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Abstract
The Pure Pattern Calculus (PPC) [10, 11] extends the λ-calculus, as well as the family of algebraic
pattern calculi [20, 6, 12], with first-class patterns i.e. patterns can be passed as arguments,
evaluated and returned as results. The notion of matching failure of PPC in [11] not only provides
a mechanism to define functions by pattern matching on cases but also supplies PPC with parallel-
or-like, non-sequential behaviour. Therefore, devising normalising strategies for PPC to obtain
well-behaved implementations turns out to be challenging.

This paper focuses on normalising reduction strategies for PPC. We define a (multistep)
strategy and show that it is normalising. The strategy generalises the leftmost-outermost strategy
for λ-calculus and is strictly finer than parallel-outermost. The normalisation proof is based on
the notion of necessary set of redexes, a generalisation of the notion of needed redex encompassing
non-sequential reduction systems.
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1 Introduction

Pattern calculi [20, 12, 6, 15] model the pattern-matching primitives of functional program-
ming languages (e.g. OCAML, ML, Haskell) and proof assistants (e.g. Coq, Isabelle), where
functions can be defined by n different cases by writing for example f := p1->s1 | . . . | pn->sn.
When pi is typically expressed in terms of constructors and variables we speak of algebraic
pattern calculi. The application of f to an argument u starts by matching p1, the pattern
of the first case, against u. If such a matching is successful, then it yields a substitution σ1
whose domain is the set of variables in p1. This substitution is applied to s1, the body of
the first case, and then the substituted body is evaluated. If a successful matching is not
possible, i.e. there is a matching failure, then evaluation continues with the following cases
in the definition of f.

The Pure Pattern Calculus (PPC). PPC [10, 11] generalises algebraic pattern calculi (and
hence the λ-calculus) by allowing an arbitrary term ti to take the role of a pattern pi thus
generalising a function to f := t1->s1 | . . . | tn->sn. Reduction inside the ti is now allowed,
hence patterns may be computed dynamically. Also, symbols in ti now play two roles: either
they are variables (i.e. place holders) for terms (which substitution from “outside” will duly
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fill in) or they are matchables (depicted with a hat for easy identification) in the sense that
they are only used to decompose data. These two roles are distinguished by decorating a case
t->s with a set θ of binding symbols that singles out the subset of matchables in the pattern t
that are meant for matching, the variables in the body s being those acting as place-holders.

λ{x} x̂.(λ{y} x ŷ.y)

Figure 1

Consider for example elim ::= λ{x} x̂.(λ{y} x ŷ.y)
where we write λθ t.s rather than t ->θ s.
The inner abstraction λ{y} x ŷ.y binds the
only occurrence of the matchable ŷ in the
pattern x ŷ and that of the variable y in the
body y; the x in x ŷ is excluded from {y}
since it acts as a place-holder in that pattern. However, the occurrence of x, as well as that
of x̂, are both bound by the outermost λ{x}, as can be seen in Fig. 1.

The dynamics of reduction in PPC may be illustrated by the reduction sequence of Fig. 2
in which elim is applied to the function λ{z} ẑ.cons z nil, where cons and nil denote
constructors. In the first step, λ{z} ẑ.cons z nil is substituted for x into the pattern x ŷ.

(λ{x} x̂.(λ{y} x ŷ.y)) (λ{z} ẑ.cons z nil)
→ λ{y} (λ{z} ẑ.cons z nil) ŷ.y
→ λ{y} cons ŷ nil.y

Figure 2

In the second step, the resulting ap-
plication (λ{z} ẑ.cons z nil) ŷ, which
resides in a pattern, is reduced. The
resulting term, when applied to an ar-
gument, will yield a succesful matching
only if this argument is a compound data
of the form cons t nil. This example

exhibits the pattern polymorphism capabilities of PPC allowing to obtain structurally different
deconstructors by applying the same term elim to different arguments.

Reduction in Fig. 2 proceeded smoothly. However, it may fail. In PPC, (λθ p.s)t is
reducible only if the match of the pattern p against the argument t is decided, i.e. it is either
a successful match, specified by a substitution, or a matching failure, specified by a closed
normal form (written1 nf). E.g. consider (λ{x} a r1.x)(b r2) where r1 and r2 are redexes.
Matching of a r1 against b r2 fails since the head constructors a and b are different. This is
also the case for (λ{x} a r1 b.x)(a r2 d), now because the constructors b and d mismatch,
a fact that can be established without examining r1 or r2. Indeed, failure of matching for
any component of a given compound data automatically implies failure of matching for the
entire compound.

Non-sequentiality of PPC. What would be a smart normalising strategy for PPC? Clearly, if
the matching of p against t is decided when evaluating (λθp.s)t, then it is a redex and should
be selected. However, when it is non-decided, it is necessary to understand which subterm
(p, s or t) needs to be evaluated first in order to attain a normal form for the whole term. E.g.
it is the pattern that must be reduced in (λ{x} I (a x̂).x)(a c) (I is the identity function) in
order to attain a decided match, the argument in (λ{x} a x̂.x)(I (a c)), and both the pattern
and the argument in (λ{x} a (I (b x̂)).x)((I a) b y). Even though we could establish that
the pattern or the argument or both have to be reduced, deciding which redex to pick in each
of these cases is not always possible. An example is t1 := (λ{x} a (b x̂) r1.r2) (a r3 (d r4))
where matching is non-decided: both pattern and argument must be reduced in order for t1
to become a redex. Reducing r1 is not necessarily a good idea. Indeed, suppose r1 is any
non-terminating computation and r3 reduces to d t, for some t. Then reduction of r3 causes

1 There are other different reasonable approaches.
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a matching failure since b and d mismatch. We could rather have selected r3, however if
this time it is r3 that is non-terminating and r1 reduces to b t, for some t, then again we
miss failure and loop. The same happens if we choose r4. The term t1 illustrates that PPC
fails to be sequential.

Informally, sequentiality means that given a term of the form C[r1, . . . , rn] where C
does not contain any redex and every ri is a redex, there exists an index i s.t. ri is a
needed redex and the choice of i is independent from r1, . . . , rn. A redex r in a term t

is needed iff every reduction sequence from t to normal form reduces (a residual of) r.
Another example showing terms not in normal form may not have needed redexes is t2 :=
(λ{y} a b c ŷ.y) (a (I c ) (I b ) (I a )) (redexes are shown in gray). This term admits at least
two different reduction sequences to normal form: t2 → (λ{y} a b c ŷ.y)(a c (I b ) (I a ))→ nf
and also t2 → (λ{y} a b c ŷ.y)(a (I c ) b (I a )) → nf. Sequentiality fails in PPC because
matching may fail for different reasons: none of the redexes in t2 is needed since failure of
matching can be declared in terms of (only) I b or I c.

