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—— Abstract

Topological dynamics is, roughly, the study of phenomena related to iterations of continuous
maps from a metric space to itself. We show how the rewrite relation in term rewriting gives rise
to dynamical systems in two distinct, natural ways: (A) One in which any deterministic rewriting
strategy induces a dynamical system on the set of finite and infinite terms endowed with the usual
metric, and (B) one in which the unconstrained rewriting relation induces a dynamical system
on sets of sets of terms, specifically the set of compact subsets of the set of finite and infinite
terms endowed with the Hausdorff metric.

For both approaches, we give sufficient criteria for the induced systems to be well-defined
dynamical systems and for (A) we demonstrate how the classic topological invariant called topo-
logical entropy turns out to be much less useful in the setting of term rewriting systems than in
symbolic dynamics.
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1 Topological dynamics and rewriting

A topological dynamical system is a pair (X, f) where X is a metric space and f: X — X
is a continuous map. The primary object of study is the long-term behaviour of iterations of
the map f. Such systems are widely studied in pure and applied mathematics, for example
in mathematical physics, in fractal geometry, and in combinatorial number theory [12]. A
well-studied subclass of dynamical systems is that of symbolic dynamical systems [25] where
X is a topologically closed set of infinite strings and f is the shift map, either chopping off
the first symbol of a right-infinite string or shifting a bi-infinite string one position to the left.
Such systems with right-infinite strings can be easily modelled by string rewriting systems
with very simple rules (@ — € for right-infinite strings) and endowed with a rewrite strategy.
Equivalently, they can be modelled by term rewriting systems over unary signatures (with
rules a(x) — ) endowed with a rewrite strategy. The observation that existing dynamical
systems can be modelled by almost trivial rules immediately raises the twin questions of
whether more general term rewriting systems on well-behaved sets of terms can be viewed as
topological dynamical systems.
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We answer this question in the positive by defining two distinct notions of dynamical
systems that we believe are quite natural: (A) One in which any (suitably continuous)
deterministic rewriting strategy induces a dynamical system on the set of finite and infinite
ground terms endowed with the usual metric, and (B) one in which the unconstrained
rewriting relation induces a dynamical system on sets of sets of terms, specifically the set of
compact subsets of the set of finite and infinite ground terms endowed with the Hausdorff
metric. We also provide a starting point for investigating the dynamical properties of these
systems by considering continuity, conjugacy and topological entropy.

We employ infinite, ground terms for two reasons: (1) that they are needed to generalize
the classes of dynamical systems that already exist in the literature, (2) that the set of finite
and infinite ground terms is topologically much more well-behaved than the set of finite terms,
hence allow stronger results. We stress that the rewriting relation itself is ordinary one-step
rewriting; thus, we have no infinite reductions, and we do not consider infinitary rewriting
[18]. However, as topological dynamics considers the long-term behaviour of iterated maps,
we do expect that connections with this area will be found in the future.

A clarification from the start: We do not have any practical applications of the
present work, nor have we actively sought out such applications. We believe the topological
dynamics of term rewriting to be mathematically interesting per se, even more so as the
systems we consider properly generalize existing classes of dynamical systems.

1.1 Related work

The class of (one-dimensional) symbolic dynamical systems (SDSs) is a special case of the
class of systems we define in this paper, and is the main in inspiration for our work; there is
a vast literature on SDSs, and we refer the reader to the excellent textbooks and handbook
chapters in the area [25, 22, 6]. Kitchens defines three classes of dynamical systems associated
to a class of maps on finite trees [23]; the trees are not in general trees of terms and the maps
themselves do not correspond to term rewriting. The thematically closest research to ours
are the tree-shifts of Aubrun and Béal [2, 3], introduced as an intermediate notion between
one-sided shifts of dimension one, resp. higher dimensions. In contrast to the systems we
consider, tree-shifts pertain to infinite, labelled trees with a fixed arity n (each node in
the tree has 4 children), and the set of maps associated to the set of such trees are the n
maps o; such that o; cuts off the root node and returns the ith child of the root. Aubrun
and Béal succesfully generalize a number of concepts and results from SDSs to the class of
tree-shifts, including the concepts of system of finite type and sofic systems, and prove the
highly interesting result that conjugacy of tree-shifts of finite type is decidable. We firmly
believe, but have not proved, that these results can be extended to many of the systems we
consider in this paper.

2 Preliminaries

2.1 Term rewriting on finite and infinite terms

We refer to standard textbooks [4, 27] for basics on term rewriting; to fix notation, we give
the most necessary definitions below.

A signature is a set of function symbols, each endowed with a non-negative integer arity;
if f is a function symbol of arity n, we invariably write f/n. If X is a signature and V is a
set of variables, we denote by T(3, V) the set of terms over ¥ and V; the elements of the
set are all variables, all nullary function symbols, and all objects on the form f(s1,...,s,)
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where f € X has arity n and si,...,s, are terms over X and V. The root symbol of a
term s = f(s1,...,8,) (for n > 0), denoted root(s), is f. The set of ground terms over
Y is T(2,0). A (one-hole) context is a term in T(X,V U {O}) that contains exactly one
occurrence of O, where 0 ¢ S UV. A substitution is a map 6 : V. — T(3,V) where we
usually assume that only a finite number of elements x € V' satisfy 6(z) # x. A substitution
extends homomorphically to a map 6 : T(3,V) — T(X,V) in the obvious way. If C is
a context and s is a term, we define C[s] = 6(C) where 6 is the substitution defined by
0(0) = s and O(z) = z for = # O.

