One-context Unification with STG-Compressed
Terms is in NP~
Carles Creus!, Adrid Gascén!, and Guillem Godoy?!

1  Universitat Politécnica de Catalunya, departament de Llenguatges i Sistemes
Informatics, Jordi Girona 1, Barcelona, Spain
ccreuslopez@gmail.com adriagascon@gmail.com ggodoy@lsi.upc.edu

—— Abstract

One-context unification is an extension of first-order term unification in which a variable of arity
one standing for a context may occur in the input terms. This problem arises in areas like program
analysis, term rewriting and XML processing and is known to be solvable in nondeterministic
polynomial time. We prove that this problem can be solved in nondeterministic polynomial
time also when the input is compressed using Singleton Tree Grammars (STG’s). STG’s are a
grammar-based compression method for terms that generalizes the directed acyclic graph repres-
entation. They have been recently considered as an efficient in-memory representation for large
terms, since several operations on terms can be performed efficiently on their STG representation
without a prior decompression.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases Term Unification; Compression; Grammars

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.149

Category Regular Research Paper

1 Introduction

Term unification is a basic operation in many areas of computer science, especially in those
related to logic (see [1] for a survey). Unifying two terms s, ¢ corresponds to find a substitution
o for the variables occurring in the equation s = ¢ such that o(s) = o(t) holds. The particular
case when one of the terms has no occurrences of variables is called matching.

A simple case of term unification is called first-order unification. In this case variables
occur at leaf positions and stand for terms. Both the first-order unification and matching
problems have applications in the context of automated deduction, functional and logic
programming, rewriting, and pattern matching. Moreover, several variants of first-order
unification have been studied to tackle problems arising in those areas, see [1]. A remarkable
extension is unification modulo theories. In this notion of unification, equality between
terms is interpreted under equational theories such as associativity, commutativity, and
distributivity, among others.

Another widely considered notion of unification allows variables of arity one standing for
contexts, in addition to variables at leaf positions. This extension is called context unification,

* The authors were supported by Spanish Ministry of Education and Science by the FORMALISM project
(TIN2007-66523). The first author was also supported by an FPI-UPC grant. The second author was also
supported by an FPU grant from the Spanish Ministry of Education. The last author was also supported
by the Spanish Ministry of Science and Innovation SweetLogics project (TIN2010-21062-C02-01).

@@@@ © Carles Creus, Adria Gascén, and Guillem Godoy;

licensed under Creative Commons License NC-ND
23rd International Conference on Rewriting Techniques and Applications (RTA’12). .\RTA,,
Editor: A. Tiwari; pp. 149-164 N .

\\v Leibniz International Proceedings in Informatics A\ H
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.RTA.2012.149
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-38-5
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

150

which is a particular case of second-order unification. While second-order unification is
known to be undecidable [8], decidability of context unification is still open. However, some
interesting results have been found for more particular cases with application in computational
linguistics [10, 4, 12]. One-context unification is the particular case when only one context
variable, possibly with many occurrences, may appear in the input terms. This problem can
be solved in nondeterministic polynomial time [6] but it is not known whether it is NP-hard.
One of the motivations for this specific variant is its close relation to interprocedural program
analysis [9]. The goal of this kind of analysis is to compute all simple invariants of imperative
procedural programs. Other interesting applications of one-context unification and matching
arise in searching/extracting information from tree data structures. For example, a simple
matching equation of the form F(s) = ¢, where F is the context variable, ¢ is ground, and s
may contain first-order variables but it does not contain occurrences of F', corresponds to
search instances of s within ¢. In the context of XML processing, combinations of unificaton
modulo commutativity and context unification are used for querying XML documents with a
logic programming approach [2].

Other relevant variants of unification are related to term compression. Some applications
dealing with trees, especially in the context of XML processing, require some kind of
succint representation for terms. For this reason, in addition to the well-known Directed
Acyclic Graph representation (DAG), several compressed in-memory representations have
been developed [18, 15]. Grammar-based compression techniques were initially applied to
words [17] and led to important results in string processing. Besides its direct applications
in data compression, this kind of representations has also been useful as a technique for
complexity analysis [11]. This compression mechanisms were extended from words to terms
in [3] to introduce Singleton Tree Grammars (STG’s), which allow to represent terms with
exponential size and height in linear space. STG’s are useful in the context of XML tree
structure compression [15], tree automata [16], XPATH [14], and unification theory [12].
Moreover, polynomial time algorithms for first-order unification and matching for the case
when the input is compressed using STG’s have been developed and implemented [5, 7].

In this work we extend the result in [6] proving that one-context unification can be solved
in nondeterministic polynomial time even in an STG-compressed setting.

2 Preliminaries

2.1 Terms, Contexts and Substitutions

A ranked alphabet F is a (finite) set of function symbols with arity. Symbols in F of arity
0, called constants, are denoted by a, b; nonconstant symbols are denoted by g, h. A set of
variables V is a ranked alphabet containing symbols of arity 0, called first-order variables
and denoted by z,y, and symbols of arity 1, called context variables and denoted by F. We
assume that F and V are always disjoint. We use « to refer to an element of 7 U V. The
set T(F,V) of terms over F and V is the smallest set such that a(t1,...,ty,) is in T(F,V)
whenever o € F UV, the arity of a is m, and t1,...,t, € T(F,V). By s,t,u we denote
terms in T (F,V). The set of variables occurring in a term ¢ is denoted by Vars(t).

A position is a sequence of natural numbers. The symbol A denotes the empty sequence,
also called the root position, and p.p’ denotes the concatenation of the positions p and p’. The
set of positions of a term ¢, denoted by Pos(t), is defined recursively as Pos(a(t,. .., tm)) =
{AMud{ip|ie{l,...,m} Ap € Pos(t;)}. The length of a position is denoted by |p|. Note
that |A] = 0 and |i.p| = 1+ |p| hold. A position p; is a prefiz of a position p, denoted p; < p,
if there is a position ps such that p;.ps = p holds. Also, p; is a proper prefix of p, denoted



C. Creus, A. Gascén, and G. Godoy

p1 < p, if p1 < pand p; # p hold. Two positions p,p’ are parallel if p £ p’ and p’ £ p hold.
The size of a term ¢ is denoted by |t| and defined as |Pos(t)|. The subterm of a term t at

a position p € Pos(t), denoted ¢|,, is defined recursively as ¢[x =t and a(t1, ..., tm)|ip = tilp-

The replacement of a term ¢ at a position p € Pos(t) by a term s, denoted ¢[s],, is defined
recursively as ¢[s]y = s and a(t1,...,tm)[slip = @(t1, .., tils]ps -y tm). ats, ... tm).