Even if dynamic patterns and non-sequentiality are central issues of this paper, the
calculus would also be non-sequential if the set of patterns were restricted to the static ones.
As explained before, non-sequentiality comes from the notion of matching failure introduced
in [11], which is detailed in Sec. 2, and applies to any kind of static pattern, including the
standard, algebraic ones.

Towards normalisation strategies for PPC. It has been shown in different settings that
repeated contraction of needed redexes yields normalising strategies for sequential rewriting
systems. Failure of sequentiality leaves us with two avenues to pursue in order to devise
normalising strategies for PPC. The first is to introduce look-ahead by performing several
reduction steps in order to identify an i. In this case, apart from C we would have to examine
the ris. Such an approach is overly expensive since it involves testing for cycles [1]. The
second avenue consists in selecting a multistep: a set of redexes reduced simultaneously at
each step. Of particular appeal in this approach is the notion of necessary set of redexes:
a set of redexes A in a term t is called necessary iff every reduction sequence from t to
normal form reduces at least (a residual of) one element of A, even if this element may differ
from sequence to sequence. The set of all redexes, and also the set of all outermost redexes,
are necessary sets for any term in PPC. However, implementations could benefit from finer
strategies, i.e. reduction strategies selecting smaller sets of redexes in each multistep.

Contributions. We propose a strategy for PPC which selects for each term a necessary set
bounded by the set of its outermost redexes and show that it is normalising. More precisely,
we introduce:

a theory of needed normalisation for PPC by adapting the notion of necessary sets [21] to
the higher-order case;
a proof that repeated contraction of necessary sets of redexes is normalising, provided
that those sets also enjoy an additional property, namely they are non-gripping [16];
an inductively formulated strategy for PPC that produces necessary, non-gripping sets of
redexes, and hence is normalising.

Related work. In λ-calculus and, more generally, orthogonal higher-order (HO) Expression
Reduction Systems, any normalising term not in normal form contains a needed redex and (one-
step) contraction of needed redexes attains a normal form [5, 7]. Unfortunately, as discussed
above, terms in PPC not in normal form may contain no needed redexes. Multistep reduction
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strategies have been studied for both first-order (FO) and HO rewriting. Normalising
multistep strategies by means of necessary sets have been defined for non-sequential FO
TRS in [21], which has been our main source of inspiration. Van Raamsdonk [23] extends
O’Donnell’s result [19] (reduction of all outermost redexes is normalising) to almost orthogonal
HORS. Indeed, [23] proves that being outermost fair is a sufficient condition for a reduction
strategy to be normalising; this result was then extended [22] to weakly orthogonal HO
rewriting. These works have influenced some of the concepts and technical tools used in this
paper. Melliès [16, 17] develops an axiomatic theory of neededness for (possibly) overlapping
rewrite systems, motivated by the work of Huet and Lévy for orthogonal FO TRS [8]. Pattern
calculi may be modeled as the axiomatic rewrite systems of Melliès, however his normalisation
results are not applicable since pattern calculi do not enjoy stability [16](Axiom IV, pg.80):
there may be more than one way to create the same redex due to matching failure.

Regarding the specific setting of non-sequential pattern calculi (including matching
failure) we are not aware of any literature on normalising strategies. For an abridged
version of PPC resulting from restricting the set of patterns to the algebraic ones and
from disallowing matching to fail, one-step standard reductions (obtained by means of a
standardisation theorem) turn out to be normalising [13]. Also worth mentioning is the
existence of sequential (i.e. every term has a needed redex) operational semantics of dynamic
pattern calculi appearing for example in [9, 3, 4]; they can be understood as (re)formulations
of PPC where the conditions determining when a match should fail impose a more restricted
evaluation order.

Structure of the paper. Sec. 2 introduces PPC. Sec. 3 defines multistep strategies and
develops the tools needed to guarantee that complete developments can be used as multisteps.
Sec. 4 presents a reduction strategy S for PPC. Sec. 5 formalises the notion of necessary
sets of redexes, motivates and introduces the additional non-gripping property, shows that
S always reduces necessary and non-gripping sets, and uses these facts to prove that it is
normalising. Finally, Sec. 6 concludes and suggests further work.

2 The Pure Pattern Calculus

This section briefly introduces PPC following the presentation of [11]2.

Syntax: Consider a countable set of symbols f, g, . . . , x, y, z. Sets of symbols are denoted
by meta-variables θ, φ, . . . . The syntax of PPC is summarised by the following grammar:

Terms (T) t ::= x | x̂ | tt | λθ t.t
Data-Structures (DS) D ::= x̂ | Dt
Matchable-forms (MF) F ::= D | λθ t.t

The term x is called a variable, x̂ a matchable, tu an application (t is the function
and u the argument) and λθ p.u an abstraction (θ is the set of binding symbols, p
is the pattern and u is the body). Application (resp. abstraction) is left (resp. right)
associative. A λ-abstraction λx.t can be defined by λ{x} x̂.t. The identity function
λ{x} x̂.x is abbreviated I.

2 Other presentations are [10, 9], but both of them use sequential, rather than parallel-or like, semantics.
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A binding symbol x ∈ θ of an abstraction λθ p.s binds matchable occurrences of x
in p and variable occurrences of x in s. The derived notions of free variables and free
matchables are respectively denoted by fv(_) and fm(_). This is illustrated in Fig. 3.

λ{x} x x̂ . x x̂

Figure 3

As usual, we consider terms up to alpha-conversion,
i.e. up to renaming of bound matchables and vari-
ables. Constructors are matchables which are not
bound and, to ease the presentation, they are often
denoted in typewriter fonts a, b, c, d, . . ., thus for ex-

ample λ{x,y} x̂ y a.y denotes λ{x,y} x̂ y ẑ.y. The distinction between matchables and variables
is unnecessary for standard (static) patterns which do not contain free variables.

A position is either ε (the empty position), or na, where n ∈ {1, 2} and a is a position.
We use a, b, . . . (resp. A,B, . . . and δ, ρ, π, . . .) to denote positions (resp. sets and sequences
of positions) and bA to mean {ba | a ∈ A}. The set Pos(t) of positions of t is defined as
expected, provided that for abstractions λθ p.s positions inside both p and s are considered.
Here is an example Pos(λ{x} a b.a x x) = {ε, 1, 2, 11, 12, 21, 22, 211, 212}.