The set of positions of a term s, denoted Pos (s) is the set of finite sequences of positive
integers defined inductively as follows: If s € V or s is a nullary function symbol, then
Pos (s) = {e} where € is the empty string. If s = f(s1,...,s,), then Pos(s) ={e} U{ip:p €
Pos (s;) A1 <i <n}. The length of a position is its length as a string. The subterm of term
s at position p € Pos(s), denoted s|,, is defined inductively by s|c = s and otherwise (in
which case s = f(s1,...,s,) and p = ip’ for some p’ € Pos (s;)) by s|, = s;|,7. For notational
convenience, we set POS = N<“ (“the set of all possible positions”), with the convention
that € € POS. If p € POS and j is a non-negative integer, we set p° = € and p/ = p/~1p (i.e.,
the sequence consisting of j copies of p). If C is a context, we occasionally write C as C[|,
where p is the unique position of [J in C.

A term rewriting system (abbreviated TRS) over X and V is a set of pairs, invariably
written [ — 7, such that (i) {,r € T(X,V), (ii) [ ¢ V, and (iii) every variable that occurs
in r also occurs in [. The rewrite relation induced by R is the binary relation —rC
T(X,V) x T(X,V) defined by s —p t if there exist a rule | — r € R, a context C[], and a
substitution 6 such that s = C[0(1)], and C[6(r)], =t (in which case we say that the pair
(p,1 = r) is a redex in s). We invariably drop the subscript R, writing —, when there is no
risk of confusion. A rule [ — r is called collapsing if r =z € V.

The standard metric d : T(X,V) x T(2,V) — Ry U {0} is defined by d(s,s) = 0 and
d(s,t) = 2717 where p is a position of minimal length such that root(s|,) # root(t|,).

The set of finite and infinite terms over ¥ and V, denoted T°°(3, V) is the (necessarily
unique) metric completion of T(X, V). The set of infinite terms over ¥ and V is T°(X, V) \
T(X,V); note that an infinite term may have subterms that are finite. The set of finite and
infinite ground terms over X is T°° (X, ().

An equivalent definition of 7°°(X, V') is obtained by interpreting the term formation rules
coinductively instead of inductively, and still other equivalent methods exist in the form of
ideal completion and partial functions (see, e.g., [20]) If in doubt: infinite terms are exactly
what you think they are.

Let R be a TRS over ¥ and V; the rewrite relation —rC T°° (3, V) x T*°(X, V) is defined
exactly as in the finite case (note that in all rules I — r € R, both [ and r are still finite
terms). We denote by NF(R) the set of R-normal forms of 7°°(%, §)) (i.e. the set of possibly
infinite ground terms s such that there exists no ¢ with s — t).

2.2 Topological dynamics

We refer to standard textbooks on topological dynamics such as [12, 28], giving only the
most basic definitions below.

A topological dynamical system is a pair (X, f) where X is a topological space and
f: X — X is a continuous map. It is usually assumed that X is locally compact, metrizable
and second countable.

A standard notion of subsystems exists for dynamical systems (A, f): A dynamical
system (B, f) is a subsystem of (A4, f) if B is a topologically closed subset of A that is
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f-(forward-)closed, that is f(B) C B [28, Ch. 5].

The following two examples introduce one- and two-sided shifts that are the primary
objects of study in the field of symbolic dynamics; for more information, consult textbooks
specifically on symbolic dynamics, for example [25, 22].

» Example 2.1 (One-sided shifts). Let ¥ be a finite string alphabet, and let F' C ¥* be a
(finite or infinite) set (called the set of forbidden words). Let Ap be the set of all right-infinite
strings over 3 that do not contain any element of F' as a substring. Then by standard results
A is a topologically closed subset of £¢ equipped with the usual Cantor metric on sequences
[25]. The shift map o on Ap is defined by o(b1bybs - - ) = babs -+, and it is easily seen that
(Ap,0) is a topological dynamical system.

» Example 2.2 (Two-sided shifts). Proceed as in Example 2.1, but define instead Bp as the
set of all bi-infinite strings over ¥ that do not contain any element of F' as a substring, and
let the shift map o be given by o(---b_ob_1bpb1bs - -+ ) = (¢n)nez Where ¢, = b,y for all
n € Z. Then, (Bp, o) is a topological dynamical system.

In both of the above examples we may have F = @ in which case Ap (resp. Bp) is the
set of all right-infinite (resp. bi-infinite) strings over 3.

Finally, recall that a metric space (M, d) is an ultrametric space if d(z,y) < max{d(z, z),d(z,y)}

for arbitrary x,y,z € M. The standard metric d on T°°(%, §)) is an ultrametric.

» Lemma 2.3. Let (M,d) be an ultrametric space. If B(x,€) and B(z,d) are open balls
with § < € and B(x,e) N B(z,0) # 0 then B(z,6) C B(x,€). In particular, if § = e,
B(z,€) N B(z,6) # 0 implies B(x,€) = B(z,9).

Let AC M. Then A has a cover of cardinality k of sets of diameter at most € iff it has a
cover of cardinality k of open balls of radius e.

Lastly, (M,d,) is an ultrametric space.

3 Topological dynamics and term rewriting

Many results in topological dynamics are contingent on the underlying topological space being
locally compact (and, in symbolic dynamics, compact). It is easy to see that (T(3,V),d)
is locally compact: For any term s, let m be a positive integer that is strictly greater than
the length of the longest position in s; then the open ball with radius 27™ centered on s is
exactly the (necessarily compact) singleton set {s}). However, in many cases we would like
(T(X,V),d) to be complete—and preferably compact—which it is not in general:

» Lemma 3.1. Let X contain at least one symbol with arity > 1. If T(3,0) is not empty,
then it is not complete (hence is not compact).