A context is a term with exactly one occurrence of a special constant symbol e, called
hole. The set of contexts over a ranked alphabet F and a set of variables V is denoted
C(F,V). We use ¢ to denote a context in C(F,V). The operations on terms defined above
are extended to contexts in the natural way. The hole position of a context ¢, denoted hp(c),
is the position in Pos(c) labeled by e. Given a context ¢ and a term ¢, we define the term cf[t]

as C[t|hp(c)- Similarly, given another context ¢/, the concatenation cc’ is the context c[c/]pp(c)-

Note that hp(cec’) = hp(c).hp(c’) holds. The ezponentiation of a context ¢ to a natural number
e, denoted ¢, is the context recursively defined as ¢ = cc®~ PPl if ¢ > |hp(c)| > 0, as
c® = cle], if |hp(c)| > e, where p < hp(c) and |p| = e, and as ¢® = e otherwise. Note that
[hp(c?)| = e holds for any context ¢ with |hp(c)| > 0 and natural number e. We say that c is
a subcontext of a term t if ¢ = t|,, [o],,, for pi.ps € Pos(t).

A substitution, denoted by o, 6, is a total function o : V — T(F,V) UC(F,V) such that

o(a) € T(F,V) if a is a first-order variable and o(«) € C(F,V) if « is a context variable.

The domain of a substitution ¢ is usually considered to be the set of variables « such that
o(a) # a, i.e. Dom(o) = {a | o(a) # a}. For this reason, when defining a particular
substitution o we do not make explicit o(«) for variables a ¢ Dom(o). We also define the
variables occurring in a substitution o as Vars(o) = | ,epom(s){a} U Vars(o(a)). Moreover,
substitutions are extended to be mappings from terms to terms, i.e. o : T(F,V) — T(F,V),
as follows: o(g(t1,...,tn)) = g(o(t1),...,0(tn)) and o(F(t)) = o(F)[o(t)]. In addition,
substitutions are also extended, in a similar way, to be mappings from contexts to contexts,
ie. o : C(F,V) — C(F,V). The composition of o and 6, denoted 6 o o, is defined as
{a— 0(c(a)) | « € Dom(o) U Dom(6)}.

2.2 Singleton Tree Grammars

A Singleton Tree Grammar (STG) is a 4-tuple G = (TN ,CN, %, R), where TN is a set
of nonterminals of arity 0, called term monterminals and denoted by T, CN is a set of
nonterminals of arity 1, called context nonterminals and denoted by C, and ¥ is a ranked
alphabet, whose elements are called terminals. The sets TN, CN, and ¥ are pairwise
disjoint. We denote by N nonterminals in TA UCN. R is a finite set of rules of the form:
T — O[(Tl, - ,Tm), T — ClTQ, C — o, C — Clcg, C — CV(Tl, - ,Tifl, CiaTi+1; . ,Tm),
T — Ty, C — C1, where « is a terminal of arity m. STG’s are nonrecursive, i.e. the transitive
closure of the derivational relation between nonterminals is terminating. Furthermore, for
every nonterminal N there is exactly one rule having N as left-hand side. Last two conditions
guarantee that every nonterminal of an STG generates exactly one term/context. Given a
term ¢ (context ¢) with occurrences of nonterminals, the derivation of ¢ (resp. ¢) by G is an

exhaustive iterated replacement of the nonterminals by the corresponding right-hand sides.

The result is denoted as wg ¢ (resp. wg,c). In the case of a nonterminal N we also say that
N generates wg, n. The size of an STG G, denoted |G|, is the number of nonterminals of
G. The size of the representation of an STG G is bounded by |G| - (2 + m), where m is the

maximum arity of the terminals of G, but we use the other notion to ease the presentation.

Our definition of STG’s is different from the one in [3], where nonterminals are allowed
to generate contexts with several holes. Nevertheless, both notions were proven equivalent
in [16] up to a polynomial transformation. In the present paper we use STG’s for term

151

RTA’12



152

representation. It allows to represent terms with exponential size and height in linear space.
This is in contrast with DAG’s, which only allow for exponential compression in size.

» Example 2.1. Let n be a natural number. We define the STG G,, to have the following set
of rules: {T — C,LTa, Ta — a, Coe — o, Co — g(C’.), Cl — C()CO, CQ — 0101, 03 — CQCQ,
ooy Cp = Cp_1C—1}. Note that wg, 7 = g% (a), which would require exponential space
both in an explicit and a DAG representation.

Several properties can be computed efficiently on STG’s (see [5, 12]), e.g. computing
|lwg, n| for every nonterminal N of G or computing the symbol labeling a certain position of
the generated term/context. A remarkable result used in the present paper is stated in the
following lemma. The rest of known results on STG’s needed in this work are presented in
the following section.

» Lemma 2.2 ([13, 3]). Given an STG G and two term nonterminals Ty, Ty of G, it is
decidable in time O(|G|®) whether wa,r, = WG T, -

2.3 Context Unification

Given two terms s, t € T(F, V), the context unification problem consists of deciding whether s
and ¢ are unifiable, i.e. whether there exists a substitution o : V — T (F, V)UC(F, V) such that
o(s) = o(t). The one-context unification problem is the particular case of context unification
in which V contains exactly one context variable. First-order unification corresponds to the
particular case where there are no context variables in V. For a fixed ranked alphabet F,
we define an instance of the one-context unification problem as a triple (A, X, F), where
X is a set of first-order variables, F' is a context variable, and A is a set of equations,
i.e. a set of unordered pairs, of the form s = ¢, with s, € T(F,X U {F}). A solution
of (A, X, F) is a substitution ¢ : X U{F} — T(F,X U{F})UC(F,X U{F}) such that
V(s=t) € A : o(s) =c(t). The definition of an instance that considers a single equation
and ours are equivalent, but considering a set of equations is more appropriate in our setting.