We write t|a for the subterm of t at position a and t[s]a for the replacement of the
subterm at position a in t by s. Notice that replacement may capture variables. We write
a ≤ b (resp. a ‖ b) when the position a is a prefix of (resp. disjoint from) the position b.
All these notions are defined as expected [2] and extended to sets of positions as well.

Substitution and Matching: A substitution σ is a mapping from variables to terms with
finite domain dom(σ). A match µ is either a substitution or a special constant in the set
{fail, wait}. A match is positive if it is a substitution; it is decided if it is either positive
or fail. The notions of domain and free variables/matchables are naturally extended to
matches, in particular, the domain of fail is the empty set and that of wait is undefined.
The application of a substitution σ to a term is written and defined as usual on alpha-
equivalence classes. The application of a match µ to a term t, written µt, is defined as
follows: if µ is a substitution, then it is applied as explained above; if µ = wait, then µt is
undefined; if µ = fail, then µt is the identity function I. Other closed terms in normal form
could be taken to define the last case, this one allows in particular to encode pattern-matching
definitions given by alternatives [11].

The disjoint union of two matches µ1 and µ2 is a crucial operation used to define the
operational semantics of PPC. Disjoint union is written µ1 ] µ2 and is defined as: their union
if both µi are substitutions and dom(µ1) ∩ dom(µ2) = ∅; wait if either of the µi is wait and
none is fail; fail otherwise. This definition of disjoint union of matches validates the
following equations which are responsible for the non-sequential nature of PPC:

fail ] wait = wait ] fail = fail

We return to these equations immediately after the definition of the operational semantics of
the calculus. The compound matching operation takes a term, a set of binding symbols
and a pattern and returns a match, it is defined by applying the following equations in order:

{{x̂ .θ t}} := {x→ t} if x ∈ θ
{{x̂ .θ x̂}} := {} if x /∈ θ
{{pq .θ tu}} := {{p .θ t}} ] {{q .θ u}} if tu, pq ∈MF
{{p .θ t}} := fail if p, t ∈MF
{{p .θ t}} := wait otherwise

The use of disjoint union in the third case of the previous definition restricts compound
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matching to linear patterns 3, which is necessary to guarantee confluence. Indeed, disjoint
union of two substitutions fails whenever their domains are not disjoint.

The result of the matching operation4 {p/θ t} is defined to be the check of {{p .θ t}}
on θ; where the check of a match µ on θ is fail if µ is a substitution whose domain is not
θ, µ otherwise. Notice that {p/θ t} is never positive if p is not linear with respect to θ. We
now give some examples: {x̂x̂/{x} uv} gives fail because x̂x̂ is not linear; {x̂ŷ/{x,y,z} uv}
gives fail because {x, y, z} 6= {x, y}, {x̂/∅ u} gives fail because ∅ 6= {x}; {ŷ/{x} ŷ} gives
fail because {x} 6= ∅; {x̂ŷ/{x} uẑ} gives fail because {{ŷ .{x} ẑ}} is fail; {x̂ŷ/∅ uẑ} gives
fail for the same reason.

Semantics: The semantics of PPC is given by means of the following reduction rule:

(λθ p.s)u 7→ {p/θ u}s, if {p/θ u} is decided

The rule applies to the term (λ{x,y} a x̂ ŷ.y x)(a b (I a)) yielding (I a) b; and also to
(λ{x,y} a x̂ ŷ.y x)(c b (I a)) yielding I (since the matching operation yields fail). However,
the rule does not apply to the term (λ{x,y} a x̂ ŷ.y x)(I x̂) since {a x̂ ŷ/{x,y} I x̂} is wait.

It is worth noticing that sequentiality of PPC can be recovered (see e.g. [9, 3, 4]) by
modifying the equations of disjoint union, however, some meaningful terms will no longer be
normalising. Thus for example, if fail ] µ is defined to be fail, while wait ] fail = wait
and σ ] fail = fail, then (λ∅ a b b .ŷ)(a Ω c), where Ω is a non-terminating term, would
never fail as expected.

A (β) redex is a term of the form (λθ p.s)u s.t. {p/θ u} is decided. A redex (λθ p.s)u
s.t. {p/θ u} = fail is called a matching failure. A position a ∈ Pos(t) is called a redex
occurrence of t iff t|a is a redex; RO(t) denotes the set of all redex occurrences of a
term t. A redex in t is outermost if it is not contained in any other redex; i.e. it is minimal
with respect to the order < on redex occurrences. A reduction step from t to s via a
is a tuple t a→ s, where t|a is a redex (λθ p.u)v and s = t[{p/θ v}u]a; this reduction step
denotes the contraction (or evaluation) of the redex occurrence a ∈ RO(t). We occasionally
identify a reduction step t a→ s with the redex occurrence a if no confusion arises.

Given a sequence of positions δ = a1; . . . ; an; . . . (possibly empty or infinite) and t0 ∈ T,
a reduction sequence from t0 via δ, written t0

δ
�, is a sequence of the form t0

a1→
t1 . . . tn−1

an→ tn . . .. We write nil for the empty reduction sequence. We occasionally identify
t
δ
� s with δ if no confusion arises. The term t reduces to s in many steps, written t� s,

iff there is a reduction sequence t
δ
� s. Notice that � is the reflexive and transitive closure

of →. Given t0
δ
�, where δ = a1; . . . ; an; . . ., we write δ[i..k] (1 ≤ i ≤ k ≤ n) to identify the

finite (sub)reduction sequence ti−1
ai→ ti . . . tk−1

ak→ tk and δ[i] (1 ≤ i ≤ n) to identify the
reduction step ti−1

ai→ ti.
A term s is in normal form, written s ∈ NF, iff there is no t s.t. s → t. A term s is

normalising iff there is a normal form t s.t. s� t.
We refer the interested reader to [11] where different PPC examples are introduced,

particularly to illustrate path and pattern polymorphism.

