of all families {fn}, where
each fn is multilinear. The key improvement3 that we make here over the techniques of Ref.
[7], is that we can work with ASIZEDEG′-hardness instead of ASIZE′-hardness in case we
only need to cater for low-PIT. To achieve such improved trade-offs, we prove a so-called
root extraction lemma (Lemma 19) that is formal-degree efficient. This lemma, which is
of independent interest, is subsequently combined with the framework of Ref. [7]. As an
additional twist, we start with a hardness assumption in terms of an associated algebraic
class.

3See some remarks about the difference in Section 2.

STACS’12

522 Stronger Lower Bounds and Randomness-Hardness Trade-Offs

Finally, combining our results for both directions of the hardness vs. randomness con-
nection, the work of this paper culminates with the following theorem, which demonstrates
a setting where derandomization of PIT and proving lower bounds are formally equivalent:

I Theorem 6. There exists a family {pn} ∈ ml·NE/lin with {pn} 6∈ ASIZEDEG′(s(n)), for
s(n) = nω(1) if and only if low-PIT ∈ i.o-NTIME[2r(n)]/r(n), for r(n) = no(1).

In the past there have been several authors claiming partial converses to randomness-
hardness theorems involving PIT. Our paper is the first where an actual equivalence is
being observed. In this the associated algebraic classes play a central role, which we offer
as further evidence of the importance of this notion.

2 Preliminaries

Let NSUBEXP = ∩εNTIME[2nε]. We define SIZE(s(n)) to be the class of all languages
in {0, 1}∗ computable by Boolean circuits of size s(n). A (division-free) arithmetic circuit
over some field F and a set of variables X = {x1, x2, . . . , xn} is given by a labeled directed
acyclic graph. Nodes of in-degree zero are labeled with elements of X ∪ F. Other nodes
are labeled by + or ×. To each node, a.k.a. gate, we can associate a polynomial ∈ F[X],
defined inductively in the obvious way. If constant-labels are restricted to be in {−1, 0, 1} the
circuit is called constant-free. For the size of an arithmetic circuit we count the number of
wires. We define ASIZE(s(n)) to be the class of all families of polynomials {fn} with integer
coefficients that have constant-free arithmetic circuits of size s(n). We let ASIZE′(s(n)) be
the class obtained from ASIZE(s(n) by allowing one single division at the output gate by an
integer a 6= 0, where a has been computed by the circuit. We remark that due to a result by
Strassen [14] on avoidance of divisions, cf. Theorem 2.17 and Corollary 3.9 in [7], a family
of polynomials {fn} of poly(n) degree can be computed by an arithmetic circuit of poly(n)
size with arbitrary use of division gates iff {fn} ∈ ASIZE′(poly(n)). We define “infinitely
often” versions of these classes in the obvious way. For example i.o-ASIZE(s(n)) is the class
of families {fn} such that for infinitely many n, fn can be computed by a size s(n) circuit.

ASIZEDEG(s(n)) is obtained from ASIZE(s(n)) by adding the restriction that formal
degree of the circuit is bounded by s(n) as well. Formal degree is defined inductively
as follows. For input gates, regardless of their label, formal degree is 1. Formal degree
of an addition gate is taken to be the maximum of the formal degree of its inputs. For
multiplication gates one takes the sum of formal degrees of its inputs. We define the class
ASIZEDEG′(poly) to be the class of families of polynomials {fn} with integer coefficients
such that there exist families {gn} and {cn ∈ Z} in ASIZEDEG(poly) with fn = gn/cn, for
each n.

Families in ASIZE(poly) can have super-polynomial degree, e.g. x2n can be computed
with n−1 repeated multiplications. We like to point out that in general for a family {fn} ∈
ASIZE(poly) with deg(fn) = nO(1) it is not known whether {fn} ∈ ASIZEDEG(poly). In
particular it is a fallacy to think the well-known trick of computing degree components
separately at every gate in the circuit proves this, as was pointed4 out by Bürgisser [3], cf.
[8]. Namely, this construction requires a model where arbitrary constants can be used by
the circuit at unit cost. A similar remark can be made for the classes ASIZEDEG′(poly)

4The class ASIZEDEG(poly) is known as VP0 in the literature, whereas ASIZE(poly) corresponds to
families of polynomials with τ -complexity poly(n), cf. Ref. [9].