» Example 2.3. Consider the set of equations {F'(a) = g(a,z), F(b) = g(z,b)}. It can be
unified by the substitution {F + g(e,b),z — b}. Now consider the equation F(g(z,b)) =
g(a, F(y)). It has infinitely many solutions such as {F — g(a,®),z — a,y +— b} and {F —
g(a,g(a,e)),x — a,y — b}. Finally, consider the set of equations {F(a) = g(z,y), F(b) =
g9(z,9(9(y,v), 9(a,b)))}, which has no solution.

By considering that the input terms are compressed using STG’s, we obtain one-context
unification with STG’s. Fixed a ranked alphabet F, an instance of this problem is a
tuple (A, G, X, F), where X is a set of first-order variables, F' is a context variable, G =
(TN,CN,F U X U{F},R) is an STG, and A is a set of equations of the form {S; =
Ty,...,S, = T,}, where the S;’s and the T;’s are term nonterminals of G. With this
representation, the context variable and first-order variables are initially represented as
unary and constant terminal symbols of the grammar, respectively. Given an instance
{S1 =Ty,..., 5, =T,},G, X, F), its corresponding uncompressed one-context unification
instance is ({wg,s, = wae,m, ..., wa,s, = wer, }, X, F).

3 Known Results

3.1 Operations on STG’s

In this section we describe the operations needed to compute a solution to an STG-compressed
one-context unification instance. The following definition of extension of an STG describes
the result of those operations.



C. Creus, A. Gascén, and G. Godoy

» Definition 3.1. Let F be a ranked alphabet. Let G = (TN ,CN, %, R) be an STG such
that F C . An F-extension of G is an STG G’ = (TN',CN", ¥, R") such that TN C TN,
CN CCN',RCR' and FCY.

The goal of the previous definition is to capture operations on STG’s that correspond
to instantiation of variables. More concretely, let G = (TN ,CN, F UV, R) be an STG and
let G' = (TN',CN',FUV',R") be an F-extension of G. The terms generated by term
nonterminals of G and G’ are assumed to belong to the sets T (F, V) and T (F,V’), respectively,
and analogously for contexts. Hence, by defining a substitution o : V — T(F, V') UC(F,V’)
as o(a) = wgr q it holds that, for each nonterminal N of G, o(wg,N) = war N-

In [5] it is proven that first-order unification can be solved in polynomial time when
the input terms are compressed using STG’s. This approach proceeds analogously to the
classical unification process. The main idea is that, given a first-order equation s = ¢, the
algorithm iteratively finds a position p labeled by a variable z in one of the terms, say s,
and replaces all its occurrences by the corresponding subterm t|,. This process ends when
either s and ¢ become equal, and thus they are unifiable, or a contradiction is reached. Since
each iteration of the algorithm instantiates a variable, the solution o can be described as an
ordered sequence of substitutions on first-order variables. The authors focus on showing that
this behaviour can be efficiently adapted to the STG-compressed setting. Besides checking
equality at each iteration, the only operation that the algorithm needs to perform is to
apply substitutions of the form {z — t|,}. This corresponds to computing an F-extension
of the grammar that adds n new nonterminals 71, ..., T, such that T,, generates t|, using
Ty,...,T,-1 and adds a new rule x — T, i.e. converting the terminal symbol x into a
nonterminal generating ¢|,. The crucial result to prove that such an F-extension can be
computed in polynomial time is that all such n are linearly bounded by the size of the initial
input grammar and not by the size of the current grammar at each step of the process. Note
that this implies that the size of the final grammar, i.e. the grammar obtained after all the
variables have been replaced, is polynomially bounded by the size of the initial grammar.
This technical fact is summarized in the following lemma, which is proven in [5].

» Lemma 3.2. Let G = (TN,CN,X, R) be an STG describing a one-context unification
instance. Let T' be a term nonterminal of G and let ty be wg,r. Let ti,...,t, be terms,
T1,...,T, be first-order variables, p1,...,p, be positions, and oy,...,0, be substitutions
satisfying, for i € {1,...,n}, p; € Pos(ti_1), x; € Vars(t;—1) \ Vars(ti_ilp,), oi = {x; —
Pi}7 and ti = O—i(ti—l)'

Then, there exists an F-extension G' = (TN",CN", S\ {z1,...,2,}, R') of G such that
wg, T = tn and |G/| S |G| +n(|G| + 1)

ti—1

In this paper we deal with one-context unification. Similar to the first-order case,
instantiation of the special context variable F' is performed by adding a rule F' — C to
the grammar, i.e. turning the terminal unary symbol F' into a context nonterminal. This
C is a new context nonterminal defined through the concatenation of several subcontexts
of the input terms. In [5] it is shown how to efficiently compute subcontexts from a given
STG-compressed term. The proposed construction guarantees that, given a grammar G,
a nonterminal 7' and a position py.ps € Pos(wg 1), G can be extended with, at most,

|G|(2|G| + 3) new nonterminals such that one of them generates the context wa,r|p, [®]p,-

Moreover, given the context nonterminals C,...,C, of a grammar G, an extended grammar
containing a context nonterminal that generates the concatenation wg,c, ... wg,c, can be
easily obtained by adding n new nonterminals to GG. These facts are stated in the following
lemma, whose proof is also given in [5].

153

RTA’12



154

» Lemma 3.3. Let G = (TN,CN, %, R) be an STG describing a one-context unification

instance. Let T be a term nonterminal of G and let t be wg r. Let p1,...,pn,D1,...,Pn
be positions and ci,...,c, be contexts satisfying, for i € {1,...,n}, p;.p; € Pos(t) and
¢ =t Pi [.]ﬁi'

Then, there exists an F-extension G' = (TN',CN', %, R') of G with a context nonterminal
C such that we ¢ = ¢1...¢, and |G| < |G|+ n|G|(2|G| + 3) + n.

