
Score-Informed Source Separation for Music
Signals
Sebastian Ewert∗1 and Meinard Müller†2

1 Institute for Computer Science III, University of Bonn
Römerstr. 164, 53117 Bonn, Germany
ewerts@iai.uni-bonn.de

2 Saarland University and MPI Informatik
Campus E1-4, 66123 Saarbrücken, Germany
meinard@mpi-inf.mpg.de

Abstract
In recent years, the processing of audio recordings by exploiting additional musical knowledge
has turned out to be a promising research direction. In particular, additional note information
as specified by a musical score or a MIDI file has been employed to support various audio
processing tasks such as source separation, audio parameterization, performance analysis, or
instrument equalization. In this contribution, we provide an overview of approaches for score-
informed source separation and illustrate their potential by discussing innovative applications
and interfaces. Additionally, to illustrate some basic principles behind these approaches, we
demonstrate how score information can be integrated into the well-known non-negative matrix
factorization (NMF) framework. Finally, we compare this approach to advanced methods based
on parametric models.
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1 Introduction

The decomposition of a mixture of superimposed acoustic sound sources into its constituent
components, a task also known as source separation, is one of the central research topics
in digital audio signal processing. For example, in speech signal processing, an important
task is to separate the voice of a specific speaker from a mixture of conversations of multiple
speakers and background noises ("Cocktail party scenario"), see for example [29]. Also in the
field of musical signal processing, there are many related issues that are commonly subsumed
under the notion of source separation. In the musical context, a source might correspond
to a melody, a bassline, a drum track, or an instrument track. To extract such sources,
various elaborate processing and analysis methods have been developed, which have led to
significant improvements for tasks such as instrument recognition [22], harmonic analysis
[47], or melody estimation [12]. Most of these methods exploit certain spectral and temporal
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Figure 1 Score-informed source separation: (a) Instrument tracks as specified by a given score
are employed for the separation of instrument sounds from a polyphonic audio recording (figure
inspired by [24]). (b) Separated signals corresponding to instrument tracks can be remixed by the
user in real-time (figure inspired by [27]).

properties of the sound sources to be extracted. For example, the melody is often the leading
voice characterized by its dominance in dynamics and by its temporal continuity [3, 9]. The
track of a bass guitar may be identified by specifically looking at the lower part of the
frequency spectrum [19]. Furthermore, when extracting the drum track, one often relies on
the assumption that the other sources are of harmonic nature. Then one can exploit that
percussive elements (vertical spectral structures) are fundamentally different from harmonic
elements (horizontal spectral structures) [36]. Last but not least, a human singing voice can
often be distinguished from other musical sources because of the presence of vibrato and
portamento (sliding voice) effects [40].

In the last years, also multimodal, score-informed source separation strategies have been
employed where one assumes the availability of a score representation along with the music
recording. The score provides valuable information in two respects. On the one hand, pitch
and timing of note events provide a rough guidance within the separation process. On the
other hand, the score provides a natural way of specifying what and how sound sources are
to be separated. For example, in [24] the score’s natural partition into instrument tracks is
exploited to extract each individual instrument from a given audio recording, see Figure 1a
for an illustration. Here, the score provides additional cues on the sources’ spectral and
temporal properties. In [27], it was demonstrated that this concept can be incorporated
into an intuitive and easy-to-use interface. Here, the user can adjust the volume of each
instrument in real-time using an interactive instrument equalizer, see Figure 1b. Developing
this idea further, one can extend the instrument equalizer to a more general voice or note
equalizer [14], where the user can not only emphasize or attenuate whole instrument tracks
but also specific note groups played by different or the same instrument. Here, a group of
notes might correspond to a motif, a voice, the left or the right hand of a piano score, or a
staff as illustrated in Figure 2a. Incorporating these concepts into multimodal music players
[5, 6], one can intuitively select note groups in the score and separate or enhance them in
the audio recording in real-time, see Figure 2b.

In this contribution, we give an overview of strategies that employ score information
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Figure 2 Score-informed voice separation: (a) Decomposition of a piano recording into two sound
sources corresponding to the left and right hand as specified by a musical score. Shown are the first
four measures of Chopin’s Prélude “Raindrop” (Op. 28 No. 15). (b) Prototypical implementation of
a voice equalizer based on the multimodal music player proposed in [5]. By selecting a staff/hand in
the scanned score image the corresponding group of notes is separated/enhanced in real-time.

for separating musically meaningful sound sources from polyphonic music recordings. In
Section 2, we summarize available score-informed source separation methods. Here, we focus
on conceptual differences between the individual approaches rather than giving technical
details. Then, using the well-known non-negative matrix factorization (NMF) framework as
an example, we demonstrate in Section 3 how score information can be employed to guide
the separation process. Finally, as an alternative to NMF-based approaches, we discuss in
Section 4 advanced source separation methods based on parametric models. Conclusions and
prospects on future work are given in Section 5.