Proof. Let f € ¥ have arity m > 1. If T(X,0) # 0, there must be a € ¥ with arity 0. Define
the sequence of terms (s,,) by so = a and s,+1 = f(Sn,...,8,). Then, (s,) is Cauchy, but
has no limit in T(X, ). <

If we extend our attention to T°°(X%, V), however, the topological properties are much
better. The following results hold for the metric space (T°° (%, V), d):

» Lemma 3.2 (See [1]). Let X be a (possibly infinite) signature. Then, T*(X, V) is complete.
In addition, T (X, V) is compact iff both ¥ and V are finite (in particular, if 3 is finite,
then T°°(2,0) is compact).
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An important convention: In view of Lemma 3.2, we restrict our attention to T°°(%, §))—
the set of finite and infinite ground terms over a finite signature, and hence the compact
metric space (T°(%,0),d). In addition, unless explicitly otherwise stated, R will always
denote a TRS with finitely many rules.

4 Take A: Dynamics on sets of terms with a rewriting strategy

We consider deterministic strategies on the set of finite and infinite terms; intuitively, a
strategy picks one among the (possibly infinite number of) redexes in a term to contract:

» Definition 4.1. Let R be a TRS on T°°(X%,0). A (deterministic) strategy S for R is a
(total) map S : (T°(%,0) \ NF(R)) — POS x R such that S(t) = (p,l — r) is a redex in t.

If S is a strategy for R, the map induced by S, denoted Fs g : T°°(3,0) — T°°(%,0)
(invariably abbreviated Fis when R is clear from the context), is defined by Fs(t) =t if ¢ is a
normal form, and otherwise Fg(t) = s if ¢ — s by contraction of the redex of rule I — r at
position p where S(t) = (p,l — r).

There are two potential pitfalls in the above definition: (i) as terms may be infinite,
the set NF(R) of normal forms of R is not in general decidable—even if R is finite-whence
computability of Fg is not immediate, (ii) the map Fs need not necessarily be continuous,
which is required of a topological dynamical system.

» Definition 4.2. Let S be a strategy for the TRS R on T°° (%, 0)) such that Fg : T°° (3, 0) —
T°°(%,0) is continuous. Then (T°°(%, ), Fs) is a topological dynamical system and is called
the S-induced dynamical system on T (X, ).

Thus, the main question of interest is under which circumstances the map Fj is continuous.

Note that if S is not continuous as a map 7°°(3,0) \ NF(R)) — POS x R when POS
and R are endowed with the discrete topology and POS x R has the product topology,
then in general Fs will not be continuous either. For example, consider the signature
{a/1,b/1}, the TRS {a(z) — b(z),b(x) — a(x)} and the-pathological-strategy S defined
by S(v*(a(t)) = (1¥,a(z) — b(x)) (for any k > 0 and term t), and S(b*) = (¢,b(z) — a(x)).
Then, S is not continuous, as witnessed by the fact that (b™(a*)),, is sequence converging to
b, but S(b™(a¥)) = (1™, a(z) — b(z)) and S(b¥) = (¢, b(x) — a(z)), whereas the sequence
(S(b™(a*))) does not converge to S(b*). Hence, Fg is not continuous.

We have the following useful lemma:

» Lemma 4.3. Let R be a (finite!) TRS and let S : (T°°(3,0) \ NF(R)) — POS x R be a
strategy for R. Equip R and POS with the discrete topology, and let POS X R be equipped with
the product topology. If S is continuous, then Fg : T (X, 0) — T°°(%,0) is continuous.

Proof. We show pointwise continuity at s € T°°(X, ). Let k be any non-negative integer
and split on cases according to s:
If s is not a normal form, let S(s) = (p,I — r). By continuity of S, there is a non-negative
integer ny such that if d(s,t) < 27", and S(¢t) = (p/,l' = '), then p = p’, I =’ and
r =1'. Let w be the length of the longest position in ! and set m; = max{k, nq, |p| + w}.
If d(s,t) < 27™1 we hence have d(Fs(s), Fs(t)) < 27*.
If s is a normal form, let w be the length of a maximally long position occurring in a left-
hand side of a rule in R, and set mg = k + w. Let ¢ € T°°(3,0) such that d(s,t) < 27™=2.
If ¢ is not a normal form, consider S(t) = (¢, — r); if || < k, then there is a redex
in s at ¢, a contradiction. Hence, d(Fs(s), Fs(t)) < 27%. If t is a normal form, then
d(Fs(s), Fs(t)) = d(s,t) < 27m2 < 27k, <
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Thus, continuity of Fs merely requires us to prove that .S is continuous.

» Corollary 4.4. Let R be any (finite) TRS, let S be a leftmost-outermost strategy (in case
more than one redex is present at a position, assume that S deterministically picks one of
them)t. Then, (T°°(%,0), Fs) is a topological dynamical system.

Proof. Let s € T*(X,0) and let k be a non-negative integer. Let w be the length of the
longest position occurring in a left-hand side of a rule in R. Set m = k+w. If 5, € T>(%, 0)
are both non-normal forms with d(s,t) < 27™, we reason as follows: For the leftmost-
outermost strategy, if S picks a redex in s at position p with |p| < k, then that redex is
present in ¢ as well, and must be leftmost and outermost in ¢ (otherwise another redex present
at depth at most k is leftmost-outermost, but then it would also be leftmost-outermost in
s, a contradiction). Contracting both redexes yields terms identical up to depth k (as the
length of any position across a rewrite step can be shortened by at most w). Alternatively, S
picks a redex at a position with length strictly greater than k; in this case, S cannot pick a
redex at a position of length < k in ¢, as this redex would also be present in s and thus at a
position of strictly shorter length than the redex picked for s, contradicting outermostness.
In both cases, d(Fs(s), Fs(t)) < 27%, establishing continuity. <

Perhaps surprisingly, innermost strategies are in general not continuous: Consider the
signature ¥ = {a/1,b/1,>/0} and the TRS R = {a(z) — >}. Consider terms on the form
a(b*(a(r>))) for k > 1. Then, any innermost strategy will always pick the redex resulting in the
step a(b*(ar>)) — a(b®(r>)). But for any term on the form a(b*(>)), any innermost strategy
will always pick the redex at the root of the term, resulting in the step a(b*(>)) — >.
If the innermost strategy were continuous, then there would be an integer m such that
d(a(b*(a(>))),a(b*(>>))) < 27™ implies that S chooses the same redex in both terms; but S
chooses different redexes in the terms a(b™(a(>))) and a(b™(r>)), a contradiction.