In some cases, the context nonterminal C' that instantiates F' is defined using one last
construction: context exponentiation. Computing the grammar that generates the result of
this operation is straightforward, as shown in the following illustrative example.

» Example 3.4. Let G be an STG with the following set of rules: {T, — ¢(T}),T) —

h(T,),T, — a}. Note that we,r, is g(h(a)). The context exponentiation (we,r,[x[8]1.1)"" is

g(h(g(h(g(h(g(h(g(h(g(e)...) and can be generated by the STG with the set of rules:

{C — g(Ch),Ch — h(C.)7C. — 0}
U {Cexp4 — CC, Cexps = CexpaCexps, Cexpio — CexpSC}
U {Chrer — 9(Cs)}
U {Cexpr1 — Coexp10Coref }

Note that we use the nonterminals C and Cyrer to generate two different subcontexts, g(h(e))
and g(e), respectively. Moreover, the nonterminals Cexpa, Cexps; Cexpro, and Cexp11 are used
for exponentiation and concatenation, with Cep11 generating the desired context.

As seen in the previous example, raising a context to a natural number e requires to (i)
compute two different subcontexts ¢; and ca, (ii) concatenate ¢; with itself several times, and
(iii) concatenate the resulting context with ¢o. The construction done in (i) adds, at most,
|G|(2|G| + 3) for each computed subcontext, (ii) can be performed efficiently because the
number of new nonterminals to be added is logarithmic with respect to e, and (iii) only adds
one extra nonterminal to the grammar. This fact is stated formally in the following lemma.

» Lemma 3.5. Let G = (TN,CN, %, R) be an STG describing a one-context unification
instance. Let T be a term nonterminal of G and let t be wg,r. Let p1,p2 be positions such
that p1.p2 € Pos(t) and let e > 0 be a natural number.

Then, there exists an F-extension G’ = (TN',CN", %, R') of G with a context nonterminal
C such that wer ¢ = (t|p,[8]p,)¢ and |G'| < |G|+ 2|G|(2|G| + 3) + [logy(e)] + 1.

3.2 Uncompressed One-Context Unification

Consider an instance (A, X, F') of the one-context unification problem. In [6] it is proven that
this problem is in NP when the terms in A are represented explicitly. The proposed algorithm
is presented as an inference system that modifies the set of equations until a contradiction
is found or the empty set is derived, which implies unifiability. By representing A with
DAG's, the size of the representation of the terms in the set of equations is guaranteed to
stay polynomially bounded by the size of the input at each step of a derivation. For the sake
of clarity and in order to make this paper self contained, we introduce in Figure 1 a simplified
version of that inference system. In this simplified version we have erased the rules used to
early detect nonunifiability and some restrictions that eased the proofs by guaranteeing a
bound on the length of every derivation. Hence, the new version of the inference system
is simpler and still sound. Moreover, since it is less restrictive than the original one, each
derivation leading to a solution can still be performed, and thus it is complete.

The most basic rule of the inference system is the rule Decompose, which is just used
to simplify the unification problem. Note that it does not introduce any new subterms in



C. Creus, A. Gascén, and G. Godoy

A=Aw{alt,. .. tn) =a(ut,...,un)}

Decompose: A’U{tl T e = un)
Var-Elim: _r=tea h & Vars(t)
r-Elim: o 0 where x r
Var-Elim2: F(uﬁlj cle] GOAA where 0 = {F + c[F(e)]} and c is guessed such
{z = FO@)HOA)) that F' & Vars(c), x & Vars(u),
and (F & Vars(u) V = & Vars(c))
- Flu) =clt] € A is ouessed s
CVar-Elim: (F (D) where c is guessed such that F' & Vars(c)
imo: Fu) = [F(H)] € A . .
CVar-Elim2: (Fo E1 A where c is guessed such that F' ¢ Vars(c) and e is

guessed such that 0 <e <3% . . (|s|+[t])

Figure 1 Inference system for one-context unification.

the set of equations. The remaining rules modify the current set of equations by replacing
variables by subterms and subcontexts constructed from the terms in the set of equations.
In particular, rule Var-Elim replaces a first-order variable by a term, rule Var-Elim2 partially
guesses the initial part of F' and instantiates a first-order variable, and rules CVar-Elim and
CVar-Elim2 replace F' by a context. As a technical detail, note that the substitution applied
due to the application of rule Var-Elim2 can be seen as an instantiation of F' in terms of a
freshly introduced context variable, which, for clarity, we denote also as F'. Finally, the rule
CVar-Elim2 instantiates the context variable by a context raised to a natural number whose
value is linearly bounded by the size of the current set of equations. Note that it is a bound
on the exponent of periodicity of minimal solutions, i.e. the maximum number of periodic
repetitions of a context in a minimal solution.

» Example 3.6. Consider the one-context unification instance (A, {z}, F), where A contains
only the following equation: F(g(a, F(b))) = g(x, g(a,x)).

This instance has no solution. Note that neither Decompose, Var-Elim, nor CVar-Elim2 can
be applied. In the case of CVar-Elim, we need to choose a position in Pos(g(z, g(a, z))) in order
to guess a context c. Hence, there exist five different options for ¢: ¢ = o, ¢ = g(e, g(a, x)),
¢ = g(z,0), c = g(z,g(e,2)), and ¢ = g(z,g(a,»)). Note that, in any case, the resulting

first-order equation after applying the substitution {F — c} to A does not lead to a solution.

Finally, Var-Elim2 cannot be applied since the left-hand side of the equation is of the form

F(u) and F occurs in u, and the right-hand side of the equation has two occurrences of x.

In order to understand the conditions of rule Var-Elim2, note that they allow either = to
occur more than once in the right-hand side or F' to occur in u. The reason to consider these
situations separately is that both facts cannot hold at the same time since it would lead to
an instantiation of F' in terms of itself, and thus a contradiction.

By the form of the rules, the following statement bounding the length of the derivations
holds trivially.

» Lemma 3.7. Let (A, X, F) be a one-context unification instance. Any derivation from
A using the inference system of Figure 1 contains at most |X| occurrences of Var-Elim and
Var-Elim2, and at most one occurrence of either CVar-Elim or CVar-Elim2.