M. Jansen and R. Santhanam 523

and ASIZE′(poly), in which case it is perhaps more obvious that computing components
separately does not help, since one of the given circuits only computes a constant.

We define the language corresponding to the polynomial identity testing problem
PIT = {Φ : Φ is a division-free constant-free arithmetic circuit such that Φ ≡ 0}. Similarly,
we define low-PIT to be the following language

{Φ : Φ is a division-free constant-free arithmetic circuit of formal degree ≤ |Φ| and Φ ≡ 0}.

We make use of the well-known Schwartz-Zippel-deMillo-Lipton Lemma.

I Lemma 7 ([4, 13, 18]). Let A be an arbitrary nonempty subset of the field F. Then for
any nonzero polynomial f ∈ F[X] of degree d, Pr[f(a1, a2, . . . , an) = 0] ≤ d

|A| , where the ai’s
are picked independently and uniformly at random from A.

We use several easily proved propositions.
I Proposition 1. A constant-free division-free arithmetic circuit of size s and formal degree
d without variables computes an integer constant of absolute value at most 2ds.

By hard-wiring inputs we obtain the following corollary:

I Corollary 8. For a constant-free division-free arithmetic circuit of size s and formal degree
d computing a polynomial f(x1, x2, . . . , xn), if we evaluate f on integers a1, . . . , an of at most
B bits, then |f(a1, a2, . . . , an)| ≤ 2O(dsB2).

I Proposition 2 (Multilinear Extension over Z). Let f : {0, 1}n → {0, 1} be a Boolean function.
Define F (x1, . . . , xn) =

∑
a∈{0,1}n f(a)

∏
i∈[n](1− xi + ai(2xi − 1)). Then F is a multilinear

polynomial with integer coefficients that coincides with f on {0, 1}n. Furthermore, F is the
unique polynomial with these properties.

We now get to the central definition of this paper.

I Definition 9. Let C be a language complexity class. Corresponding to C we have the
associated algebraic class a·C which is given by the collection of all polynomial families {fn}
defined in m(n) = nO(1) variables of degree poly(n) having integer coefficients of poly(n) bit
size such that the evaluation language

E({fn}) := {(1n, a1, a2, . . . , am(n), i, b) : the ith bit of fn(a1, a2, . . . , am(n)) equals b} ∈ C,

where i, a1, a2, . . . , am(n)∈Z are given in binary. We denote the subclass of a·C consisting of
families of multilinear polynomials by ml·C.

Typically for a complexity class C we will have the complementation property that a·C =
a·(C ∩ coC). This is due to the inclusion of the bit b in the definition of the evaluation
language. We have the following property in particular:
I Proposition 3. a·NEXP = a·(NEXP ∩ coNEXP).

Namely, given a NEXP-machine M deciding E({fn}) for some family of polynomials
{fn}, one can simulateM on inputs (1n, a1, a2, . . . , am(n), i, b) and (1n, a1, a2, . . . , am(n), i, 1−
b). In these nondeterministic simulations one finds at most one of them accepting, and it
is guaranteed there exists at least one such path. For all paths where an accept is found,
the machine knows exactly whether (1n, a1, a2, . . . , am(n), i, b) ∈ E({fn}). This means that
we have a nondeterministic exponential time flag machine for computing the characteristic
function of E({fn}), which implies that E({fn}) ∈ NEXP ∩ coNEXP. Recall that a flag
machine sets a flag bit and produces output. If the flag is 0 this means on the given path
no output is produced. If the flag is 1 it signals the output is valid. To compute a function,
all flag = 1 paths must produce the same value, and there must be at least one such path.

STACS’12

524 Stronger Lower Bounds and Randomness-Hardness Trade-Offs

3 Improved Lower Bounds from Derandomization of PIT

In this section, in order to avoid ambiguity we use a new variable N to indicate the input
length for Boolean complexity classes. For example, Σ4TIME[N] is the class of all languages
decidable by Σ4-machines in time O(N) for inputs of size N . We will prove Theorem 2, and
the following theorem (which implies Theorem 1):

I Theorem 10. PIT ∈ NSUBEXP⇒ ml·NEXP 6⊆ ASIZE′(poly).

We first establish fixed polynomial size arithmetic circuit lower bounds for a·PH.