2 Methods for Score-Informed Source Separation

In general, separating sound sources from polyphonic music recordings requires an under-
standing of many musical and technical aspects. For example, one has to account for the
complexity of musical sound sources, the interaction and superposition of such sources in
polyphonic mixtures, room acoustics, and recording conditions. Additionally, in many studio
productions, numerous digital effect filters are applied to the recording thus making the task
even more complex. However, although being extremely difficult, source separation is mostly
pursued in a blind fashion, where as little prior knowledge as possible is used.

A natural idea to facilitate the separation process is to incorporate additional musical cues,
for example, employing available musical score data. In this context, music synchronization
methods are of particular importance [7, 8, 16, 28, 33]. Given a MIDI file representing
the score and an audio recording representing an interpretation of a piece of music, the
goal is to determine for each MIDI note event its corresponding time position in the audio
recording. By adjusting the onset position and duration of each MIDI event, one can use the
computed alignment to transform the original score-like MIDI file to a synchronized MIDI file,
which runs synchronously to the audio, see Figure 3. Each score-informed source separation
approach treats this problem differently. Some approaches consider or even account for
typical differences between the score and a given interpretation, for example, in terms of
structure, ornamentation, the interpretation of trills and arpeggios as well as additional
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Figure 3 Music synchronization for a score and an audio recording of Chopin’s Op. 28 No. 15:
(a) Musical score. (b) Audio recording of an interpretation taken from the SMD database [34].
(c) Score-like MIDI file generated from the score shown in (a). (d) Synchronized MIDI file.

and missed notes. Other approaches simply assume that perfectly synchronized MIDI files
are available. This assumption, however, is often not realistic. In real-world scenarios, one
typically has to adjust a MIDI file to a given audio recording so that perfect synchronicity
can not be guaranteed.

Early approaches adopt score and MIDI information only for evaluation purposes, for
example, to investigate the influence of a pitch estimation step in a complex separation system
[37]. One of the first approaches focusing on the conceptual benefits of incorporating score
information was proposed in [42]. Here, the task consists in separating a single instrument
specified by a given score-like MIDI file from a polyphonic music recording. The main idea is
based on designing a filter, which in some sense optimally extracts the instrument from the
recording. To compute the MIDI-audio synchronization, the authors refer to a procedure
previously proposed in [41]. While presenting a novel application idea, this early work has
several conceptual limitations. First of all, the proposed filter design procedure models all
non-target sound sources as Gaussian noise. Therefore, in cases where the target instrument
is accompanied by other instruments, this assumption is obviously violated. Furthermore, the
proposed method assumes that the score provides an exact specification of the fundamental
frequency for the target instrument for each analysis frame. This assumption is not realistic,
since the score usually provides only high-level note information of the piece of music without
specifying tuning or small pitch deviations of the respective music recording.

Subsequently proposed systems were not subject to such strict limitations. In [54], the
authors integrate score information into a system for blind source separation previously
described in [53] (an extended version was presented in [52]). Here, the goal is to extract
individual instruments from a music recording, which then enables a user to create new
music by remixing the extracted sound sources. In this approach, stereo information is
employed in a first step to determine for each analysis frame the number of concurrent
sources. Frames identified to contain only a single source are used as cues in the consecutive
pitch-tracking step to support the separation in frames with multiple sources. The authors
incorporate score information into this process as a rough guidance for the pitch-tracking.
The underlying MIDI-audio alignment is based on a procedure proposed by Hu et al. [25].
A technical limitation of the approach is its dependency on reliable stereo information to
identify the sources. This is problematic for many commercial studio productions, where
spatial information contained in the stereo recordings is often corrupted by digital effect
filters and virtual room acoustics. Furthermore, the influence of the alignment step is hard to
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assess from the experimental results, as the method is only evaluated on a dataset consisting
of four-second snippets of synthetically created MIDI sonifications.

While score information is used in [54] mostly as an add-on to an existing source separation
system, Han and Raphael presented in [20, 21] a model that completely relies on available score
data. In their contribution, the authors aim at removing the soloist from orchestral music
recordings to generate recordings that can be used as a basis for automated accompaniment
systems [7]. Relying on score information at an early stage of their algorithmic pipeline
allowed for innovative computational concepts. On the one hand, the method represents
a given input spectrogram as a compound of note-event based models. This allows for
effectively using the score information to specify the temporal and spectral extent in which a
note-event is permitted to be active. On the other hand, the score is used to identify the
instruments occurring in a given music recording. This way, some instrument-dependent
model parameters such as overtone energy distributions can simply be learnt from monophonic
training material in advance and fixed afterwards. A benefit of this approach is that the
parameter estimation process becomes efficient (as only a small set of parameters needs to
be adjusted) and robust (as unreasonable parameter values are prevented by the model).
However, a drawback is that the model can be imprecise, in particular when the training
instruments differ strongly from the ones used in the given recording.