3 A pattern p is linear w.r.t. θ if for every x in θ, the matchable x̂ appears at most once in p.
4 Note that the notation for (compound) matching we have just given differs from [10] and [11]: the

pattern and argument appear in reversed order there.
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3 Multisteps and multireductions

In the light of the discussion in the Introduction on the inexistence of needed redexes, the
reduction strategy for PPC we shall propose in Sec. 4 will select a set of redexes to contract at
each step. Contraction of a set of redexes is understood as simultaneous contraction of all its
members. Since, in principle, the order in which these members are contracted could affect
the target term of the step, it becomes necessary to lay out precise definitions of what it
means to perform simultaneous contraction of a set of redexes. It should be mentioned that
these definitions are rather straightforward in first-order rewriting since the aforementioned
set of redexes may be assumed to contain pairwise disjoint redexes, without any loss of
generality. This owes to the fact that (first-order) residuals of such sets are again pairwise
disjoint. In the higher-order case, however, this no longer holds, as can be seen by means of
the following example. Consider the reduction step

t = (λ{x} x̂. (λ{y} ŷ.y x)s )r → (λ{y} ŷ.y r)s = u

where r is a redex and s an arbitrary term; the redexes (λ{y} ŷ.y x)s and r are disjoint in t,
while (λ{y} ŷ.y r)s and r, their respective residuals in u (according to the formal definition
given below), are not. This significantly complicates any effort of adapting extant results on
normalisation of first-order systems to the higher-order setting.

Given a term t, b ∈ Pos(t) and a ∈ RO(t), the descendants of b after a in t, written
b/ta or simply b/a if the term is clear from the context, is the set of positions defined as
follows:

∅ if a = b.

{b} if a 6≤ b.
{an} if b = a12n, t|a= (λθ p.s)u, and {p/θ u} is a substitution

{akn . s|k= x} if b = a2mn, t|a= (λθ p.s)u, {p/θ u} is a substitution, p|m= x̂ and x ∈ θ
∅ otherwise

If b is the position of a redex in t, then each position in b/a denotes a residual of b after
performing a. This notion is extended to sets B ⊆ RO(t) as follows: the residuals of B
after a in t are B/a :=

⋃
b∈B b/a. In particular ∅/a = ∅. Given t

δ
� u and B ⊆ RO(t),

the residuals of B after the sequence δ, are: if δ = nil, then B/δ := B; otherwise
B/δ := (B/δ[1])/δ[2 . . . n] where δ = δ[1..n].

Let A ⊆ RO(t). The reduction sequence t
δ
� is a development of A iff δ[i] ∈ A/δ[1..i−1]

for all i. A development δ of A is said to be complete iff δ is finite and A/δ = ∅.
Using standard techniques we show that the order in which contraction of redexes in a

given set is performed does not introduce non-termination nor does it affect the target term.

I Proposition 1 (Strong Finite Developments). Let t be a term and A ⊆ RO(t).

(i) All developments of A from t are finite.
(ii) If t

δi

� ui (i = 1, 2) are two complete developments of A, then u1 = u2 and ∀a ∈ RO(t),
a/δ1 = a/δ2.

As a consequence, for every A ⊆ RO(t) we can now formally define a multistep t A−→◦ u iff
there is a complete development of A from t to u. Given a sequence of sets ∆ = A1; . . . ;An; . . .
(possibly empty or infinite) and to ∈ T, a multireduction sequence ∆ from t0, written
t0

∆
−�◦ , is a sequence of the form t0

A1−→◦ t1 . . . tn−1
An−→◦ tn . . .. We write nil for the empty

multireduction sequence. We occasionally identify t
∆
−�◦ s with ∆ if no confusion arises. We
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use the notations ∆[i] and ∆[i..j] to denote Ai and the (sub)sequence Ai; . . . ;Aj respectively.
We use Γ,∆,Π,Ψ, . . . to denote multireduction sequences. Let A, B be sets of positions.
The residual of B after A, written B/A, is defined as the multistep B/δ where δ is any
complete development of A (this is well-defined by Prop. 1).

We extend the concept of residual to multireductions as well. The residual of B after ∆
is defined as follows: if ∆ = nil, then B/∆ := B; otherwise B/∆ := (B/∆[1])/∆[2..n] where
∆ = ∆[1..n]. Analogously, we define the residual of ∆ after B as follows: nil/B := nil,
∆[1..n]/B := (∆[1]/B)/(∆[2..n]/(B/∆[1])). By applying several times Prop. 1 it can be
proved that ∆; (B/∆) and B; (∆/B) end in the same term and induce the same residual
relation.

Prop. 1 also allows us to introduce the depth of A, written ν(A), a notion we shall use
in Sec. 5. It is defined as the length of the longest complete development of A. Since PPC is
finitely branching, this is well-defined by König’s Lemma. We occasionally use the notation
ν(A, t) to make explicit the source of the multistep A.

4 The reduction strategy

The rationale behind the reduction strategy for PPC is that rather than selecting the entire
set of outermost redexes of a given term t, this set is refined in two complementary ways.
Let us call preredex a term of the form (λθ p.t)u, regardless of whether the match {p/θ u}
is decided or not. The first observation about the strategy is that it focuses on the leftmost-
outermost (LO) preredex of t, entailing that when PPC is restricted to the λ-calculus it
behaves exactly as the LO strategy for the λ-calculus. Second, if the match corresponding to
the LO occurrence of a preredex is not decided, then the strategy selects only the (outermost)
redexes in that subterm which should be contracted to get it “closer” to a decided match.

Suppose (λθ p.t) u is this LO preredex. If {p/θ u} is decided, then the preredex (in fact a
redex), is the only one selected by the strategy (it is LO in this case). If the match {p/θ u} is
not decided, then the strategy selects the outermost redexes whose contraction may contribute
towards obtaining a decided match. More precisely, in the term (λ{x,y} a x̂ (c ŷ).y x) (a r1 r2 )
the match {a x̂ (c ŷ)/{x,y} a r1 r2} is not decided and the role played by r1 is different
from that of r2 in obtaining a decided match. Replacing r1 by an arbitrary term t1 will
not yield a decided match, i.e. {a x̂ (c ŷ)/{x,y} a t1 r2} is not decided. However, replacing
r2 by c s2 (resp. by d s2) does: {a x̂ (c ŷ)/{x,y} a r1 (c s2)} = {x → r1, y → s2} (resp.
{a x̂ (c ŷ)/{x,y} a r1 (d s2)} = fail). Hence, contraction of r2 can contribute towards
obtaining a decided match, while contraction of r1 does not.

The selection of redexes contributing towards a decided match is performed by a simul-
taneous structural analysis of both pattern and argument. Since PPC allows patterns to be
reduced, the selected redexes can lie inside a pattern or an argument of a preredex; and not
in the body of the abstraction. Take e.g. (λ{x,y} a (b x̂) r1.r2) (a r3 (d r4)) where every ri
is a redex. The strategy selects r1 and r3. Moreover, notice that contraction of r4 is delayed
since r1 is not in matchable form (if the contractum of r1 were e.g. either d ŷ or a, then the
match w.r.t. d r4 would be decided without the need of reducing r4).