155

RTA’12



156

4 Approach

In our setting, the terms in the initial set of equations A are represented by an STG. In
order to prove that one-context unification is also in NP in the STG-compressed case, we
adapt the inference system described in Section 3.2. Since subterms, subcontexts, context
exponentiation, and variable instantiations are known to be efficiently computable with
STG’s, as seen in Section 3.1, one may be tempted to simply reproduce the sequence of
variable instantiations done in the uncompressed case. However, the size of the grammar
may grow after certain operations and, in order to prove that it does not explode, we need
to use a different approach. In particular, the difficulties rely on the fact that we do not
have the analogous of Lemma 3.2 for successive partial instantiations of the context variable,
which require to compute a subcontext and thus increase the size of the grammar.

Our approach consists of modifying the sequences of rule applications that describe a
solution in order to guarantee that they can be represented in polynomial space using an STG.
To simplify reasonings, we introduce in Figure 2 a new inference system R that generalizes
the previous one in Figure 1. In fR we assume without loss of generality that the initial set
of equations A = {87 =t1,...,8, = t,} is encoded as a single term. This can be done by
extending the alphabet with new symbols 0 and ¢ of arity n and 2, respectively, and defining
term(A) = 0(e(s1,t1),...,e(Sn, tn)). With this notion, the question of whether there exists a
substitution o, the solution for A, such that o(s1) = o(t1),...,0(sn) = o(t,) corresponds to
check whether there exists a substitution o, the solution for term(A), such that o(term(A)) is
of the form d(e(uy,u1),...,e(un,u,)). This change in notation is useful to refer to subterms
of both sides of the equations in A indistinctly as subterms of term(A).

t
Ry: ——————  where p € Pos(t) and = € Vars(t) \ Vars(t
{th‘p}(t) ( ) ( )\ ( ‘P)
t
Rrr: where p1.p2 € Pos(t) and F' € Vars(t) \ Vars(t
F o U P10 1P € Pos(t) (6)} Vars(tlon)
Rec: t where p1.ps € Pos(t), F € Vars(t) \ Vars(t]p, [o]ps ),

{F = (t[pi[®]p2)}) and e € {0,...,3|t|}

Figure 2 The adapted inference system fR.

It is easy to see that an application of Var-Elim, Var-Elim2, CVar-Elim, or CVar-Elim2
corresponds to the application of at most two of the rules of fR. In particular, an application
of Var-Elim is emulated by an application of Ry. In the rest of this paper, we use Rxr and
Rx—r to refer to applications of Ry in which the involved subterm ¢|, has an occurrence of
F or not, respectively. An application of Var-Elim2 corresponds to an application of Rgg
followed by an application of Ryp. Finally, applications of CVar-Elim and CVar-Elim2 are
emulated by Rpc. The remaining original rule, Decompose, was only used to simplify the
problem in order to apply other rules. Its behaviour is implicitly emulated in R by defining
its rules by means of subterms and subcontexts of t.

With =R ¢.z.p a0d =R, _. z,p We denote an application of rules Ry and Ry-p, respectively,
making explicit the position p and the first-order variable = involved in the rule application.
Analogously, with —Ryp.p1,p. a0d —Rpg,pr.p, We denote an application of Rpr and Rrc,
making explicit the positions p; and py involved in the rule application. Sometimes, we do
not make explicit x, p, p1, and ps when they are clear from the context or not relevant. By
—, we denote the derivational relation using R and, as usual, —>;§ denotes its transitive

closure and —}; denotes its reflexive-transitive closure. Additionally, by —, and —7, we



C. Creus, A. Gascén, and G. Godoy

denote the derivational relation using the rule r of R and its reflexive-transitive closure,
respectively.

The following example illustrates the fact that SR can emulate derivations done with the
inference system in Figure 1.

» Example 4.1. Consider the one-context unification instance ({F(a) = g(zo,x0), F(b) =
g(g9(x1,21),9(a,b))},{xo, 21}, F). In this example we use —7 to denote a derivation step
using the rule 7 and applying the substitution o and —peompose 10 denote some derivation
steps using the rule Decompose. A possible successful derivation using the rules of Figure 1
is the following:

{F((l) ig(ibo,xo), F(b) ig(g(xl»wl)>g(a> b))}

_lmo=r F({F—g(zo,F(e))}(a)) }o{Frg(wo,F(#))}
Var—Elim2

{9(F(a), F(a)) = g(F(a), F(a)), g(F(a), F (b)) = g(g(z1,71),9(a,b))}

*
7 Decom pose

{F(a) = g(z1,21), F(b) = g(a,b)}

lmio F({Fog(ey, F(e)}(a) Yo {Frg(an,F(e)}
Var—Elim2

{9(F(a), F(a)) = g(F(a), F(a)), g(F(a), F(b)) = g(a,b)}

_>Decompose {F(a) =a, F(b) = b} _>éva)r_}—.E}|im {a =a, b = b} _>Decompose Q)

Since we could derive (J, the considered instance is indeed unifiable. The solution associated
to the derivation is {F' — g(g(a,a), g(a,e)),zo — g(a,a),z; — a}.

We now show that the same solution can be derived also using R. The initial set
of equations, expressed with the new notation, corresponds to the term ¢ = term(A) =
o(e(F'(a), g(xo,x0)), e(F(b), g(g(x1,21),9(a,b)))). Note that the subterm t|; encodes the
equation F'(a) = g(xo, o) and t|3 encodes F'(b) = g(g(x1, 1), g(a,b)). Our goal is to check
whether there exists a substitution ¢ such that o(t) is of the form d(e(¢,%1), e(t2,t2)). The
previous derivation corresponds to the following one using fR:

/°\ Rpp,1.2,2 0 ?Ryp,70,1.1.2
‘ ¢ Ar
[ 9 g
| PN g g
a To  To N T~
b P < }‘7 Y y/\”
5 o od b a Lo~ o~
b g oz oa b
/0\ —Rpp.2.2.1,2 > —Rp21.2.1.1.2
¢ ¢ /\
l/\” /\ : .
9 9
N N
J N N N PN /\ /\
ool g e g v J v
o o a a —~
a b w a % P S N P
9 9 9 9 9 9 9 9
P N P P N P P N
F 2z F oo F zn F = F =z F = = a b
| | | | | |
a a a a a b

“7Rpc,2:2.2.1,)

. . /\ /\
P PN /\( '/\1 g g g g g 9

I
|

¥
|

P F F F F F F

a b

s—m
s—m
s—m
s—
s—r

a a b

Note that, there are several equivalent options for the selection of the first position used in
the last rule application. We chose 2.2.2.1 because this is the position that corresponds to
the last steps of the previous derivation.