I Theorem 11. For any fixed k, there exists {fn} ∈ a·PH with {fn} 6∈ i.o-ASIZE′(nk).
Furthermore, each fn is multilinear in n variables, has degree 3k and has coefficients in
{0, 1}.

Proof. For simplicity we show a fixed size lower bound in terms of ASIZE instead of ASIZE′.
The proof is easily modified to yield the more general statement. There are 2O(n2k) arith-
metic circuits of size at most nk. Consider the class F of homogeneous multilinear polyno-
mials in n variables of degree 3k with 0, 1 coefficients. Then |F| = 2(n3k). Hence there exists
fn ∈ F that is not in ASIZE(nk). Our goal is to find it ‘in PH’.

Let C be the class of arithmetic circuits corresponding to F , where we just represent in
the ΣΠ-form, i.e. a sum of monomials. We can fix some representation of C by strings of
length O(n3k). Our goals is to find the lexicographically least circuit Φ ∈ C such that for
all arithmetic circuits Ψ of size nk, Φ − Ψ 6≡ 0. Define the language L to consist of tuples
(1n, < Φ >) with the property that for all circuits Ψ of size nk, Φ − Ψ 6≡ 0, where < Φ >

to denotes the string encoding of Φ. Checking Φ−Ψ 6≡ 0 is a coRP predicate. This implies
that L is in coNPRP. On input 1n, using binary search and making existential queries to
L, one can find the lexicographically least Φ of size O(n3k) such that (1n, < Φ >) ∈ L

in FPNPcoRPRP

. Define fn to be the polynomial computed by this Φ. Once the sum of
monomials representations of fn is known, evaluations is poly-time computable for integer
inputs. Hence we obtain that E({fn}) ∈ PH. J

From the proof of Theorem 11 we can conclude that the following lemma is true:

I Lemma 12. There exists a constant c1 ∈ N, such that for any k ≥ 1, there exists {fn} ∈
ml· Σ4TIME[N c1k] with {fn} 6∈ i.o-ASIZE′(nk).

Namely, to describe an algorithm for E({fn}), consider an input (1n, a1, . . . , an, i, b) of
sizeN . The proof of Theorem 11 shows that we can first find in Σ4TIME[poly(n3k)] a sum-of-
monomials description of a polynomial fn of size O(n3k) that requires size nk. After that we
evaluate f(a1, . . . , an), which can be done in time poly(N3k) given this simple representation
of fn. We get that the total overhead for deciding E({fn}) is Σ4TIME[poly(Nk)]. One now
easily derives the following lemma:

I Lemma 13. There exists a constant c2 ∈ N, such that for any k ≥ 1, there exists {fn} ∈
ml·DTIME0,1-Perm[1][N c2k] with {fn} 6∈ i.o-ASIZE′(nk).

Proof. By Toda’s theorem [15] and Valiant’s Completeness result [16], we know that
there exists an absolute constant b ∈ N so that for every k ∈ N, Σ4TIME[Nk] ⊆
DTIME0,1-Perm[1][N bk]. Let c1 be the constant given by Lemma 12. We get that
Σ4TIME[N c1k] ⊆ DTIME0,1-Perm[1][N bc1k]. Hence the lemma holds for c2 = bc1. J

We use the following lemma by Kinne, van Melkebeek and Shaltiel:

M. Jansen and R. Santhanam 525

I Lemma 14 (Claim 5 in [5]). There exists a constant d such that the following holds
for any functions a(·) and t(·) with a(·) time-constructible and t(·) monotone. If PIT ∈
NTIME(t(N)) and {pern} ∈ ASIZE′(a(n)), then DTIME0,1-Perm[1][N] ⊆ NTIME[t(N ·
logdN · a(

√
N))].

We are now ready to prove Theorem 10.

Proof. (Theorem 10) We are done if {pern} 6∈ ASIZE′(poly), so assume that
ASIZE′({pern}) ≤ n`, for ` ∈ N. Consider arbitrary k ≥ 1. Combining Lem-
mas 13 and 14, we obtain that for any monotone function t(·), if PIT ∈ NTIME[t(N)],
then ml·NTIME[t(N c2k · logdN c2k · N c2`k/2)] 6⊆ ASIZE′(nk). As we are assuming that
PIT ∈ NSUBEXP, if we apply this with t(N) = 2Nε , for small enough ε, we get that
ml·NTIME[2N] 6⊆ ASIZE′(nk). Since k was arbitrary, we get that ml·NTIME[2N] 6⊆
ASIZE′(poly), which implies that ml·NEXP 6⊆ ASIZE′(poly). J

Next we move on to the proof of Theorem 2.