Roughly at the same time, Itoyama et al. presented a system, which explored novel
application scenarios based on score-informed source separation [27]. This system allows a
user to adjust the volume of each instrument in a polyphonic music recording in real-time.
To this end, the system separates the individual instrument tracks in a preprocessing step as
follows. In a first step, a MIDI synthesizer is employed to create one audio representation for
each of the instrument tracks contained in a given MIDI file. This audio data is used as prior
knowledge to initialize a note-based spectrogram model. Next, the model parameters are
adapted to a given audio recording by minimizing a Kullback-Leibler distance between the
given and the model spectrogram. Here, to allow only musically meaningful values for the
model parameters, strong deviations form the initial values set in the first step are penalized.
In a final step, the spectrogram model is employed to isolate the individual instrument tracks
as specified by the MIDI file. Technically, the model is based on the harmonic-temporal-
structured clustering (HTC) model proposed in [30], which will be discussed in more detail
in Section 4. To control the influence of their percussion related submodel on the remaining
system, the authors have to resort to smoothing and regulation techniques [26], which further
increase the complexity of the system. Furthermore, alignment issues are not considered in
this approach, hence it is not clear how the system behaves in real-world scenarios starting
with score-like MIDI files.

Using MIDI-synthesized audio material for initialization purposes was also proposed by
Gansemann et al. in [17, 18]. Given a MIDI file and an audio recording for a piece of music, the
approach starts by sonifying the MIDI instrument tracks using a wavetable synthesizer similar
to [27]. In a next step, probabilistic latent component analysis (PLCA) [43] is employed
to identify the most important spectral components for each sonification. Here, PLCA is a
probabilistic formulation of the well-known non-negative matrix factorization (NMF) method,
which will be discussed in more detail in Section 3. In a last step, the instrument-wise
spectral components are used as initialization and additional knowledge for a prior-based
PLCA analysis of the original audio recording [45]. The results of this final analysis are
subsequently used to extract each instrument from the original recording. Incorporating an
alignment procedure by Turetsky and Ellis [46], the authors aim at using full-length score-like
MIDI files as they can be found in real-world scenarios. While this approach presents a
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Figure 4 Score-informed parametric spectrogram model as employed in [13]. (a) Original
magnitude spectrogram for a recording of Chopin’s Op. 28 No. 15. (b) Model spectrogram after
initialization with note events from a score-like MIDI file. (c) Model spectrogram after the
synchronization step. (d) Model spectrogram after the estimation of remaining model parameters.

novel computational concept, the approach suffers from several weaknesses. Similar to all
approaches relying on synthetic audio material as prior knowledge, this method’s separation
quality depends on the spectral similarity between the MIDI instruments and the actual
target instruments. Moreover, this method also requires that the MIDI instruments have a
similar tuning as the instruments in the given audio recording. For large tuning deviations,
the separation quality might be significantly reduced.

An alternative way of using MIDI information for initialization purposes was presented
in [24]. Here, instead of generating synthetic audio, the MIDI file is used to directly instruct
the underlying spectrogram model when a given instrument is active with a certain pitch.
This way, the separation performance does not depend on the quality of an underlying
MIDI synthesizer. However, as a drawback, no expectations about the spectral shape of
an instrument are incorporated, which may lead to a less robust separation process. As a
novel contribution, the method employs a parametric NMF variant [23], which significantly
enhances the modeling accuracy for instruments with vibrato and glissando. A technical
limitation of this model is that all harmonic sounds in an analysis frame are assumed to be a
compound of stationary sinusoidals. To evaluate the instrument separation quality of this
approach, the authors neglect the alignment step and employ synthetic MIDI sonifications of
Bach, Beethoven and Boccherini pieces.