» Remark. It turns out that every computable strategy S is continuous, but due to space
constraints we omit the lengthy definitions needed to define computable strategies on infinite
terms. After the definitions have been made, continuity follows immediately from the
Kreisel-Lacombe-Shoenfield Theorem (“every computable map on a computably complete
computable metric space is continuous”) [24]. Note that the leftmost-outermost strategy is
computable, but the leftmost-innermost is not.

4.1 Examples

Let S be a strategy for TRS R such that the S-induced system (7°°(X%,0), Fs) exists. A
subsystem of (T°° (3, (), Fs) is a dynamical system (7", Fs) such that (i) 7" is a topologically
closed subset of T°(%, 0)), and (ii) Fs(T") C T’

» Example 4.5. We can easily model the one- and two-sided shifts of Examples 2.1 and 2.2:

Let ¥ = {a1/1,...,ax/1}. For the one-sided shift, set R = {a;(x) = z,...,ar(x) — x}
and let S be the (necessarily unique, as all symbols are unary) outermost strategy for R. For
a set of “forbidden words” F', all on the form a;, (- - (a;, (z))), we may consider the set Ap of
infinite, ground terms s such that no element of F' occurs in s; formally: there is no context

L For the purposes of this paper, a leftmost-outermost strategy is a strategy that picks a redex that is (i)
at a position of minimal length, and (ii) is minimal in the lexicographic order on positions among redexes
satisfying (i). For further discussion of the difficulties of generalizing leftmost-outermost reduction to
infinitary rewriting, see [21].
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C1], no element a;, (- - - (a;, (x))) € F, and no s’ € T°°(%, () such that s = Cla;, (- - - (a4, (s)))].

Then, (Ap, Fs) is a subsystem of (T*°(3,0), Fg).

Correspondingly, for the two-sided shift, let u ¢ ¥ be a fresh binary symbol and define Bp
to be the set of all terms on the form u(sy, s2) where s1, s2 € T°(2,0) such that no string
of symbols corresponding to w € F occurs in s, and no string of symbols corresponding to
the reverse of w € F occurs in s1. Define R = {u(z, a1(y)) — u(ai(z),y),...,u(z,ap(y)) —
u(ag(z),y} and let S be an outermost strategy for R. Then, (Bp, Fs) is a subsystem of
(TOO(Ea @)7 FS)

» Example 4.6. Let ¥ = {: /2,nil/0,+/1,0/0, f/1}, write : (“cons”) as in infix operator as
usual, and set R = {f(nil) — nil, f(z:y) = +(z) : f(y)}.

Let N be the set of finite and infinite ground terms built solely from + and 0 (i.e., N
models the set NU {oo}), and let L be the least subset of 7°°(%, ) such that nil € L, and
such that s € N and ¢t € L implies s: ¢ € L (i.e. L models the set of finite and infinite lists
of natural numbers). Finally, let K C T°°(X, V) be the subset of terms such that s € K
implies either s € L, or s =t1 : (ta : -+« f(tn : --+)) where all ¢; are elements of N. Then,
K is topologically closed, and if F is any outermost strategy, Fs(s) = s for any s € K and
Fs(s) € Lif s € K\ L. Finally, as there is at most one redex in any element of K, Fg is
continuous as S is an outermost strategy.

The map Fg contracts the unique redex, if any, in a term s € K. By inspection, we see
that iteration of the map corresponds to “adding one” to each natural number in successive
elements of the list s. If s = f(s’) where s’ € L, the sequence F™(s) converges to the (finite
or infinite) term ¢ € K with one added to every natural number in s.

5 Take B: Dynamics on sets of sets of terms

We now consider the action of maps Fr induced by R where the objects being “moved” by
Fr are set of terms. Hence, the natural dynamical system is a map on a set of sets of terms.

» Definition 5.1. Let (X, d) be a metric space and let H(X) be the set of non-empty compact
subsets of X. The Hausdorff metric on H(X) is then the metric dyy defined by

dp (A, B) = inf d(a,b), sup inf d(a,b
H(A, B) = max {22%?3 (a,b) sup nf, (a )}

A proof that dg is indeed a metric on H(X) can be found for example in [5]. It is not hard
to see that if (X, d) is an ultrametric space, then so is (H(X),dy), and that completeness
of (X, d) implies completeness of (H(X),dy). For the standard metric on terms, there is a
simple, neat characterization of the Hausdorff metric:

» Theorem 5.2 (See e.g. Ch. 1 of [13]). Let x be a wariable and define, for any non-
negative integer n and any s € T(X,0), the term a,(s) as the term s where we have
replaced any subterm of s at positions p with |p| > n by x. For A € H(T>=(%,0)), define
an(A4) = {an(s) : s € A}.

The Hausdor[f metric on T (X,0) is then given by

dH(A, B) _ 27inf{n:an(A)7£an(B)}

» Definition 5.3. Let R be a TRS. We then define the map Fg : H(T>(2,0)) —
H(T>(X%,0)) by

Fr(A)={teT>(,0):s€ ANs —>rt}U{t € A:tisanormal form}
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If the map Fg is continuous, then (H(T°°(%,0)), Fr) is a dynamical system, which we denote
the R-induced system.