157

RTA’12



158

It is trivial that R is sound. Moreover, since R can emulate the original inference system, it
follows that it is also complete. The following lemma states that soundness and completeness
of R also hold when the length of derivations is linearly bounded. This property follows from
completeness of the inference system of Figure 1, soundness of R, and Lemma 3.7, taking
into account that each rule of Figure 1 can be emulated with at most two rules of fR.

» Lemma 4.2. Let (A, X, F) be a one-context unification instance. A has a solution if and
only if there exists a derivation term(A) —% t of length at most 2|X| 4+ 1 such that t is of
the form o(e(ur,uy),..., e(umh ujal))-

In the case of one-context unification with STG’s, term(A) is represented by a single term
nonterminal. More concretely, an instance of one-context unification with STG’s ({S1 =
Ti,...,S, =T,},G, X, F)is represented as (T, G, X, F'), where G is an F-extension of G and
T is a term nonterminal of G such that wgr = d(e(wg s,, Wa T, ) - e(Wa 5, War,)) =
term({wg s, = WG 1,,--- WG 5, = Wa,r,}) = term(A). With this new representation, the
problem consists of deciding whether there exists a substitution ¢ such that o(wg,r) is of
the form d(e(u1,u1),- -, e(tn, uyn)). Recall that NP can be defined as the set of decisional
problems whose positive instances can be verified in polynomial time. Hence, to prove that
one-context unification with STG’s is in NP we need to prove that there exists an F-extension
G’ of G of polynomial size with respect to |G| that represents o. More concretely, in the
rest of the paper we prove that, for each derivation of the form term(A) —J. t of length at
most 2|X| + 1, there exists an F-extension G’ of G such that wgr = t and whose size is
polynomial with respect to |G|. This is enough for proving that one-context unification with
STG’s is in NP since the fact that ¢ is of the form d(e(u1,u1),...,e(un,u,)) can be checked
in polynomial time with respect to |G’|.

5 Commutation of Substitutions

As commented in the previous section, our approach consists of modifying the sequences of
derivation steps with R in such a way that allows to conclude that every unifiable instance
(A, X, F) has a solution o that can be represented in polynomial space using an STG. Our
goal is to show that rule applications can always be commuted to obtain an equivalent
derivation, i.e. a derivation describing the same substitution o, that is of the following form:

* * 0,1
term(A) =R .~ Rpp —>RxF—>RFC—>}‘{XﬁF o(term(A))
where —>%’;C denotes either 0 or 1 applications of the rule Rpc. As a first ingredient in this
argument, we define a particular notion of composition of substitutions which will be useful
to reason in our setting. Next, we present some technical results to, finally, prove how to
commute derivation steps until obtaining an equivalent derivation of the desired form.

5.1 Strong Composition

Consider two substitutions o1, 0. The goal of the following notion of composition of o1 and
09 is to capture how instantiations due to o7 are modified by the later application of os.

» Definition 5.1. Let 01,09 be substitutions. The strong composition of o1 and o9, denoted
09 ¢ 01, is defined as {a + o2(01()) | @ € Dom(o1)}

The usual and the strong notions of composition are not equivalent in general. Recall
that, given substitutions o1, 09, the usual notion of composition can be defined as 09 0 01 =



C. Creus, A. Gascén, and G. Godoy

{a = o2(01(a)) | @ € Dom(o1) UDom(oz)}. In order to stress the difference, consider
61 = {y — b} and 02 = {z — a} and note that (03 ¢ 61)(z) = x, while (62 0 01)(z) = a.
Moreover, strong composition is not associative, i.e. (o3 ¢ 02) ¢ 01 = 03 ¢ (02 © 01) does not
hold in general: consider 6y = {y — g(x)} and note that (62 ¢ 601) ¢ 0y = {y — g(x)}, while
020 (01 000) = {y — g(a)}. Another property that distinguishes both notions of composition
is that, when using strong composition, Dom(og ¢ 01) € Dom(oy) holds. This inclusion is
strict only in anomalous cases, for example Dom({y + x} ¢ {x — y}) = 0. In fact, the
condition Dom(oy¢071) = Dom(oy) is ensured when Vars(c2) N Dom(oq) = (), which is usually
the case in our setting.
The following lemma is straightforward from the definition of strong composition.

» Lemma 5.2. Let 01,09 be substitutions and let o be a variable in Dom(oy1). Then,

(02 001)(a) = (02 001) ().

The following lemma states how two substitutions can be “commuted” using the strong
composition.

» Lemma 5.3. Let 01,02 be substitutions such that Vars(oo) N\Dom(oq) = 0. Then, 9001 =
(0'2 <& 0'1) O 03.

Proof. Let V be a set of variables such that Dom(o1) U Dom(oz) C V holds. It suffices to
prove that, for all @ € V, (02 0 01)() = ((02 ¢ 01) 0 02)(x) holds.

We distinguish cases depending on whether o« € Dom(c;) and a € Dom(oz). If a €
Dom(oq) then, by the assumption of the lemma, o ¢ Dom(os) holds, and hence ((og ©
01) 0 02)(a) = (020 01)(a) = (02 0 01)(e) holds by Lemma 5.2. If « € Dom(oz) then,
by the assumption of the lemma, Vars(oz(a)) N Dom(os ¢ o1) = 0 and a ¢ Dom(oy) hold,
and it follows ((o2 ¢ 1) 0 02)(a) = og2(a) = (02 0 01)(«). Finally, the case where o ¢
Dom(o1) U Dom(og) trivially holds and the case where a € Dom(oq) N Dom(o3) is not
possible by the assumption. <

5.2 Subterm Preservation

Let t; and t; be terms such that 5 is obtained from t; by applying a substitution. The
following two lemmas state under which conditions a certain subterm of ¢o exists also as a
subterm of ¢;. These results will be crucial to argue about the commutation of derivation
steps.