While most score-informed source separation techniques aim at re-synthesizing the
separation results with the goal to produce acoustically appealing sound sources, the method
proposed in [13] employs these techniques for analysis purposes. Given a MIDI file and an
audio recording for a piece of music, the task consists of estimating an intensity for each
MIDI note event as occurring in the recording. On the one hand, this enables a user to
analyze and compare different interpretations of a piece in terms of dynamics on a note-level.
On the other hand, it allows for enriching a given score-like MIDI representation with
performance-specific subtleties. The approach employs a parametric model that describes
the spectrogram of a given recorded performance as a sum of note-event spectrograms, see
Fig. 4. In a first step, the model is initialized with pitch, onset and duration information
obtained from a given score-like MIDI file, see Fig. 4b. After that, music synchronization
techniques are employed to determine for each note event the corresponding position in the
audio recording, see Fig. 4c. In a next step, additional model parameters are iteratively
refined such that the model spectrogram approximates the original spectrogram as accurately
as possible, see Fig. 4d. In a final step, the individual note intensities are estimated using
the adapted note-event spectrograms described by the model. The approach is evaluated
based on audio and MIDI velocity values recorded via a Yamaha Disklavier. The influence of
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the synchronization step is evaluated by artificially distorting the MIDI time information,
which only roughly indicates the methods’ performance for real-world score-like MIDI files.

As demonstrated in [14], a similar model can also be used to create acoustically appealing
separation results. Here, the separation system is embedded into a multimodal music
interface [6] to create a voice equalizer, see Figure 2b, which allows the user to intuitively
select arbitrary note groups and attenuate or emphasize them in real-time. To demonstrate
the applicability of this approach in real-world scenarios, the authors employ score-like MIDI
files from the Mutopia Project1 in combination with real audio recordings taken from the
SMD [34] and European archive2 databases and make their separation results available on
a website3. One of the drawbacks of this system and the one proposed in [27] is that the
separation has to be performed in advance, while the remixing step can be performed in
real-time.

As demonstrated by Duan and Pardo in [10], the separation step can be performed
in a low-delay real-time fashion. To this end, the authors replace the usually employed
offline synchronization step by an online approach [11], which aligns a given MIDI file and
a corresponding audio recording in real-time, a task often referred to as score-following
[4, 7]. For each analysis frame, their separation system first estimates the exact fundamental
frequency of each pitch using the aligned MIDI file as a guidance. In a next step, each pitch
is extracted using a harmonic mask and assigned to one of the instruments as specified by
the MIDI file. To make this process feasible in real-time, the mask is computed using a fixed
overtone model, which is not adapted to a given recording.

Overall, while source separation has been a field of research for decades, using score
information to guide the separation process is a relatively recent approach. As demonstrated
by the contributions discussed in this section, score guidance allows for novel and innovative
applications of source separation techniques. Furthermore, the additional musical cues
provided by the score often allow for a gain in separation quality, which is difficult to achieve
otherwise. Here, robust music synchronization techniques allow for using score-informed
source separation methods in real-world scenarios, where usually no perfectly aligned MIDI
file is available. In the next section, we give an impression of how score-informed source
separation can be performed in practice.

3 Score-Informed Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) has turned out to be a powerful tool for modeling,
analyzing and separating the constituent parts of polyphonic music recordings. For example,
NMF variants form the basis of methods for pitch estimation [2, 44], source separation [50],
and pattern and motive identification [51]. However, using classic NMF it is often hard
to predict which properties of the input are captured after the learning process. In this
section, we show how the classical NMF framework can be extended in a straightforward
way using available score data. As we will see, the basic idea is to replace the standard NMF
initialization without changing the established and computationally efficient NMF learning
process. This way, a musically meaningful factorization structure can be enforced, which
stabilizes NMF-based source separation.

1 http://www.mutopiaproject.org
2 http://www.europarchive.org
3 http://www.mpi-inf.mpg.de/resources/MIR/2011-ISMIR-VoiceSeparation/
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Figure 5 Non-negative matrix factorization (NMF). (a) A given non-negative matrix V is
approximated as a product of two non-negative matrices W and H typically having a much smaller
rank. (b) Example factorization of a magnitude spectrogram for an audio recording of Chopin’s
Op. 28 No. 15 taken from the SMD database [34].

3.1 Non-Negative Matrix Factorization
In classic non-negative matrix factorization, one approximates a spectral representation of a
given recording by a product of two non-negative matrices. More exactly, given a magnitude
spectrogram V ∈ RM×N

≥0 of a music recording, NMF seeks to find non-negative matrices
W ∈ RM×K

≥0 and H ∈ RK×N
≥0 such that V ≈ W · H, see Figure 5a. In this context, the

columns ofW are often referred to as template vectors and the rows of H as the corresponding
activations. As an example, Figure 5b shows a factorization for a recording of Chopin’s
Op. 28 No. 15. Here, the free parameter K is set to the number of pitches that occur in
the corresponding part of the piece. In this case, the activation matrix H is similar to a
pianoroll representation and shows when these pitches become active.