Proof. (Theorem 2). Suppose that a·NEXPRP ⊆ ASIZE′(poly). Then a·EXP ⊆
ASIZE′(poly). We claim that this implies that EXP ⊆ SIZE(poly). Let L ∈ EXP be
any language. We will show that L ∈ SIZE(poly). Since we can evaluate multilinear ex-
tensions (Proposition 2) of characteristic functions of EXP languages within EXP itself, we
get {Fn} in a·EXP, where Fn is the multilinear extension of χL on {0, 1}n. We get that
{Fn} ∈ ASIZE′(poly). This means that we have constant-free (division-free) arithmetic
circuits Φ1 and Φ2 of size at most p(n) = nO(1), such that Φ2 does not contain variables
and computes some nonzero constant c ∈ Z. Furthermore, if Φ1 computes Gn then it holds
that Gn = c · Fn. For input a ∈ {0, 1}n, Fn(a) ∈ {0, 1} , which means for such inputs
Gn(a) ∈ {0, c}. We want to evaluate Φ1 modulo some prime number q that does not divide
c. This will tell us χL(a). We have that |c| ≤ 22p(n) due to Proposition 1. This means that
c has at most 2p(n) prime factors. Hence, using the Prime Number Theorem there exists a
prime number q of p(n)2 bits, provided n is large enough, that does not divide c. As our
task is to show only the non-uniform upper bound L ∈ SIZE(poly), mere existence of this
number q suffices for our purposes, as we can hardcode it into the Boolean circuit simulating
Φ1 and Φ2. Hence EXP ⊆ SIZE(poly).

Babai, Fortnow, Lund [2] prove that EXP ⊆ SIZE(poly) ⇒ EXP = MA. So we get
that EXP = MA. Also, because easily {pern} ∈ a·NEXPRP, we have that {pern} ∈
ASIZE′(poly). This implies that P#P ⊆ NPRP, cf. Lemma 5.3 in Ref. [7]. By Toda’s
Theorem [15], MA ⊆ P#P. Hence we obtain that EXP = MA ⊆ NPRP. By padding this
implies that EEXP ⊆ NEXPRP. Hence a·EEXP ⊆ a·NEXPRP ⊆ ASIZE′(poly). This is a
contradiction. One can easily deduce that a·EEXP 6⊆ i.o-ASIZE′(nlogn) by observing that
Lemma 12 also holds if we allow k to depend on n as k(n) = dlogne. J

We can specialize Lemma 14 so that we replace the condition “PIT ∈ NTIME(t(N)) and
{pern} ∈ ASIZE′(a(n))” by “low-PIT ∈ NTIME(t(N)) and {pern} ∈ ASIZEDEG′(a(n))”.
This yields the following theorem (which implies Theorem 4):

I Theorem 15. low-PIT ∈ NSUBEXP⇒ ml·NEXP 6⊆ ASIZEDEG′(poly).

STACS’12

526 Stronger Lower Bounds and Randomness-Hardness Trade-Offs

4 Stronger Fixed Size Lower Bounds for MA

As the result we aim to strengthen puts somewhat different constraints on constants ap-
pearing in arithmetic circuits compared to what we have seen so far, we make the following
provisional definition. Let ASIZEfree(s(n)) denote the class obtained from ASIZE(s(n)) by
granting the underlying circuits arbitrary constant labels ∈ Z. Similar to Theorem 11 we
have the following theorem.

I Theorem 16 (Proof will appear in full version). ∀k∃{fn} ∈ a·PH with {fn} 6∈
i.o-ASIZEfree(nk).

We want to strengthen Theorem 1.4 of [11], which we can reformulate it in our termi-
nology as follows:

I Theorem 17 ([11]). For every k, either 1) MA 6⊆ SIZE(nk), or 2) a·MA 6⊆ ASIZEfree(nk).