» Lemma 5.4. Let F be a ranked alphabet and let V be a set with first-order variables and a
context variable F'. Let t1,ta be terms in T (F,V) such that ta = {F + c[F(e)]}(t1), where c
is a context in C(F,V). Let p be a position in Pos(ta) such that F' & Vars(ta|p). Then, either
there exists a position p € Pos(t1) such that t1|; = ta|, or there exists a position p € Pos(c)
such that clp = ta|p.

Proof. We prove the lemma by induction on |p|. If p = A, note that F cannot occur in
t1 since, otherwise, F' € Vars(t2|,). Hence, in this case, t; = ¢2 holds and we are done by
defining p as p. For the induction step, assume that |p| > 0 and consider the following cases.

First, consider that ¢; is of the form g(uq,...,u,), where g is a function symbol in F.

Note that n > 0 holds since, otherwise, to = g and p = A, contradicting the assumption.

Let p be i.p’ more explicitly written, for ¢ € {1,...,n}. Note that to|; = {F — c[F(e)]}(u;),
p’ € Pos(ta|;), and F & Vars(ta;|,r) hold. By induction hypothesis on |p/|, there exists a
position p’ such that either w;|y = t2];|pr or ¢|p = tali|,r. The statement follows by defining
P as 7.p’ in the former case and as p’ in the latter case.

159

RTA’12



160

Second, consider that ¢; is of the form F(u). We distinguish cases depending on whether
p and hp(c) are parallel or not. Note that p cannot be a prefix of hp(c) since it would lead to a
contradiction with the fact that F' & Vars(tz|,). In the case where p and hp(c) are parallel, it
follows that c|, = t2|,, and we are done by defining p as p. Otherwise, let p be hp(c).1.p’ more
explicitly written. In this case, note that ta|p).1 = {F + c[F(®)]}(u), p € Pos(talnp(c).1),
and F' ¢ Vars(ta|np(c).1]p) hold. Hence, by induction hypothesis on [p’|, there exists a position
P such that either u|y = talhp(e).1lp OF clpr = talnp(e).1]pr- The statement follows by defining
P as 1.p" in the former case and as p’ in the latter case.

Third, the case where t; is a first-order variable is not possible because, in such case, p
must be A, which contradicts the assumption. |

» Lemma 5.5. Let F be a ranked alphabet and let V be a set with first-order variables
and a context variable F. Let ti,ty be terms in T(F,V) such that either t; =R, ta or
t1 —Rep t2. Let p be a position in Pos(tz) such that F & Vars(ta|,). Then, there exists a
position p € Pos(t1) such that t1]p = talp.

Proof. We first consider the case where the applied rule is Rpp. Let t1 =Rpp py,p, t2 be the
derivation step of the statement more explicitly written. Hence, to = {F > t1|p, [F(®)]p, } (t1)
and, by Lemma 5.4, the statement holds.

Now assume that the applied rule is Ryrp with variable x and position q. Let P be the
subset of positions of Pos(t1) labeled by z in ¢;. Note that P is a set of pairwise parallel
positions. Moreover, note that p cannot be a prefix of any of the positions in P since,
otherwise, F' € Vars(ts|,), contradicting the assumptions of the lemma. In the case where p
is parallel with every position in P, it follows that p € Pos(t1) and 1|, = t2|,. Otherwise,
exactly one position p’ € P is a proper prefix of p. Hence, p is of the form p’.q" and it follows
that t1|q.q’ = t2|p. |

The following lemma states how the instantiation of a context variable and the computation
of a subterm can be commuted.

» Lemma 5.6. Let F be a ranked alphabet and let V be a set with first-order variables and
a context variable F. Let t be a term in T(F,V), let p be a position in Pos(t), and let
o ={F — c} be a substitution, where c is a context in C(F,V). Then, there exists a position
p € Pos(a(t)) such that o(t],) = o(t)]p.

Proof. We prove the lemma by induction on |p|. The base case, i.e. when p = A, trivially
holds by defining p as p. For the induction step, assume that |p| > 0. We distinguish cases
depending on the form of ¢.

First, assume that ¢ is of the form g(uq,...,u,), where g is a function symbol in F. Note
that n > 0 necessarily holds since, otherwise, p = A, contradicting the assumption. Let p
be i.p’ more explicitly written, for i € {1,...,n}. By induction hypothesis, there exists a
position p’ € Pos(o(u;)) such that o(u;|,) = o(u;)|p holds. Hence, the statement holds by
defining p as 7.p’.

Second, assume that ¢ is of the form F(u). Let p be 1.p" more explicitly written. By
induction hypothesis, there exists a position p’ € Pos(o(u)) such that o(ul,) = o(u)|s holds.
Hence, the statement holds by defining p as hp(c).p’.

Third, the case where t is a first-order variable is not possible because, in such case, p
must be A, which contradicts the assumption. |



C. Creus, A. Gascén, and G. Godoy

5.3 Reordering Derivations

In this section we show how derivations with SR can be modified in order to guarantee that
rules are applied in a specific order. As basic ingredients, the following three technical lemmas
show how pairs of derivation steps can be swapped.

» Lemma 5.7. Let F be a ranked alphabet and let V be a set with first-order variables and
a context variable F'. Let t1,t2,t be terms in T(F,V) such that t1 =R, p.ep t —Rep.pips L2-
Then, there exists a position p1 € Pos(t1), a term t' € T(F,V), and a position p € Pos(t’)
such that t1 —Ryp prps ' —Roe,z,p t2 holds.