In the classical approach for computing such a factorization, one employs some form
of gradient descent to minimize a distance measure D(V,W · H) with respect to W and
H, where D is typically based on the Euclidean norm or a variant of the Kullback-Leibler
divergence, see [31]. However, to account for the non-negativity constraints forW and H, one
usually has to resort to rather complex optimization algorithms [35]. As an easy-to-implement
alternative, Lee and Seung proposed multiplicative update rules, which are derived from
gradient descent by choosing a specific step size [31]. Using the popular Kullback-Leibler
variant as a distance measure, these rules can be written as

Hkn ← Hkn

∑
i WikVin/(WH)in∑

j Wjk
and Wmk ←Wmk

∑
i HkiVmi/(WH)mi∑

j Hkj
,

wherem ∈ [1 : M ] := {1, 2, . . . ,M}, n ∈ [1 : N ], and k ∈ [1 : K]. For vectorized programming
languages such as Matlab it is useful to express these rules in matrix notation:

H ← H �
W> · ( V

W ·H )
W> · J

and W ←W �
( V

W ·H ) ·H>

J ·H>
,

where the · operator denotes the usual matrix product, the � operator denotes the Hadam-
ard product (point-wise multiplication), J ∈ RM×N denotes the matrix of ones, and the
division is understood pointwise. These multiplicative update rules have several interesting
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Figure 6 Classical NMF factorization for the magnitude spectrogram shown in Figure 5. (a)
Random initialization of W . (b) Random initialization of H. (c) Learnt W . (d) Learnt H.

properties. First, the Kullback-Leibler distance measure is non-increasing under these rules4.
Furthermore, initializing W and H with non-negative random values, these rules guarantee
that W and H remain non-negative during the entire learning process.

In general, however, NMF factorizations computed in this classical way can not be as easily
interpreted as the example shown in Figure 5b. For example, Figure 6 shows a factorization
based on the classical NMF algorithm for the magnitude spectrogram shown in Figure 5b
(again using K = 12). Here, the initialization of W and H with random values does not lead
to a musically meaningful structure in the computed factorization. Furthermore, the free
parameter K is usually set according to simple rules of thumb that usually do not account
for any musical prior knowledge. As a result, the factorization often becomes completely
unpredictable and lacks clear musical semantics.

Another important property of multiplicative update rules is that zero-valued entries re-
main zero during the entire learning process. Combined with musically informed initialization

4 As pointed out by several authors [1, 32, 56], however, multiplicative rules do not guarantee in general
convergence to a local minimum of the employed distance measure.

Chapte r 05



82 Score-Informed Source Separation for Music Signals

49 56 58 61 63 65 66 68 70 72 73 77
0

500

1000

1500
F

re
q

u
en

cy
[H

z]

MIDI pitch

(a)

0 1 2 3 4 5 6 7 8

49

56

58

61

63

65

66

68

70

72

73

77

M
ID

I
p
it

ch

Time [sec]

(b)

49 56 58 61 63 65 66 68 70 72 73 77
0

500

1000

1500

F
re

q
u
en

cy
[H

z]

MIDI pitch

(c)

0 1 2 3 4 5 6 7 8

49

56

58

61

63

65

66

68

70

72

73

77

M
ID

I
p

it
ch

Time [sec]

(d)

Figure 7 NMF factorization resulting from harmonic initialization of the template vectors for
the magnitude spectrogram shown in Figure 5. (a) Harmonic initialization of W . (b) Random
initialization of H. (c) Learnt W . (d) Learnt H.

schemes, this yields a straightforward way to enforce a specific structure of a factorization as
proposed in [39, 49]. Here, one first creates one template vector for each possible MIDI pitch.
Then, a harmonic structure is imposed by inserting zero-valued entries into the template
initialization at positions where no partial is expected for a given pitch, see Figure 7a. The
remaining entries are initialized according to a simplified overtone model. As we see in
Figure 7c, the learning process based on multiplicative rules not only retains this harmonic
structure but further refines it such that each template vector has a clear pitch association.
This is a significant gain in structure compared to the unpredictable results computed via
standard NMF as shown in Figure 6. However, looking at the resulting factorization in
Figure 7c/d reveals that template vectors are still often ‘misused’, for example to represent
onsets. This becomes particularly apparent in the template for MIDI pitch 58, where energy
is distributed over a larger number of frequency bands compared to the other templates
(Figure 7c). Here, instead of representing harmonic components of the spectrum, the template
is misused to explain parts of the broadband energy distribution related to onsets. This is also
reflected by the short-term intensity bursts in the corresponding activation row (Figure 7d).
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Figure 8 NMF factorization resulting from harmonic initialization of the template vectors
and score-informed activation constraints for the magnitude spectrogram shown in Figure 5. (a)
Harmonic initialization of W . (b) Score-informed initialization of H. (c) Learnt W . (d) Learnt H.