Thus, Fr(A) consists of (i) all reducts of elements of A, and (ii) all normal forms in
A. The reason for including the normal forms in A is to ensure that Fg is well-defined (as,
otherwise, any set consisting solely of normal forms would be mapped into the empty set,
which is not an element of H(X)).

Fortunately, Fig is continuous for all ordinary TRSs R:

» Theorem 5.4. If R has finitely many rules, then Fg is continuous.

Proof. Observe that dy (A, B) < € iff
(Vs € A3t € B.d(s,t) <€) A (Vt € B3s € Ad(s,t) <€)

Let m be the length of a position of maximal length occurring in the left-hand side of a
rule of R, and let k£ be an arbitrary non-negative integer. To show that Fg is continuous, it
suffices to show that:

1. (Vs € A3t € Bud(s,t) < 2=CFm) = (V' € Fr(A)It' € Fr(B).d(s',t') < 27%), and
2. (Vte B3se Ad(t,s) < 27Ckm)) = (V' € Fp(B)3s' € Fr(A).d(t',s') < 27F).

Note that the two conditions above are completely symmetrical in A and B; we hence
prove only the first.

Assume that Vs € A3t € B.d(z,y) < 272+ ™) and let s’ € Fg(A) be arbitrary. Then
there exists s € A such that either (i) s = s’ and s is a normal form, or (ii) s =g &'

In case (i), consider t € B: If ¢ is a normal form, then ¢t € Fr(B) and we may set t' = t,
and we have d(s',t') = d(s,t) < 27 (2F*+m) < 27k a5 desired. If ¢ is not a normal form, then
t — t’' for some term ¢’ by a rewrite step at some position p; note that |p| > k as s is a
normal form and s and ¢ are identical up to depth 2k 4+ m. Hence, d(s',t') = d(s,t') < 27%,
as desired.

In case (ii), let p be the position of the redex contracted in the step s — s’. Split on
cases as follows:

If |p| < k, note that d(s,t) < 2~ whence there is a redex of the same rule at p
in t; let ¢ be the term such that ¢ — ¢’ by contraction of this redex, and observe that
t' € Fr(B). Observe that the rule employed in this redex can shorten positions by at
most m; hence, if the redex is contracted at depth |p| < k, the symbols occurring at
depth < k in #’ are either created by the right-hand side of the rule, or are descendants
of positions occurring at depth at most 2k + m. As s and t were identical up to depth
2k +m, t’ and s’ are thus identical up to depth k, whence d(s’,t') < 27%, as desired.

If |p| > k, then as d is an ultrametric, we have d(s',t') < max{d(s',s),d(s,t')} <
max{d(s’, s), max{d(s,t),d(t,t')}} < 27F. <

The assumption that R has a finite number of rules cannot be omitted from the statement
of Theorem 5.4 as there are systems R with infinitely many rules for which Fg is not
continuous, cf. the following example.

» Example 5.5. Consider the signature ¥ = {a/1,b/1} and R = {a"(b(x)) — b(x) : n € Np}.
Define A = {a*} and, for each nonnegative integer k, B, = {a®(b*)}. All sets A and
By, are singletons, hence non-empty and compact, whence A, By € H(T>(X,0)) for all
k. For arbitrary k, we have dy(A, Bx) = 27%, and (Bg)s thus converges to A. If Fr
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were continuous, the sequence (Fgr(By))r would converge to F(A). But Fr(A) = A and
Fr(Bi) = {b¥,a(b®),...,a*(b*)} for each k, whence dg(Fr(A), Fr(By)) = 1 for all k,
disproving continuity.

5.1 Examples

As the dynamical system (H(T°°(X,0)), Fr) tracks the evolution of sets of terms while
encompassing all possible rewrite steps in the terms, it is natural to consider the dynamical
system applied to processes usually described by non-deterministic evolution where the set
of all possible trajectories is the point of interest. One such area is fractals; we show a single
example below.

» Example 5.6. Let ¥ = {0/0,1/1, f/9}, and let R consist of the single rule 1 —
f£(1,0,1,0,1,0,1,0,1). Consider the set T/ = T°°(3,0) \ {0}. T’ is a closed subset of
the compact set T°°(3, (), hence compact. Then (H(T"), Fr) is a topological dynamical
system (indeed, a subsystem of (H(T°°(X%,0)), Fr)).

It is easy to see that Frlyy @ H(T') — H(T') satisfies du(Fr(A), Fr(B)) =
dg (A, B)/2 for arbitrary non-empty compact subsets of 7”. Hence, by the Banach Fixed
Point Theorem, F has a unique fixed point given by lim,,_,o Fj;(A) where A is any element
of H(T"). In particular, we may choose A = {1} and hence see that the fixed point is the
term ty = lim,, 00 t,, where to =1 and t,, = f(tn-1,0,tn-1,0,%n-1,0,%,—-1,0,¢p_1).

It is convenient to visualize ¢y by letting the

root represent a square with edges of unit

length. If this square is partitioned into 9

smaller squares with edge length 1/3 in the

obvious manner, the 9 subterms of the root
are then represented by one of the smaller
squares, and so forth. This generates the box
fractal as shown to the right. (More precisely,

the box fractal can be drawn as follows:
Define f: {1,...,9} — [0,1] x [0,1] by
f(i)=3([’5], (i — 1) mod 3). For each
p=e€p1---pn € Pos(t,) with t,|, =1
compute ¢, = Y, f(p;)/(3") and draw a
square with lower left corner ¢, and side
length 1/(3"*1).)