We will show that for every k, the second item holds by itself. Let us briefly remark on a
technical issue related to this reformulation. For {fn}, where fn is a integer polynomial over
n variables, Ref. [11] uses the notion Gh({fn}) = {(~x, v)|fn(~x) = v}, and proves that for
every k, either MA 6∈ SIZE(nk), or there exists {fn} 6∈ ASIZEfree(nk) with Gh({fn}) ∈ MA.
We prefer to work with the evaluation language E({fn}) instead of Gh({fn}). One can
observe that the argument we give to strengthen Theorem 17 can be easily modified to work
with Gh(·) instead. Consider the following proposition:

I Proposition 4. If {pern} ∈ ASIZEfree(poly), then 1) 0, 1-permanent of an n × n matrix
over Z can be computed with poly(n) size Boolean circuits, and 2) PH ⊆ MA.

For the above, it is argued in Ref. [11], proof of Theorem 1.4, that the first item follows
from {pern} ∈ ASIZEfree(poly), and that the second item follows from the first. The
following theorem implies Theorem 3 from the introduction:

I Theorem 18. For any fixed k, there exists {fn} ∈ a·MA/ASIZEfree(nk).

Proof. We show that Item 2 of Theorem 17 holds by itself. For this, we indicate how the
proof of Theorem 1.4 in Ref. [11] must be modified. This proof conditions on the predicate
{pern} ∈ ASIZEfree(poly). If this is not true, the proof there can easily be modified to use
E(·) instead of Gh(·), which then yields the statement of the theorem. Otherwise, suppose
that {pern} ∈ ASIZEfree(poly). By Proposition 4 we have that PH ⊆ MA. The latter
implies that a·PH ⊆ a·MA. Hence in this case Item 2 holds also, due to Theorem 16. J

5 A Characterization of Derandomization for low-PIT

We will use the algebraic hardness-to-randomness framework of Ref. [7]. The refinement
that we make here is to show that it suffices to start with a weaker5 ASIZEDEG′-hardness
assumption rather than ASIZE′-hardness, in case we only need to cater for low-PIT.

For a polynomial f(x, y) ∈ F[x1, . . . , xn, y] and p(x) ∈ F[x1, . . . xn], f|y=p denotes the
polynomial obtained by substituting p for y in f . We will also write this polynomial as
f(x, p). In case f|y=p = 0, we say that p is a root of f for y. The following is our degree-
efficient root extraction lemma:

5See Section 2 for some remarks pertaining to these measures when dealing with families of poly-
degree.

M. Jansen and R. Santhanam 527

I Lemma 19. Suppose that f ∈ Z[x1, . . . , xn, y] is a nonzero polynomial computed by a
division-free constant free arithmetic circuit of size s and formal degree D. Suppose that
p ∈ Z[x1, . . . , xn] is a root of f for y. Then there exist constant-free division-free arith-
metic circuits Φ1 and Φ2 of size and formal degree bounded by poly(n, s,D,L) such that the
following are true:
1. Φ1 computes a polynomial q ∈ Z[x1, . . . , xn].
2. Φ2 does not contain variables. It computes a nonzero constant c ∈ Z.
3. It holds that c · p = q.
4. L bounds the maximum bit size of p(x) on {0, 1, . . . , dpdf}n, where df and dp are the

degrees of f and p, respectively.

The proof of the above lemma follows by analyzing the degree blow-up in the root
extraction method of Ref. [6]. As this procedure involves Newton iteration it is a priori not
at all clear that formal-degrees are well-behaved, but this turns out to be true. The proof will
appear in the full version of this paper. We continue towards our hardness-to-randomness
trade-offs. First we need the following lemma:

I Lemma 20 (Nisan-Wigderson Design [10]). Let n,m be integers with n < 2m. There exists
a family of sets S1, S2, . . . , Sn ⊆ [`], such that 1) ` = O(m2/ logn), 2) For each i, |Si| = m,
and 3) For every i 6= j, |Si ∩ Sj | ≤ logn. Furthermore, the above family of sets can be
computed deterministically in time poly(n, 2`).