3.2 Integrating Score Information

Possible ways to further stabilize the factorization by incorporating additional score informa-
tion were investigated in [15]. For example, in addition to the constraints on the template
vectors, one can also impose constraints on the activations by incorporating note timing
information. To generate such information, one employs music synchronization techniques in
a first step to determine for each MIDI note event its corresponding position in the audio
recording [16]. Next, based on the synchronized MIDI information, one marks suitable regions
in H to determine where a given pitch can be active, see Figure 8b. The remaining entries
are set to zero. To account for possible alignment inaccuracies, the temporal boundaries for
these regions can be chosen relatively generous. As a result, the activation matrix H can
be interpreted as a coarse piano roll representation of the synchronized MIDI file. As to be
expected, combining these activation constraints with those for the template vectors further
stabilizes the factorization. For example, most of the activation onset noise, which was
present in Figure 7d, is suppressed in Figure 8d. Furthermore, almost all template vectors
now have a well-defined harmonic structure. In some sense, the synchronization step can be
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Figure 9 Extended NMF model with additional onset templates for the magnitude spectrogram
shown in Figure 5. (a) Initialization of harmonic and onset template vectors in W . (b) Score-
informed initialization of the corresponding activations in H. (c) Learnt W . (d) Learnt H.

seen to yield a first rough factorization, which is then refined by the NMF-based learning
procedure.

So far, the model only represents harmonic parts of the signal and does not account for
percussive elements such as onsets. Making again use of the score information, we extend
the model by incorporating dedicated onset template vectors, see Figure 9a. Here, opposed
to many other approaches, we take into account that the spectral shape for onsets is for
many instruments (including the piano) not the same as for white noise but depends on the
respective pitch. Therefore, instead of using one onset template jointly for all pitches as for
example in [55], we use one onset vector for each pitch as suggested in [15]. Contrary to the
harmonic templates, we do not enforce here any spectral constraints but initialize the onset
templates uniformly and let the learning process derive their shape.

While the onset templates are hard to constrain in a meaningful way, the ephemeral
nature of percussive sounds allows for imposing strict constraints on their activations. Using
the synchronized MIDI, one has a rough estimate of the position of each onset. Initializing a
small neighborhood around these positions to the value one in the corresponding activation
while leaving all remaining entries at zero strongly restrains the time points where onset
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templates are allowed to be active, see Figure 9b. Again, a tolerance should be used to
compensate for possible synchronization inaccuracies. Looking at the resulting factorization
shown in Figure 9c and 9d, we see that the learnt harmonic vectors have the clearest
harmonic structure compared to all previous factorizations. Here, a reason is that percussive
broadband energy is now captured by the onset templates, with the result that onsets now
have a significantly less disturbing influence on the harmonic templates. Furthermore, the
impulse-like activations of most onset templates at the start of note events indicate that
these templates indeed represent onsets.

In summary, one can say that a combination of template and activation constraints
leads to meaningful and robust matrix factorizations. Here, as for the case of the onset
templates, constraints on the activation side can compensate for using relatively loose or even
no constraints on the template side and vice versa. Furthermore, even though all constraints
are hard in the sense that zero-entries in W and H remain zero throughout the learning
process, one can use rather generous constraint regions to account for synchronization errors
and retain some degree of flexibility. As one major advantage, the extended NMF model
using hard constraints allows for using exactly the same multiplicative update rules as in
classical NMF, thus it inherits the ease of implementability and computational efficiency.

3.3 Separation Process
By means of the initial constraint regions, a factorization as shown in Figure 9 describes
how each note event of a given MIDI file manifests in the spectrogram of a corresponding
audio recording. We now describe how this spectrogram model can be employed to separate
note groups such as a melody line, the staff of the right hand, a specific motive, or the
accompaniment from the recording. The only requirement is that the notes to be considered
are somehow specified by the user or by some labeling of the score. As an illustrating example,
we consider here the task of separating the left from the right hand staff as specified by a
given score, see Figure 10a. While staffs do not always correspond to musically meaningful
note groups, it demonstrates how note groups could be easily specified in a natural way.

For the separation, we exploit that every non-zero entry in H is associated with a specific
note event, see Figure 9d. Therefore, we can partition H into two new matrices HL and
HR, which contain either the activations for the left or the right hand, see Figure 10a/b.
A straightforward way to create an audible separation result could be to multiply these
two matrices with the template matrix W , shown in Figure 9c, and to invert the resulting
spectrogram. However, as NMF-based models are typically used to compute a rough
approximation of the original magnitude spectrogram spectral nuances in a given recording
are usually not captured. Therefore, the resulting audio recording would sound rather
unnatural.