The reduction strategy S is defined as a function from terms to sets of positions of redex
occurrences which should be reduced as a multistep. It is defined simultaneously with an
auxiliary function SM from sets of symbols and pairs of terms to pairs of sets of positions
which models the selection of contributing redexes towards a decided match.
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S(x) :=∅
S(x̂) :=∅

S(λθ p.t) :=1S(p) if p /∈ NF
S(λθ p.t) :=2S(t) if p ∈ NF

S((λθ p.t)u) :={ε} if {p/θ u} decided
S((λθ p.t)u) :=11G ∪ 2D if {p/θ u} = wait,SMθ(p, u) = 〈G,D〉 6= 〈∅, ∅〉,
S((λθ p.t)u) :=11S(p) if {p/θ u} = wait,SMθ(p, u) = 〈∅, ∅〉, p /∈ NF
S((λθ p.t)u) :=12S(t) if {p/θ u} = wait,SMθ(p, u) = 〈∅, ∅〉, p ∈ NF, t /∈ NF
S((λθ p.t)u) :=2S(u) if {p/θ u} = wait,SMθ(p, u) = 〈∅, ∅〉, p ∈ NF, t ∈ NF

S(tu) :=1S(t) if t is not an abstraction and t /∈ NF
S(tu) :=2S(u) if t is not an abstraction and t ∈ NF

SMθ(x̂, t) :=〈∅, ∅〉 if x ∈ θ
SMθ(x̂, x̂) :=〈∅, ∅〉 if x /∈ θ

SMθ(p1p2, t1t2) :=〈1G1 ∪ 2G2, 1D1 ∪ 2D2〉 if t1t2, p1p2 ∈MF,SMθ(pi, ti) = 〈Gi, Di〉
SMθ(p, t) :=〈S(p), ∅〉 if p /∈MF
SMθ(p, t) :=〈∅,S(t)〉 if p ∈MF & t /∈MF & ¬(p = x̂ & x ∈ θ)

The auxiliary function SM formalises the simultaneous structural analysis of the argument
and pattern of a preredex. Its outcome is a pair of sets of positions, corresponding to redexes
inside the pattern and argument respectively, which could contribute to turning a non
decided match into a decided one. Notice the similarities between the first three clauses in
the definition of SM and those of the definition of the matching operation (cf. Sec. 2).

If the LO preredex of a term is in fact a redex, then the strategy selects exactly that
redex (fifth clause); if it is not a redex, and the function SM returns some redexes which
could contribute towards a decided match, then the strategy selects them (sixth clause).

Otherwise, the preredex will never turn into a redex. Indeed, it can be proved that, given
p and u such that {p/θ u} = wait, if there exist p′ and u′ such that p−�◦ p′, u−�◦ u′ and
{p′/θ u′} is decided, then SMθ(p, u) 6= 〈∅, ∅〉. In this case the strategy looks for the LO
preredex inside the components of the term (seventh, eighth and ninth clauses).

The remaining clauses in the definition of S formalise the focus on the LO preredex for
other forms of the term.

Returning to the example t2 given in Sec. 1, namely (λ{y} a b c ŷ.y) (a (I c ) (I b ) (I a )),
notice that the set {I c, I b} is selected by the strategy S, even if the contraction of just one
redex of the set suffices to make the head match decided as explained before.

The reduction strategy S is complete. Formally:

I Lemma 2. Let t /∈ NF. Then S(t) 6= ∅, and S(t) only contains outermost redexes in t.

Moreover, notice that S is not outermost fair [23]. Indeed, given (λ cx.s) Ω, where Ω is a
non-terminating term, S continuously contracts Ω, even when s contains a redex.

5 The reduction strategy S is normalising

This section proves that S is normalising for PPC. Our proof is mainly inspired from [21]
which proves that selecting necessary sets (as introduced in Sec. 1) is a sufficient condition
for a reduction strategy to be normalising in a first-order setting.
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t0 = t

◦S(t0)
��

◦
∆0 // // u

t1 ◦
∆1 // // u

tn

◦S(tn)
��

◦
∆n // // u

u
∆n+1

u

Figure 4 Proof idea.

The proof proceeds as follows: given any
multireduction to normal form starting from
a term t0, say t0

∆0−�◦ u ∈ NF, we construct
another multireduction starting from t0 to
normal form having the form t0

S(t0)−→◦ t1
∆1−�◦ u;

where S(t0) is the set of redexes of t0 chosen
by the strategy S and the multireduction
∆1 is strictly smaller than the original one
w.r.t. a convenient well-founded ordering.
Well-foundedness of the ordering entails that
repeated evaluation of the set of redexes
selected by the strategy S yields the normal
form u. This is depicted in Fig. 4 where ∆k+1 is strictly smaller than ∆k for all k and ∆n+1
is a trivial multireduction. Thus, the original multireduction ∆0 is first transformed into
S(t0); ∆1, then successively into S(t0); . . . ;S(tk); ∆k+1; and finally into S(t0); . . . ;S(tn).

Some difficulties arise when developing such a proof for higher-order calculi like PPC,
particularly in two aspects: it is not trivial to show that the succesive multireductions which
are built during the proof have the same target; nor is it straightforward to show that the
sequence of multireductions ∆0, . . . ,∆k, . . . is strictly decreasing.

To handle the first of these problems, we use a technique consisting of postponement of
certain (non relevant) redexes with respect to other (relevant) ones (our notion of relevant
is however different from that appearing in [22]). As for the second problem we define
a measure inspired from [21, 22]. In order to prove that the sequence ∆0, . . . ,∆k, . . . is
strictly decreasing w.r.t. this measure, we need to resort to an additional property verified
by the sets of redexes selected by S, namely that they are non-gripping. In the following, we
formalise the concept of necessary sets of redexes, we motivate and introduce the additional
non-gripping property, and finally we give a brief outline of the proof.

5.1 Necessary sets of redexes
As explained in Sec. 1, there are some terms in PPC which do not have any needed redex; this
was illustrated by the term t2 := (λ{y} a b c ŷ.y) (a (I c) (I b) (I a)) whose (outermost)
redexes are I c, I b and I a: it is possible to construct a reduction sequence from t2 to
normal form which ignores either of these redexes.