Define NW p as follows. For parameters `,m, n, construct the set system S1, S2, . . . , Sn
as in Lemma 20. Then for a1, a2, . . . , a` ∈ F, and a polynomial p in m variables, NW p(a) =
(p(a|S1), p(a|S2), . . . , p(a|Sn)). The following lemma is derived from Lemma 19 using a hybrid
argument, cf. Lemma 7.6 in [7]:

I Lemma 21. Let n and m be integers with n < 2m and m < n. Suppose we are
given a nonzero polynomial f ∈ Z[y1, . . . , yn] of degree df and a multilinear polynomial
p ∈ Z[x1, . . . , xm] with coefficients of bit size at most me, for some integer constant e ≥ 1.
Assume that f can be computed by a division free constant-free arithmetic circuit of size s and
formal degree D. Let S ⊆ Z be any set of size |S| > dfm, and let ` be given by Lemma 20.
Suppose that f(NW p(a)) = 0 for all a ∈ S`. Then there exists q ∈ Z[x1, . . . , xm] and
c ∈ Z/{0} such that p = q/c, where q and c can be computed by constant-free division-free
arithmetic circuits of size and formal degree poly(n,me, s,D).

A proof of the above lemma will be included in the full version of the paper. Our first
trade-off is as follows:

I Theorem 22. ml·NEXP 6⊆ ASIZEDEG′(poly(n))⇒ low-PIT ∈
⋂
ε>0 i.o-NTIME[2Nε].

Proof. Consider a family {pm} ∈ ml·NEXP that is not in ASIZEDEG′(poly). By reindexing
we can assume wlog. that pm is defined over m variables. Let e be such that coefficients
of pm are at most me bits. We have that for every k, there exist infinitely many m such
that pm cannot be written as pm = fm/cm, where fm and cm ∈ Z/{0} are computed by
constant-free division-free arithmetic circuits of size and formal degree at most mk. The
m ∈ Z that satisfy this property we call the good indexes for k. We use the fact that
a·NEXP = a·(NEXP ∩ coNEXP). This means that we there exists a constant d and a
nondeterministic flag machineM running in time 2(n′)d for inputs of size n′ that can compute
the characteristic function of E({pm}) on a given input, cf. Proposition 3.

Let c0 be an absolute constant that bounds the overhead of Lemma 21, in the sense
that for the case n = s = D we can write an upper bound of nc0mec0 for the bound

STACS’12

528 Stronger Lower Bounds and Randomness-Hardness Trade-Offs

poly(n,me, s,D) given by the lemma. We will describe an i.o-NSUBEXP algorithm for
low-PIT. Let Φ be a constant-free (division-free) arithmetic circuit of size N computing f .
First we check that the formal degree of Φ is bounded by N , if not reject.

Let m = bN1/rc, where r is chosen arbitrarily large. We claim that for infinitely many
input lengthsN the following test property holds: for every constant-free arithmetic circuit Ψ
of sizeN , Ψ ≡ 0⇔ (∀a ∈ S`),Ψ(NW pm(a)) = 0, where S = [Nm+1] with ` = O(m2/ logN)
taken according to Lemma 20. This follows from Lemma 21. Namely, let k = c0(r+e) and let
M be the set of good indexes for k. ThenM is an infinite set. Consider input lengths N of
the formN = (N ′)r, whereN ′ ∈M. For suchN , we setm = N ′. The test property can only
be violated if for some Ψ of size N we have that Ψ 6≡ 0, while (∀a ∈ S`),Ψ(NW pm(a)) = 0.
By Lemma 21 we obtain that pm can be written as pm = fm/cm, for fm and cm ∈ Z/{0}
that are computed by constant-free arithmetic circuits of size and formal degree at most
N c0mc0e = (m)c0(r+e) = mk. We know the latter does not hold for m ∈M.

We continue the description of the algorithm. We produce a set H to sample Φ with,
namely we take H to be the output of NW pm(·) on S`. We have that |H| = (Nm+ 1)` =
2O(N2/r logN). We do simulations of the machine M for E({pm}) to get all the bits of all
the evaluations of pm(·) on S`. As pm is multilinear with coefficients of bit length at most
me, we can bound the bit size of any such evaluation by O(me log(Nm)). This means
that the inputs (1m, a1, . . . , am, i, b) that we simulate M on, have bit size O(m log(Nm))
(recall that i is given in binary). The simulation for a single such input thus costs
NTIME[2O(md logd(Nm))] = NTIME[2O(Nd/r logdN)]. To get all bits of an evaluation for a
single element in H therefore takes at most NTIME[O(me log(Nm)) · 2O(Nd/r logdN)], which
we can bound as NTIME[2O(Nd/r logdN)]. To construct the entire set H we can use the same
asymptotic time bound assuming wlog. that d ≥ 2.