An alternative to this direct sonification is commonly referred to as masking. Here, one
first derives masking matrices via

ML := WHL

WH + ε
and MR := WHR

WH + ε
,

where the division is understood pointwise and ε is a small positive constant to avoid
a potential division by zero, see Figure 10c/d. ML and MR have the same size as the
original spectrogram V and, having values between 0 and 1, indicate how strongly each
entry in V belongs to either the left or the right hand. Multiplying these masking matrices
point-wisely with V , one obtains a separated spectrogram for the left and the right hand,
see Figure 10e/f. Finally, to obtain the separated audio signals, one applies an inverse
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Figure 10 Illustration of the separation process for the left and the right hand. (a)/(b): Partition
of the activation matrix H (Figure 9d) into HL and HR. (c)/(d): Masking matrices ML and MR.
(e)/(f): Separated spectrograms.

discrete Fourier transform in combination with an overlapp-add technique to the separated
spectrograms. The necessary phase information is provided by the original spectrogram.
This way, masking-based separation allows for preserving most spectral details of the original
recording, which is important to create acoustically appealing results. However, by filtering
the original audio data, masking may also retain more non-target spectrogram components
compared to a direct sonification.

The quality of a separation result is often measured in terms of signal-to-distortion ratios
(SDR) as proposed in [48]. While illustrating some general tendencies, these measures often
do not capture the overall perceptual separation quality. In particular, in combination
with synthetic audio material, one does not get an impression of the separation quality in
real-world scenarios. To allow for a subjective, perceptual evaluation of their score-informed
NMF variant, the authors in [15] provide a website5 with separation results using real audio
recordings and score-like MIDI files. Here, using full-length pieces by Bach, Beethoven and
Chopin, most the audio material was taken from the SMD [34] dataset, while the MIDI
files were provided by the Mutopia Project6. Some additional historical recordings were
also taken from the European Archive7. To roughly indicate general quality differences
between the NMF variants in a quantitative fashion, the authors also conducted experiments

5 http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/
6 http://www.mutopiaproject.org
7 http://www.europarchive.org

http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/
http://www.mutopiaproject.org
http://www.europarchive.org
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Figure 11 Harmonic-Temporal-Structured Clustering (HTC): (a) Template vector composed of
several Gaussians. (b) Activation described by smooth, overlapping Gaussians. (c) Spectrogram
model resulting from a combination of template vectors and activations similar to NMF. (d)
Advanced HTC variant with an additional transient submodel. Figures are inspired by [55].

based on synthetic audio and the SDR measure. Here, on average, the strategy based on
the harmonic initialization of W yielded the lowest SDR value. Combining this strategy
with the score-informed initialization of H as in Figure 8 leads to a significant SDR-gain
of roughly 1.5 dB. Finally, additionally integrating onset templates leads to another gain of
roughly 1.2 dB.

4 Parametric Models

In addition to NMF, there are numerous other classical source separation methods which
allow for the integration of score information. Many of the approaches discussed in Section 2
are based on so called parametric models [13, 14, 20, 24, 27], which have been widely used
for blind source separation and music transcription. While these approaches differ strongly
in their details, the common idea is to adapt a set of parameters such that the underlying
model explains the spectrogram of a given recording as accurately as possible. Here, typical
parameters are related to acoustical and musical properties such as pitch, amplitude and
timbre. In this section, we exemplarily discuss some aspects of the harmonic-temporal-
structured clustering model (HTC) [55], which was employed in [26, 27] for score-informed
source separation. After a brief description of the main ideas underlying the HTC approach,
we summarize some conceptual differences to the NMF model.

4.1 Harmonic-Temporal-Structured Clustering (HTC)
Harmonic-Temporal-Structured Clustering (HTC) employs a parametric model to approxim-
ate the magnitude spectrogram of a given audio recording. Compared to NMF, specialized
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Figure 12 Score-informed NMF factorization for a recording of Chopin’s Op. 28 No. 4 taken
from the SMD database [34]. (a) Score and MIDI representation. (b) NMF factorization computed
using the method presented in Section 3. (c) Zoomed template vector for pitch 57. (d) Zoomed
activation for pitch 71. The red markers indicate positions discussed in the text.

model components take over the role of template vectors and activations. For example, each
HTC template consists of several Gaussians, which represent the partials of a harmonic sound,
see Figure 11a. To adapt the model to different instruments and their specific overtone energy
distribution, the HTC model allows for scaling the height of each Gaussian individually
using a set of parameters (γ1, . . . , γ7 in Figure 11a). An additional parameter f0 specifies
the fundamental frequency for the template. Assuming a harmonic relationship between the
overtones, this parameter controls the exact location of each partial.