To formalise the meaning of needed redex, we first resort to the following notion of
ignoring (or not) a redex along a (multi)reduction: given a term t and B ⊆ RO(t), a
multistep/multireduction from t uses B iff it contracts at least one redex or one residual of
a redex in B. Formally, let t be a term, b ∈ RO(t), B ⊆ RO(t), a multistep t A−→◦ u and a
multireduction t

∆
−�◦ u. Then, A uses b iff b ∈ A; ∆ uses b iff ∆[k] ∩ (b/∆[1..k − 1]) 6= ∅ for

at least one k; A (resp. ∆) uses B iff it uses at least one b ∈ B. Now, given a term t, a redex
a ∈ RO(t) is needed for t iff every reduction from t to normal form uses a.

Notice that the above term t2 has no needed redex. Now consider the set of redexes
{I c, I b} in the same term t2. All reductions from t2 to normal form must use at least one
of these redexes i.e. the set of redexes {I c, I b} as a whole cannot be ignored to obtain the
normal form of t2. We formalise this notion as follows: given a term t, a set A ⊆ RO(t) is a
necessary set for t, iff every reduction from t to normal form uses A.

The notion of necessary set generalises that of needed redex (notice that any singleton
whose only element is a needed redex is a necessary set). There is, however, an important
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difference: while not all terms admit a needed redex, any term admits at least one necessary
set, i.e. the set of all its redexes.

The reduction strategy S defined in Sec. 4 selects necessary sets of redexes; this property
turns out to be crucial to prove that S is normalising. Formally:

I Proposition 3. Let t be a term such that t /∈ NF. Then S(t) is a necessary set for t.

5.2 Gripping

To motivate the notion of gripping [16], let us consider the following example, suggested by
V. van Oostrom:

t5 := (λ{x}x̂.D x
b
) (I y)

a2
a1

B−→◦ (λ{x}x̂.x x) (I y)
a2
a1

= u5

where A := {a1, a2}, B := {b} and D := λ{x} x̂.x x. It is easy to verify that A/B = A.
Nevertheless, the depth (cf. Sec. 3) of A does change: the set A admits a development from
u5 requiring two contractions of I y, while this is not the case for t5; yielding ν(A, t5) = 2 <
3 = ν(A, u5).

The notion of gripping turns out to be appropiate to explain this example. Informally, a
redex b grips another redex a iff a < b and there are occurrences of variables inside b which
are bound by the abstraction of the redex a. In such a case, b-reduction may duplicate or
erase those variable occurrences, thus affecting the depth of multisteps including a. In the
term t5 above, the redex b grips the redex a1 because x, ocurring inside b, is bound by the
abstraction of a1; duplication of x explains the depth increase of A from u5.

The following definition formalises the notion of gripping for PPC: given a, b ∈ RO(t), say
t|a= (λθp.s)u, we say that b grips a iff {p/θ u} 6= fail, a12 ≤ b and fv(t|b ) ∩ θ 6= ∅. Given
A,B ⊆ RO(t), we say that B grips A iff there exist b ∈ B and a ∈ A such that b grips a.

In addition, we define a set B ⊆ RO(t) to be non-gripping in t (or just non-gripping
if t is clear from the context) iff for any multireduction Ψ such that t

Ψ
−�◦ u, B/Ψ does not

grip RO(u). Notice that when B is non-gripping all its residuals are.

The reduction strategy S defined in Sec. 4 selects non-gripping sets of redexes, formally

I Proposition 4. Let t be a term. Then S(t) is non-gripping in t.

Proof. (sketch) One first proves that t
Ψ
−�◦ u, a ∈ RO(u), b ∈ S(t)/Ψ and a < b imply a is a

matching failure. This can be done by induction on the size of t, by considering the different
cases in the (mutually recursive) definitions of S and SM.

Now, let t
Ψ
−�◦ u. To prove that S(t) is non-gripping in t we need to show that S(t)/Ψ does

not grip RO(u). Suppose b ∈ S(t)/Ψ, a ∈ RO(u) and b grips a. Then in particular a < b

and a is not a matching failure. But the previous observation entails that a is a matching
failure which leads to a contradiction. J

This property allows to resort to gripping in order to guarantee that the depth of sets
of redexes is stable under reduction in the cases in which this stability is needed in the
normalisation proof. Another approach, distinguishing between essential and inessential sets
of redexes, is taken in [22].
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5.3 The measure
A measure on multireductions is defined by using the notion of depth for multisteps, denoted

by ν and defined at the end of Sec. 3. Given ∆ = ∆[1..n] and ti−1
∆[i]
−�◦ ti for all i, we define

χ(∆, t0) as the n-tuple 〈ν(∆[n], tn−1), . . . , ν(∆[1], t0)〉; the lexicographic order is used to
compare (measures of) multireductions. Notice that this (well-founded) ordering allows only
to compare multireductions having the same length; the minimal elements being all the
n-uples of the form 〈0, . . . , 0〉. Another observation is that whenever χ(∆, t) < χ(Γ, s) then
for all multireductions t′

Π
−�◦ t, s′

Ψ
−�◦ s having the same length χ(Π; ∆, t′) < χ(Ψ; Γ, s′)

holds.
As remarked in [22], the measure used in [21], based on sizes of multisteps rather than

depths, is not well-suited for a higher-order setting.

Returning to the key of the normalisation proof (cf. beginning of Sec. 5), the definition of
∆k+1 based on ∆k and S(tk) must verify χ(∆k+1, tk+1) < χ(∆k, tk).

In order to further describe how ∆k+1 will be defined, and particularly how the notion of
gripping will be applied to guarantee that the measure actually decreases, some additional
notions are needed. Given a term t and B ⊆ RO(t), a multistep/multireduction from t is
free from B iff it does not contract any redex equal to or below a redex (or residual of a
redex) in B (so it only contracts redexes lying above or disjoint with B and its residuals); a
multistep from t is dominated by B iff all their redexes lie below some redex in B. Formally,
let t be a term, a, b ∈ RO(t), A,B ⊆ RO(t), and a multireduction t

∆
−�◦ u. Then,

A is free from B iff A∩B = ∅ and there does not exist a ∈ A and b ∈ B such that b < a.
∆ is free from B iff ∆[k] is free from B/∆[1..k − 1] for all k.
a is dominated by B iff a /∈ B and ∃∃∃b ∈ B s.t. b < a.
A is dominated by B iff ∀∀∀a ∈ A, a is dominated by B.

For example, consider the following term

r1 r2 (I ( (λ{x} a x̂. r3 ) (a r4 )
r6

)
r5

)

where every ri is a redex, and B = {r1, r6}. Then the set {r2, r5} is free from B, {r3, r4} is
dominated by B, and {r2, r3} is neither free from nor dominated by B.