If during the process of obtaining all the bits we obtain a flag bit set to 0, we reject. This
means that on every path where we pass this check, we have obtained a hitting set, unless
N is an input length where the test property is not satisfied. On these paths, we continue
to verify deterministically that f(h) = 0 for all h ∈ H. If yes, then we accept, else reject.
By our previous remarks, for infinitely many N , this correctly decides whether Φ ≡ 0.

Let us consider the cost of evaluation of Φ on elements of H. For a ∈ S` and subset
Sj in the Nisan-Wigderson design, the bit size of pm(a|Sj) is O(me log(Nm)). By Corol-
lary 8 this means that the absolute value of any gate of Φ for input NW pm(a) is at most
2O(N2m2e log2(Nm)) = 2NO(1) . Thus intermediate values can be represented by poly(N) bits.
We conclude that evaluation of Φ on a single element of the test set H cost time poly(N).
We can conclude the entire cost of our test algorithm is NTIME[2O(Nd/r logdN)]. As r can
be chosen arbitrarily large and d is an absolute constant not depending on r, we conclude
that low-PIT ∈

⋂
ε>0 i.o-NTIME[2Nε]. J

5.1 Proof of Theorem 6
We first prove the hardness-to-randomness direction. The following corollary to Lemma 21
follows straightforwardly:

I Corollary 23. Let s(n) = nω(1) be a function. Suppose that {pn} is a family of multilinear
polynomials in n variables with coefficients of bit size at most ne′ for some integer e′, such
that pn cannot be written as qn/cn for cn ∈ Z\{0} for any qn and cn computed by constant-
free arithmetic circuits of size s(n). Then there exists an absolute constant c > 0 such that
for any division-free constant-free arithmetic circuit Φ of size n with deg(Φ) ≤ n, if we take

M. Jansen and R. Santhanam 529

m such that s(m) ·m−e′c > nc and let ` be given by Lemma 20, then for all large enough n,
Φ ≡ 0⇔ (∀a ∈ S`),Φ(NW pm(a)) = 0, where S = [nm+ 1].

We will describe an i.o-NTIME[2no(1)]/no(1) algorithm for low-PIT. Let Φ be an arith-
metic circuit of size N , and let f be the polynomial computed by it. First we check that
the formal degree of Φ is bounded by N , if not reject. Else, consider the given family {pm}.
By reindexing we may assume wlog. that pm is defined over m variables. Let e′ ≥ 1 be
such that pm has coefficients of bit size at most me′ . We have that for infinitely many m,
pm has ASIZEDEG′-hardness larger than s(m), where s(m) = mω(1). The m that have this
property we call good.

We use the complementation property for ml·NE/lin, cf. Proposition 3 and the comment
thereafter. This means that we have a nondeterministic flag machine M running in time
2O(n′) with O(n′) bits of advice for inputs of size n′ that can compute the characteristic
function of E({pm}) Let c be the constant given by Corollary 23. For input size N the
algorithm receives two strings of advice α and β. First, if there exists a good m0 such that
s(m0)(m0)−ce′ ∈ [N c, (N + 1)c], then α = 1m0 . If there is no such m0, then α is set to the
empty string. A simple argument shows that |α| = No(1). For the second piece of advice β
we obtain the advice M needs so we can complete the simulations which we describe below
(we will analyze this in more detail there).

In case the algorithm receives the empty string for α, it halts and rejects. Otherwise,
we set m = m0. Note that as N c is a strict monotone increasing function it must be that
for infinitely many N we obtain a good m0 as advice. By Corollary 23, provided N is large
enough, the following test property holds: Φ ≡ 0 ⇔ (∀a ∈ S`),Φ(NW pm(a)) = 0, where
S = [Nm+ 1] with ` = O(m2/ logN) taken according to Lemma 20.

Let us continue the description of the algorithm. We produce a set H to sample Φ with,
namely take H to be the output of NW pm(·) on S`. We have that |H| = (Nm+1)` = 2No(1) .