It is tempting to try to derive a general result from Example 5.6. However, the use
of the Banach Fixed Point Theorem (which requires the map Fg to be a contraction, i.e.,
d(Fr(A), Fr(B)) < d(A, B) for all A, B with A # B), is problematic from the vantage point of
term rewriting: If R has at least two distinct normal forms ¢ # ¢/, then Fz is not a contraction,
due to Fr({t}) = {t} and Fr({t'}) = {t'}, whence d(Fr({t}), FrR({t'})) = d({t},{t'}). The
obvious “fix” for this problem is to consider Fr as a map on the set of compact subsets on
T>°(%,0) \ NF(R); but this attempt fails as removing the set of normal forms in general
destroys compactness?.

2 More precisely: If there is a normal form t € T°° (%, §)) such that (i) ¢ is an infinite term, (ii) there is
a sequence (tn) with t, € T°°(Z,0) \ NF(R) for all n and ¢ = limy, ¢;, then T°°(X,0) \ NF(R) is not
complete, hence not compact.
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Another example of use is to consider a construction close to the tree-shifts of Aubrun
and Béal under the action of all shift maps:

» Example 5.7. Let ¥ be any finite, non-empty signature where each symbol has the
same, positive arity (we choose ¥ = {f/2,¢/2} in this example). Consider the system
R={f(z1,...,2n) = 25 : f € 3,1 <i<n}. Then, Fg: H(T>®(X,0)) — H(T>(X,0))
is continuous by Theorem 5.4. If A = T°°(%, (), we have Fr(A) = A; if B is the subset
of T°° (X, D) consisting of all those infinite ground terms that do not contain the pattern
flg(-,),9(-,)), then B is compact and Fg(B) = B.

6 Conjugacy and topological entropy

Dynamical systems are usually identified up to topological conjugacy (roughly: The dynamical
properties of two conjugate systems are the same). As topological conjugacy is, in general,
undecidable, even for finitely presented dynamical systems, a number of topological invariants
(quantities known to be identical for conjugate systems) are studied with the purpose of
proving that two distinct dynamical systems are not conjugate; the most well-known of
these being the so-called topological entropy. We briefly define these concepts for S-induced
systems and show that the topological entropy is unlikely to be a useful topological invariant
in this case.

» Definition 6.1. Two dynamical systems (X, f) and (Y, g) are said to be topologically
conjugate (or simply conjugate) if there is a homeomorphism h : X — Y such that
hof=goh.

» Example 6.2. For S-induced systems, systems obtained by simple renamings are conjugate;
e.g. if ¥ ={a/1,0/0}, X2 = {b/1,1/0}, Ry = {0 — a(0)} and Ry = {1 — b(1)}, then there
is only a single strategy S; for Ry and a single strategy So for Ry, and (T°°(X4,0), Fi,) and
(T>°(35,0), Fs,) are conjugate.

Likewise, let ¥ = {f/2}, Ry = {f(z,y) — 2z} and Ry = {f(x,y) — y}, and define,
for any t € T*(X,0), the term h(t) € T>(%,0) by swapping left- and right-subterms
of each occurrence of f top-down. Then H : H(T>(X2,0)) — H(T*(X,0)) defined by
H(A) = {h(t) : t € A} is a homeomorphism and Fp, and Ff, are conjugate by H.

» Example 6.3. The one- and two-sided shifts defined in Examples 2.1 and 2.2 are con-
jugate to their term rewriting counterparts of Example 4.5—for the two-sided shift, define

h(-+-b_2b_1bob1bz -+ ) = u(b_1(b—2(---)), bo(b1(b2(--))))-

» Remark. Unsurprisingly, the question of whether two, suitably presented, subsystems are
conjugate, is undecidable:

Let ¥ be a signature with at least two distinct symbols both of which have arity > 1.
The following question is undecidable:

Given: (i) Two finite TRSs R and R’ (it may wlog. be assumed that R = R'), (ii) two
strategies S and S’ (it may wlog. be assumed that S = S’) for resp. R and R’, and (iii)
two recursively enumerable, topologically closed subsets A, A" C T° (%, 0) that are resp.
Fs and Fg/-invariant.

To decide: Is (A, Fs) conjugate to (A’, Fg/)?

Proof. Let ¥ = {0/1,>/0}, set R = R’ = {0(x) — z} and let S = S’ be the outermost
strategy. Let M be an inputless Turing machine and define the set

Apnr = {0%} U {0"> : M has not halted in the first & > 0 steps of its execution}
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Note that A, is finite iff M halts after some number of steps and hence that A, is closed
in this case. If M does not halt, then A, is infinite and Ay = {>, 0>, 00>, 000>, ... }U{0%},
whence Ay is also closed in this case. Let S be the (unique) outermost strategy for R. Then
Fs(0¢) = 0 and, for k > 1, Fs(0*>) = 0F~ 11>, whence Fs(Ap) C Ay in all cases.

Let N be any non-halting Turing machine. Then Ay = {0¥>: &k >0} U {0“}. Note that
as Ajy is finite for any halting M and a conjugacy h : Ay; — An must be a homeomorphism
(in particular must be a bijection), then (Aps, Fis) and (Ay, Fs) are conjugate iff M does
not halt. Conversely, if M does not halt, then (A, Fs) and (An, Fs) are clearly conjugate
(as Apr = Ay and the two systems have the same rule set and strategies).

If it were decidable for all (A, R) whether (A, Fs) and (Ay, Fg) are conjugate, then
we could decide whether M halts as the two systems are conjugate iff M does not halt, and
we obtain a contradiction. <

We do not know whether it is decidable in general whether two systems on the full sets
of terms over (possibly distinct) signatures are conjugate, whether conjugacy is decidable for
subsystems (A, Fg) with decidable A. We very strongly suspect that both of these questions
are undecidable as well.