Notice that A free from B and C dominated by B imply A free from C.

Returning to the example in Sec. 5.2 notice that A is free from B and A/B = A, however,
as remarked before, ν(A, t5) < ν(A, u5). A free set of redexes is always preserved by reduction;
moreover, gripping explains all the cases in which the depth changes. Formally,

I Lemma 5. Let A,B ⊆ RO(t) s.t. A is free from B. Then A/B = A.

I Lemma 6. Let A,B ⊆ RO(t) s.t. A is free from B and t B−→◦ s. If B does not grip A, then
ν(A, t) = ν(A, s).

5.4 The normalisation proof
In this seciton we give a proof of the main result of the paper, namely that the strategy S
is normalising. The proof is based on the ideas described at the beginning of Sec. 5. The
main auxiliary results used in the proof are also included. They formalise the construction of
∆k+1 (cf. Fig. 4), in their statements B can be considered to be (some residual of) S(tk) and
A, C,∆ to be ∆k or parts of it.
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I Lemma 7. Let B, C ⊆ RO(t) s.t. t
C−→◦ u, and A ⊆ RO(u) s.t. C is dominated by B,

A is free from B/C, and B is non-gripping. Then A ⊆ RO(t), A is free from B, and
ν(A, t) = ν(A, u).

Proof. (sketch) To obtain A ⊆ RO(t) and A free from B, we reason by induction on ν(C, t);
so let c ∈ C and δ = c; δ′ be a complete development of C (so δ′ is a complete development of
C/c), i.e. t c→ s

C/c−→◦ u. It is not difficult to prove that C dominated by B and c ∈ C imply C/c
dominated by B/c, allowing to use the i.h. on C/c to obtain A ⊆ RO(s) and A free from
B/c. Now, for any a ∈ A ⊆ RO(s), it can be proved (by contradiction) that a ∈ RO(t) and
a is free from B. Thus, A is free from B. Noticing that B being non-gripping (so B does
not grip A), A free from B and C dominated by B imply C does not grip A, depth stability
follows from Lem. 6. J

I Lemma 8. Let t C−→◦ s
∆
−�◦ u and B ⊆ RO(t) s.t. B is non-gripping, C is dominated by

B, ∆ is free from B/C, and B/(C; ∆) = ∅. Then t
∆
−�◦ u, ∆ is free from B, B/∆ = ∅ and

χ(∆, t) = χ(∆, s).

Proof. We proceed by induction on the size of ∆.
Assume ∆ = nil. Then B/(C; ∆) = B/C = ∅. We first show B = ∅. Indeed, suppose

that B 6= ∅, let b be a minimal element of B w.r.t. the prefix order. It is straightforward to
verify that {b} is free from C (since C is dominated by B), then Lem. 5 yields {b}/C = {b},
contradicting B/C = ∅. Then B = ∅, therefore C = ∅, again since C is dominated by B, hence
t = s = u and the conclusions are straightforward.

If ∆ 6= nil, then consider t C−→◦ s
∆[1]−→◦ w

∆[2..n]
−�◦ u. Lem. 7 gives ∆[1] ⊆ RO(t), ∆[1] is free

from B and ν(∆[1], t) = ν(∆[1], s); moreover, since ∆[1] is free from B and C is dominated
by B, then ∆[1]/C = ∆[1] (cf. Lem. 5), so (C; ∆[1]) and (∆[1]; (C/∆[1])) are two complete

developments of ∆[1] ∪ C. Hence, Prop. 1 implies that t ∆[1]−→◦ s′
C/∆[1]−→◦ w

∆[2..n]
−�◦ u.

In order to apply the i.h. we need to verify the corresponding hypotheses. By a patient
analysis on residuals and positions we obtain that C/∆[1] is dominated by B/∆[1]. Moreover,
B non-gripping implies B/∆[1] non-gripping, and the remaining conditions can be easily
obtained by noticing that B/(∆[1]; (C/∆[1])) = B/(C; ∆[1]).

Therefore the i.h. can be applied, obtaining s′
∆[2..n]
−�◦ u, ∆[2..n] is free from B/∆[1],

B/(∆[1]; ∆[2..n]) = ∅, and χ(∆[2..n], s′) = χ(∆[2..n], w). We conclude by combining these
results with those obtained in the first paragraph. J

I Lemma 9. Let t
∆
−�◦ u and B ∈ RO(t) s.t. ∆ = ∆[1..n], B is non-gripping, ∆ does not

use B and B/∆ = ∅. Then there exists a multireduction Γ = Γ[1..n] such that t
Γ
−�◦ u, Γ is

free from B, B/Γ = ∅ and χ(Γ, t) ≤ χ(∆, t).

Proof. We proceed by induction on n.
If n = 0 then ∆ = ∅, therefore it suffices to take Γ = ∅.

If n > 0 then we consider t ∆[1]−→◦ s
∆[2..n]
−�◦ u. By observing that B/∆[1] is non-gripping we

can use the i.h. on t
∆[2..n]
−�◦ u, thus obtaining a multireduction Γ1 = Γ1[1..n − 1] such that

s
Γ1−�◦ u, Γ1 is free from B/∆[1], (B/∆[1])/Γ1 = ∅ and χ(Γ1, s) ≤ χ(∆[2..n], s).
We now define ∆[1]F := {a ∈ ∆[1] s.t. @@@b ∈ B . b < a} and ∆[1]D := (∆[1]\∆[1]F )/∆[1]F ,

then t ∆[1]F−→◦ t′
∆[1]D−→◦ s

Γ1−�◦ u for some term t′. It is easy to check that ∆[1]F is free from B
and ∆[1] \∆[1]F is dominated by B just by definition (∆[1] does not use B), and it can be
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proved that ∆[1]D is dominated by B/∆[1]F . Moreover B/∆[1]F is non-gripping. Finally,
B/∆[1] = (B/∆[1]F )/∆[1]D by Prop. 1; consequently Γ1 is free from (B/∆[1]F )/∆[1]D and
(B/∆[1]F )/(∆[1]D; Γ1) = ∅.