We do simulations of the machine M for E({pm}) to get all the bits of all the eval-
uations of pm(·) on S`. As pm is multilinear with coefficient of at most me′ many bits,
we can bound the bit size of any such evaluation by O(me′ log(Nm)). This means that
the inputs (1m, a1, . . . , am, i, b) that we simulate M on, have bit size O(m log(Nm)) (re-
call i is given in binary). For the string β we give the advice that M needs for all input
lengths up to this maximum bit size, which is O(m2 log2(Nm)) = No(1) in total. Given
such advice, the simulation for a single such input thus costs NTIME[2O(m log(Nm))] =
NTIME[2No(1)]. To get all bits of an evaluation for a single element in H therefore takes at
most NTIME[O(me′ log(Nm)) · 2No(1)] = NTIME[2No(1)] with the same amount of advice.
We conclude that we can construct the entire set H in NTIME[2No(1)] with No(1) advice.

If during the process of obtaining all the bits we obtain a flag bit set to 0, we reject.
This means that if on every path where we pass this check, we have obtained a hitting set,
provided N is large enough. On the path where we pass this check, we continue to verify
deterministically that f(h) = 0 for all h ∈ H. If yes, then we accept, else reject. By our
previous remarks, for infinitely many N , this correctly decides whether Φ ≡ 0.

Let us consider the cost of evaluation of Φ on elements of H. For a ∈ S` and subset
Sj in the Nisan-Wigderson design, the bit size of pm(a|Sj) by O(me′ log(Nm)). By Corol-
lary 8 this means that the absolute value of any gate of Φ for input NW pm(a) is at most
2O(N2m2e′

log2(Nm)) = 2NO(1) . Thus intermediate values can be represented by poly(N) bits.
We conclude that evaluation of Φ on a single element of the test set H cost time poly(N).
We can conclude the entire cost of our test algorithm is NTIME[2No(1)] with No(1) advice,
and that for infinitely many input lengths N the algorithm is correctly decides low-PIT. J

STACS’12

530 Stronger Lower Bounds and Randomness-Hardness Trade-Offs

Due to space restriction the randomness-to-hardness direction of the proof of Theorem 6
has been ommited from this version of the paper. It will appear in the full version.

References
1 S. Aaronson and A. Wigderson. Algebrization: A new barrier in complexity theory. Trans-

actions on Computation Theory, 1(1), 2009.
2 L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover

interactive protocols. Computational Complexity, 1:3–40, 1991. Addendum in vol. 2 of
same journal.

3 P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Springer Verlag,
2000.

4 R. DeMillo and R. Lipton. A probabilistic remark on algebraic program testing. Inf. Proc.
Lett., 7:193–195, 1978.

5 D. van Melkebeek J. Kinne and R. Shaltiel. Pseudorandom generators, typically correct
derandomization, and circuit lower bounds. Technical Report TR10–129, Electronic Collo-
quium on Computational Complexity (ECCC), 2010.

6 M. Jansen. Extracting roots of arithmetic circuits by adapting numerical methods. In Proc.
2nd Symp. on Innovations in Computer Science, 2011.

7 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means proving
circuit lower bounds. Computational Complexity, 13(1–2):1–44, 2004.

8 P. Koiran. Shallow circuits with high powered inputs. In Proc. 2nd Symp. on Innovations
in Computer Science, 2011.

9 P. Koiran and S. Perifel. Interpolation in Valiant’s theory. Computational Complexity,
20(1):1–20, 2011.

10 N. Nisan and A. Wigderson. Hardness versus randomness. J. Comp. Sys. Sci., 49:149–167,
1994.

11 R. Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

12 N. Saxena. Progress of polynomial identity testing. Technical Report ECCC TR09-101,
Electronic Colloquium in Computational Complexity, 2009.

13 J.T. Schwartz. Fast probabilistic algorithms for polynomial identities. J. Assn. Comp.
Mach., 27:701–717, 1980.

14 V. Strassen. Vermeidung von divisionen. Journal für die Reine und Angewandte Mathe-
matik, 264:182–202, 1973.

15 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20:865–877,
1991.

16 L. Valiant. The complexity of computing the permanent. Theor. Comp. Sci., 8:189–201,
1979.

17 R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of 26th IEEE Con-
ference on Computational Complexity, page To appear, 2011.

18 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Manipulation (EUROSAM ’79), volume 72
of Lect. Notes in Comp. Sci., pages 216–226. Springer Verlag, 1979.

	Introduction
	Preliminaries
	Improved Lower Bounds from Derandomization of PIT
	Stronger Fixed Size Lower Bounds for MA
	A Characterization of Derandomization for low-PIT
	Proof of Theorem 6