A similar result holds for subsystems of (H(T°°(X%,)), Fr); the proof uses a construction
very similar to the one above and is thus omitted:

The following question is undecidable:

Given: (i) Two finite TRSs R and R’ (it may wlog. be assumed that R = R’) and (ii)
two recursively enumerable, topologically closed subsets A, A" C H(T*(%,0)) (both
consisting of finite subsets) that are resp. closed under Fr and Fg.

To decide: Is (A, Fr) conjugate to (A, Fr)?

6.1 Topological entropy

A topological invariant is a quantity that is equal for conjugate systems. Such invariants
are used to prove that certain systems are not conjugate. The topological entropy, defined
below, is a common such invariant (see, e.g., [12, Cor. 2.5.4] for a proof its invariance).

» Definition 6.4. Let (X, d) be a compact metric space and f : X — X be continuous. For
positive integer n, define d,(z,y) = maxo<;j<n—1 d(f(x), f/(y)). For € > 0, let cov(n,e, f)
be the minimum number of sets of d,,-diameter at most ¢ whose union contains X (the
dn-diameter of a set A is the quantity sup, ,c 4 dn(,y)).

The topological entropy of f, denoted h(f), is then:

R 1
h(f) = 51_1>I(r)1+ llrrln%sotip - log cov(n, e, f)

The definition of topological entropy can be intuitively understood as follows: Imagine a
computer screen with a picture of A as a two-dimensional set; the map f then defines how
the points in A move in one time step, and d,(x,y) measures the maximum distance of the
trajectories of the points x,y € A after the first n — 1 time steps; € can be viewed as the
“resolution” of our computer screen (small € gives high resolution). The topological entropy
is then, roughly, the (exponential) rate of evolution of the number of distinct trajectories we

can discern as the number of time steps becomes very large and our resolution becomes very
high.
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» Example 6.5. Let 1 = {f1/2,..., fn/2} where N > 1 and Ry = {fi(x1,22) —
fo(xy, @), ..., fn(z1,22) = fi(x1,22)}, and let Sy be the (necessarily unique) outermost
strategy for R;. Then, Fg, is an isometry, whence d,(s,t) = d(s,t) for all non-negative
integers n and all s,t € T°°(X,0). But for each ¢ > 0, the minimum number of sets
of d-diameter sets needed to cover X is then a number, k, independent of n, whence
h(Fs,) = lim. o4 limsup,,_, . 1/nlogk = 0.

Let X5 = {f1/1,...,fn/1} where N > 1 and Ry = {fi(z) = z,..., fn(z) — 2}, and
Sy be the (again, unique) outermost strategy for Ro. Then, Fg, is conjugate to the full
one-sided shift on NV symbols, hence has identical entropy. By standard results (see, e.g., [17,
p. 120]), the topological entropy of this system is log N; hence h(Fs,) = log N.

Let 35 = {f1/n1,...,fn/Nn}, let R3 be an orthogonal TRS containing at least one
rule, and such that each rule is on the form f;(z1,...,z,,) = r where every variable in r
occurs at depth at least 2. Let S3 be the leftmost-outermost strategy for Rs. Then, for
all s,t € T* (X, 0), we have d(Fs,(s), Fs,(t)) < d(s,t), and by arguing as for R; above, we
obtain, mutatis mutandis, that h(Fs,) = 0.

A moment’s thought reveals that when f is a weak contraction (i.e., d(f(x), f(y)) < d(z,y)
for all z,y € X), then h(f) =0, and as Example 6.5 shows, this situation may occur if the
depth of any occurrence of a variable is not decreased in any rule. For depth-decreasing
systems such as Ry in Example 6.5, the situation at first glance seems more promising as we
obtain positive, finite entropy. However, we will momentarily show that this is an artifact of
all function symbols in the signature being unary. In general, systems containing at least
two symbols of arity at least 2, and just a single collapsing rule with at least two variables in
the left-hand side will have infinite entropy (for outermost strategies).

Before we proceed, we need an ancillary notion: If A is a closed subset of (X, d) such
that F(A) C A, the restriction f|4 of f to A induces a topological dynamical system, and
we may hence consider the topological entropy h(f|4). The following result is standard (see,
e.g., [12, Prop. 2.5.5(3)]):

» Lemma 6.6. Let (X, d) be compact and let f: X — X be continuous. If A C X is closed
and satisfies F'(A) C A, then h(f|a) < h(f).

We then have:

» Theorem 6.7. Let X be a signature containing at least two elements f,g € % each of which
has arity at least 2. Let | — x be a rule where | is a linear term (i.e. each variable occurs at
most once) containing at least two distinct variables x and y.

Let R D {l — x} be a TRS where no rule in R\ {l — x} overlaps l — x at the root, and
let S be any outermost strategy for R. Then, h(Fg) = oco.

Proof. Let p, and p, be the unique positions of « and y in [. Define the map ¢; : T(X,V) —
T(X, V) by gi(s) = l[s]p,- Aslis not a variable, the sequence (g;"), is convergent in 7°(X, V')
for every s and must converge to an infinite term. Thus, define t; = lim,,_,» g]*({). Note that
t; is an infinite term that is not ground, as [ contains at least one variable distinct from zx.

Let A C T°°(X%,0) be the set of infinite ground terms such that s € A iff (i) for each
position p of ¢; such that ¢;|, ¢ V, we have |, = s|,, and (ii) if ¢ is a position in s not
covered by (i), then the root symbol of s|, is either f or g. (Intuition: s is obtained by
starting with ¢; and then filling in infinite ground terms over the signature {f/2, g/2} at all
occurrences of variables in ¢;.) Let (s,,) be a convergent sequence of elements of A. Clearly,
the limit of the sequence must satisfy (i) and (ii) above, whence A is a closed set. For s € A,
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we permit ourselves to talk about the “stacked copies of [” when referring to the copies of [
in the “spine” ¢; that is present s.