Therefore we can use Lem. 8 on t′ ∆[1]D−→◦ s
Γ1−�◦ u, thus obtaining that t′

Γ1−�◦ u, Γ1 is free
from B/∆[1]F , (B/∆[1]F )/Γ1 = ∅ and χ(Γ1, t

′) = χ(Γ1, s) ≤ χ(∆[2..n], s).
We can conclude by taking Γ := ∆[1]F ; Γ1; notice that ν(∆[1]F , t) ≤ ν(∆[1], t). J

I Proposition 10. Let t
∆
−�◦ u and B ⊆ RO(t) s.t. B is non-gripping, ∆ does not use B,

B/∆ = ∅ and t B−→◦ s. Then ∃∃∃ Γ s.t. s
Γ
−�◦ u and χ(Γ, s) ≤ χ(∆, t).

Proof. Let us say ∆ = ∆[1..n]. Lem. 9 yields the existence of some Γ = Γ[1..n] such that
t

Γ
−�◦ u, Γ is free from B, B/Γ = ∅ and χ(Γ, t) ≤ χ(∆, t). Let us define t0 := t, tn := u and
ti−1

Γ[i]−→◦ ti for all i ≤ n. Notice that Γ being free from B implies that Γ[i]/(B/Γ[1..i−1]) = Γ[i]
for all i, cf. Lem. 5. Therefore, we can build the following diagram

t ◦
Γ[1] //

◦B
��

t1 ◦
Γ[2] //

◦B/Γ[1]

��

t2 ...

◦B/Γ[1..2]

��

tn−1 ◦
Γ[n] //

◦B/Γ[n−1]

��

u

◦B/Γ=∅

��
s ◦

Γ[1]
// s1 ◦

Γ[2]
// s2 ... sn−1 ◦

Γ[n]
// u

where for all i,
Lem. 6 yields ν(Γ[i], ti−1) = ν(Γ[i], si−1) since B non-gripping implies that B/Γ[1..i− 1]

does not grip Γ[i]. We conclude by observing that χ(Γ, s) = χ(Γ, t) ≤ χ(∆, t). J

I Proposition 11. Let t
∆
−�◦ u and B ⊆ RO(t), s.t. B is non-gripping, ∆ uses B, B/∆ = ∅

and t B−→◦ s. Then ∃∃∃ Γ s.t. s
Γ
−�◦ u and χ(Γ, s) < χ(∆, t).

Proof. Let us say ∆ = ∆[1..n], t0 := t, tn := u and ti−1
∆[i]−→◦ ti for all i ≤ n. Since ∆ uses

B, there exists some ∆[m] being the last step of ∆ using (the corresponding residual of) B.
Formally, if B′ := B/∆[1..m − 1], then ∆[m]1 := ∆[m] ∩ B′ 6= ∅ and ∆[m + 1..n] does not
use B/∆[1..m]. Additionally, let ∆[m]2 := (∆[m] \∆[m]1)/∆[m]1.

We can build the following diagram

t ◦
∆[1..m−1]// //

◦B

��

tm−1 ◦
∆[m]1 //

◦B′

��

t′m ◦
∆[m]2 //

◦B′/∆[m]1

��

tm ◦
∆[m+1..n]// // u

s sm−1 sm−1

since ∆[m]1/B′ = ∅.
Assume the existence of some b ∈ ∆[m]2∩(B′/∆[m]1), this would imply that b ∈ b′/∆[m]1

such that b′ ∈ (∆[m]\∆[m]1)∩B′ since the ancestor of a redex is unique in PPC, contradicting
the definition of ∆[m]1.

Therefore ∆′ := ∆[m]2; ∆[m+ 1..n] does not use B′/∆[m]1, hence Prop. 10 can be used
to obtain some Π = Π[1..n −m + 1] such that sm−1

Π
−�◦ u and χ(Π, sm−1) ≤ χ(∆′, t′m) <

χ(∆[m..n], tm−1).
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We now define Γ as follows: Γ[i] := ∆[i]/(B/∆[1..i − 1]) if 1 ≤ i ≤ m − 1, and Γ[i] :=

Π[i −m + 1] if m ≤ i ≤ n. We remark that Prop. 1 implies that s
Γ[1..m−1]
−�◦ sm−1, thus Γ

is well-defined. Moreover, the definition of the measure for multireductions by means of a
reversed order implies that χ(Π, sm−1) < χ(∆[m..n], tm−1) is a sufficient condition to obtain
χ(Γ, s) < χ(∆, t). J

I Theorem 12. The reduction strategy S is normalising.

Proof. Let t0 be a normalising term in PPC, then there exists some ∆0 such that t0
∆0−�◦ u and

u ∈ NF. We proceed by induction on χ(∆0, t0), using the well-founded ordering in Sec. 5.3.
If t0 ∈ NF there is nothing to prove. Otherwise, Lem. 2 guarantees that S(t0) 6= ∅.

Let t0
S(t0)−→◦ t1. Then ∆0 uses S(t0) and S(t0) is non-gripping by Prop. 3 and Prop. 4

respectively; moreover, u ∈ NF implies S(t0)/∆0 = ∅. Then Prop. 11 yields the existence of
a multireduction ∆1 s.t. t1

∆1−�◦ u and χ(∆1, t1) < χ(∆0, t0). We conclude by the i.h. J

As a final remark, notice that the construction of ∆k+1 from ∆k and S(tk) in the proof
of Prop. 11 combines two different kinds of projections: one based on residuals (cf. Prop. 1),
the other based in the notions of free and dominated sets of redexes.

6 Conclusions and further work

We study normalisation strategies for PPC, a dynamic pattern calculus equipped with matching
failure. Its semantics induces a parallel-or-like, non-sequential behaviour which hinders the
development of normalising strategies, particularly since it is not a FO system nor is it clear
how it may be encoded in terms of established HO rewriting formalisms (eg. HRS [18],
CRS [14]).

Building on ideas from [21] developed for FO systems, we propose a notion of necessary set
of redexes for a HO language. Repeated contraction of necessary sets is shown to normalise
a term provided that they are also non-gripping [16]. We introduce an inductively defined
strategy that, given a term t, selects a necessary set of redexes for t which is also non-gripping,
and moreover bounded by the set of outermost redexes. The strategy collapses to LO when
the λ-calculus is encoded in PPC.

We think that our normalisation proof could be adapted to other (HO) calculi, and even
to families of calculi defined in some general HO formalism, particularly since necessary and
gripping sets are specified in a quite general way. Another research direction is to adopt a
completely axiomatic approach, e.g. Abstract Rewriting Systems as defined in [16].

An encoding of PPC into some HO formalism, such as those mentioned above, could yield
interesting insights on the possible transfer of the normalisation results of [23] and [22] from
HORS to our framework.

Further avenues of research we intend to pursue include implementing an interpreter
based on our strategy and devising even more refined strategies, in the sense of selecting
smaller sets of redexes.
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