Gaussians are also used in HTC to represent the activations, see Figure 11b. The position
of these Gaussians is typically fixed such that only suitable height parameters can be adapted
(parameters α1, . . . , α7 in Figure 11b). By choosing suitable values for the variances and
positions of the Gaussians, one obtains an overall smooth activation progression. Combining
the HTC templates and activations similar to NMF, one obtains a spectrogram model as
shown in Figure 11c. Recently proposed extensions of this model even allow for an integration
of transient and onset models [27, 55], see Figure 11d. Again using a smoothed representation
based on Gaussians, these additional models represent the broadband energy distribution
usually found at onset positions.

Since the HTC model follows similar ideas as NMF, one can also employ similar strategies
to incorporate score information. For example, note timing information can be used to
restrict the use of the activation parameters. Furthermore, MIDI pitch information can be
used to set the number of templates in the HTC model to the actual number of pitches in
the piece. This is similar to setting the value of the free parameter K in NMF.



S. Ewert and M. Müller 89

4.2 Comparison between HTC and NMF
To compare the HTC model with NMF, we consider an NMF factorization for an audio
recording of Chopin’s Prélude No. 4. Using the method presented in Section 3, one obtains a
factorization as shown in Figure 12b. Here, similar to Figure 9, we see that almost all learnt
harmonic template vectors have a well-defined harmonic structure. For a closer inspection of
an exception, we plot the template for pitch 57 as a function over frequency in Figure 12c.
We see a small peak at 930 Hz (see red marking), which does not fit into the harmonic
pattern. Enforcing a meaningful distance between partials, the Gaussian-based HTC model
offers here a straightforward way to enforce a clear harmonic relationship. However, this
additional robustness against spurious peaks comes at the cost of model inaccuracies. One
reason is that partials almost never perfectly take the form of a Gaussian, see [38], such that
the HTC model leads to an additional inevitable approximation error.

Furthermore, the approximation accuracy does not only depend on the templates but also
on the activations. To give an example, we plot the activation for pitch 71 as a function over
time in Figure 12d. Here, we see three distinct peaks at 1.8, 2.3 and 6.6 seconds, respectively,
which correspond to the three middle B notes, see Figure 12a. However, there are additional,
smaller peaks at 5.4 and 9.6 seconds (marked in red), which do not seem to make any musical
sense. Using Gaussians spanning several frames to model the activation, such short-time
irregular peaks are smoothed out. However, whether this is meaningful depends on the
application. In Figure 12a, we see that a note event with pitch 71 (middle B) is played after
2.3 seconds and is held afterwards. Then, after 5.4 seconds, a note event with pitch 72 is
played. Since in this recording all piano dampers are up, the consequence is that the onset of
pitch 72 also results in excitations of the neighboring pitches, in particular of the strings of
pitch 71. Therefore, the small peak at 5.4 seconds in the NMF activation is indeed a physical
fact rather than an extraction error.

5 Conclusion

Music signals possess specific characteristics that are not shared by spoken speech or audio
signals from other domains. For example, for sound mixtures of polyphonic music, the
general assumption that sources are somehow orthogonal in the spectral domain is often
violated. This makes the separation of musical sources or voices very difficult. To remedy
this problem, various approaches have been suggested that use additional cues as specified
by a musical score.

In this paper, we have given a comprehensive overview of state-of-the-art source separation
techniques that exploit additional score information in various ways. In particular, we
discussed in detail a score-informed variant of NMF, where the integration of constraints
can be done in a straightforward manner already at the initialization stage. We showed
that by constraining both the template vectors and the activations, one obtains robust
and musically meaningful separation results. Opposed to parametric models, where the
integration of additional priors often leads to an increase in the computational complexity,
score-informed NMF variants employ the same update rules as the original NMF and inherit
its computational efficiency.

Besides stabilizing the separation process, the availability of score information also
facilitates a natural and user-friendly way of specifying the voices or note groups to be
separated. This opens up new ways for audio editing applications, where a user can simply
mark certain note groups within a visual representation of the score, which are then separated,
removed, amplified, or attenuated in a corresponding music recording. For the future, we
plan to develop multimodal interfaces that realize such functionalities.
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So far, we have conducted experiments mainly on piano music. In this context, we showed
how the score-informed NMF framework can be extended by integrating additional onset
templates without sacrificing robustness. A promising research direction is to further expand
the NMF model to account for other musical aspects such as timbre or instrumentation and
then to apply the NMF framework to other types of music.
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