Observe that, as [ was a linear term, each element of A contains a redex of rule [ — x
at the root. As no rule in R distinct from | — x overlaps [ — x at the root, any outermost
strategy S must, when applied to s € A, always select the redex of rule [ — z at the root.
By construction of A, contraction of this redex yields an element of A (specifically, we have
Fs(s) = s|p,), whence Fs(A) C A.

By Lemma 6.6 it thus suffices to prove that h(Fg|4) = oo.

Let p be any position, j > 0, and consider pJ; by the above observations, we have
F{(s) = s|,;, and hence for any position p in F§(s), we have F§(s) Thus, for
arbitrary s,t € A:

lp = 8y,

dn(s,t) = Ogljx_lgzcilmaxﬁf‘p‘ : root(s| ;) # root(t] i)}

(The second max in the above is due to the fact that the position p of minimal length
satisfying the conditions defines the metric; for such a p the quantity 2~17I is mazximized.)

By Lemma 2.3, d,, is an ultrametric, and we may thus compute the topological entropy
by counting balls of radius € instead of sets of diameter e. Also by Lemma 2.3, two open
dp-balls B;,(s,27™) and B,,(t,2~™) are either disjoint or equal, and we can thus compute
cov(n,2”™, Fg) by counting the number of distinct balls of radius 2=™. We proceed by
giving a lower bound on the number of such balls.

Let B be the set of infinite ground terms built solely of symbols f and g such that
t € B iff root(t],) = f for |p| # m — |py|. (i.e., t “consists of fs at all depths except
m — |py| where t may use both f and g”). Observe that |B| = 92" ! (there are ex-

actly 27~ IPvl positions of length m — Ipy|, and each of these can hold either f or g).
Let s € A be arbitrary and set

Cma = {sltlp, : t € B}, resp. Cppy =
{Sn[t]p;—lpy ct€BAS, €Cmpn_1}- !
(Intuition: In the first n stacked copies of
[, we replace the subterm at p, by an l
element of B. See the drawing to the
right.) Observe that [Cp, 1| = 22" "' m I

|Crnn| = 22" —Ipyl . |Cyn—1|, whence by v

|G| = 27" =IPuD | Let 5,5" € Cpn S ST
with ¢ # t’. Observe that y S
root(s|,) = root(s’|,) for all positions p
not on the form p = p’p,q where

gl =m —[pyl-

Thus, there must be a position p = plp,q with |¢| = m — |p,| such that root(s|,) #
root(s’|,). Let p have minimal length among such positions. Observe that Fs(s) = s|,, and
Fs(s') = 8|, ; thus, d,(s,s’) = 27 IPval = 277,

All open d,,-balls B,,(s,2™™) with s € C,, ,, are disjoint by Lemma 2.3. Note that all of
these balls must occur in any minimal cover of A by balls of radius 2™ (for, if some ball
B, (t,27™) of radius 2~™ contains s € C, , then B, (¢,27™) N By (s,2™™) # 0, whence by
Lemma 2.3 we have B, (t,27™) = B,(s,27™).

m + 2|p|
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Hence, cov(n,2™™,Fg) > |Cpn| = gn2™ P! Phyg:

1 1 m—
h(Fs|4) = lim limsup — logcov(n, e, Fs|4) > lim limsup — log 2™ !
=0+ poco M m—=o0 npooco N

n2m_|py|
= lim limsup — > lim 2" 1Pl = o0,
Mm—00 n_ 300 n m— o0
and the result follows. <

Thus, if for example ¥ = {f/2,¢/3,h/0} and R = {f(x,y) = v, 9(z,y,2) = g(f(z,y), h, h)}
and S is the outermost-left strategy, then h(Fs) = co.

Theorem 6.7 and Example 6.5 together show that the problems with collapsing rules
already known in infinitary rewriting rear their heads in our setting of finite reductions as
well; this is not entirely surprising as the topological entropy concerns the limiting behaviour
of the one-step rewrite relation. The problems with entropy are reminiscent of the result
from infinitary rewriting that an orthogonal system is confluent iff it is almost non-collapsing,
that is, has at most one collapsing rule, and such that the unique collapsing rule has exactly
one variable in the left-hand side [19].

7 Conclusion and future work

We have laid the groundwork for the study of topological dynamical systems induced by term
rewriting systems; while we have only scratched the surface, we have shown that such systems
properly generalize well-known classes of systems such as symbolic dynamical systems, and
are equipped with very interesting dynamical properties of their own.

A plethora of open questions remain. We mention a few and give suggestions for future
work:

Is conjugacy undecidable for rewriting systems over the full set of terms (i.e., without
passing to a closed proper subset of T°° (3, ()7 Conjecture: yes.

There is a rich interaction between topological dynamical systems and measure theory;
in the same vein, it is highly conceivable that there are links between our work and
probabilistic rewriting [9, 10, 11].

There are several properties of topological dynamical systems that are typically studied for
each class of such systems, for example topological transitivity, mixing and expansiveness
[12]; it would be interesting to obtain characterizations of the term rewriting systems
whose induced topological dynamical systems have these properties.

The computability of the dynamics of general dynamical systems is well-studied (see,
e.g., [14, 15, 16]), as is complexity issues related to certain aspects of dynamical systems
(a few examples: [8, 7, 26]). It would be of interest to perform similar investigations of
computability and complexity for the systems defined in this paper.

There is a need for better topological invariants than the topological entropy; in addition,
the entropy of Fr should be investigated.

What are the connections to the field of infinitary rewriting?
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