Proof. By the conditions on the application of Ryr, € Vars(t1) \ Vars(t1],) and F €
Vars(t1],) hold. In addition, since Ryp instantiates z, then = ¢ Vars(t) holds. Moreover, by
the conditions on the application of Rpp, we know that F' € Vars(t) \ Vars(t|,, ). Note that

to ={F = tp, [F (@), } ({2 = talp}(t1)) (1)
=({F = tlp, [F(o)lp, } o {z = talp H{E = tp, [F(@)]p, } (1)) (2)
={z = {F = t[p, [F(0)]p } (1]p) L = tp, [F(0)]p, }(£1)) (3)
={z = {F = talp, [F ()l } (t1]p) {E = tap, [F(@)]ps }(£1)) (4)

( ()

[ ( D p2 s (1
={z = {F = ta]p, [F(@)]p, }(t1) [p}({F = talp, [F'(®)]p, }(E1)) 5

where (1) follows from definition of Ryr and Rpp, (2) follows from Lemma 5.3, which can be
applied because Vars({F — t|,, [F'(®)]p, }) NDom({z — t1],}) = 0 holds since = ¢ Vars(t) and
x # F, (3) follows from Definition 5.1, in (4) the implicit definition of p; holding t1]5, = t|p,
follows from Lemma 5.5, which can be applied since t1 =g, 4p t and F & Vars(t|,, ), and in
(5) the implicit definition of p holding {F > t1]p, [F(®)]p, }(t1)lp = {F = t1]p, [F(®)]p, }{t1]p)
follows from Lemma 5.6.

Finally, let the ¢’ of the lemma be defined as {F' — t1]p, [F'(e)]p, }(t1) and note that
to = {x — ¢/|5}(t'). It remains to prove that ¢’ can be derived from ¢;, and that t; can
be derived from ¢/, as stated in the lemma. First, note that t1 —grppp, p, ¢ holds because
F' does not occur in t1p,, since t1]p, = t|p,, and, moreover, F' € Vars(¢;1) holds because
F € Vars(t) and Vars(t) C Vars(t1). Now, note that ¢ —r_; » 5 t2 holds because:

x € Vars(t'), which follows from the facts that « € Vars(t1) and Vars(t') = Vars(¢1),

x ¢ Vars(t'|), since « & Vars(t1|,), © & Vars(t), and t'|; = {F — t1]p,[F(®)]p, } (£1)

{F = t|P1 [F(.)]pz}(t1|;ll)7 and

F € Vars(t'|3), since F' € Vars(t1],) holds and thus F' € Vars({F — t1|p, [F'(®)]p, } (t1]p)) =

Vars({F + t1]p, [F'(®)]p, } (t1)]5) = Vars(t'|5) also holds.

Hence, t1 —Rpp,p1,ps ' —Rup,z,p t2 holds, which concludes the proof. <

p =

The proofs of the following two lemmas are very similar and, due to lack of space, the
second one is omitted.

» Lemma 5.8. Let F be a ranked alphabet and let V be a set with first-order variables and a
context variable F. Let t1,ta,t be terms in T(F,V) such that t1 —=Repp1,ps t = Rep,z,p L2-
Then, there exists a position p € Pos(t1) and a term t' € T(F,V) such that t1 =g, _ ;. p
t' —=Rpp,p1,ps t2 holds.

Proof. By the conditions on the application of rule Rpp, F € Vars(t1) \ Vars(t1]p,)
holds. Moreover, by the conditions on the application of rule Ry_p, we know that

161

RTA’12



162

x € Vars(t) \ Vars(t|,) and F' & Vars(t|,). Note that

te ={z = t[p }{F = ta|p, [F(9)]ps }(t1)) (1)
=({z = tlp} o {F = talp, [F(@)]p, D ({z = tlp}(t1)) (2)
={F = {z = tlp}ta]p, [F(@)]p,) }{z = [ }(t1)) (3)
={F = {z = tilp}Ht1]p, [F(9)]p)} ({2 = ta]p}(t1)) (4)
={F' = {z = tlp () p [F(®)]p, }({z = talp}(t1)) (5)

where (1) follows from definition of Rpp and Rx-r, (2) follows from Lemma 5.3, which can be
applied because Vars({z > t|,}) N Dom({F > t1]p, [F'(®)]p, }) = 0 holds since F ¢ Vars(t|,)
and F' # z, (3) follows from Definition 5.1, in (4) the implicit definition of p holding t1|; = t|,
follows from Lemma 5.5, which can be applied since t1 —Rpp,p,,p, t and F & Vars(t|,), and
(5) holds because replacements of first-order variables and computation of subterms can be
commuted in this way.

Finally, let the ¢’ of the lemma be defined as {z — t1|;}(¢1) and note that t; = {F
t'|p, [F(®)]p, }(t'). It remains to prove that t' can be derived from t;, and that ¢, can be
derived from t’, as stated in the lemma. First, note that ¢; R, 2,0 t’ holds because neither
F nor z occur in ¢ |, since 1] = t|, and, moreover, x € Vars(t1) holds because = € Vars(t)
and Vars(t) = Vars(t1). Now, note that ¢’ —Rryp.p,.ps t2 holds because:

F € Vars(t'), since F € Vars(t1) \ {} = Vars({x — t1|5}(t1)) = Vars(t'), and

F ¢ Vars(t'|,,) since F ¢ Vars(ti|,,) U Vars({x — t1]p}) and thus F ¢ Vars({z

Blshtlp) = Vars({e o 1]} ()lp) = Vars(t',).

Hence, t1 =Ry p.ep U —Rpr.p1.ps t2 holds, which concludes the proof. <

» Lemma 5.9. Let F be a ranked alphabet and let V be a set with first-order variables and a
context variable F'. Let t1,ts,t be terms in T (F,V) such that t1 =R . z1,p1 t —Rep,z0.ps L2-
Then, there exists a position ps € Pos(t1) and a term t' € T(F,V) such that t; =g
t —Ryr,T1,p1 to holds.

x—F,T2,D2

xF s

The following result follows from the three previous lemmas, summarizing the goal of
this section.

» Lemma 5.10. Let (A, X, F) be a one-context unification instance. Let t be a term such
that term(A) —5, t in n derivation steps. Then, there exists a derivation of length n of the

form term(A) —Ren —>§FF—>§xF—>%;C—>’ﬁX .t

6 Complexity Analysis

We now have all the ingredients needed to prove that the one-context unification where the
input terms are compressed using STG’s is in NP. To prove this fact, we show, for each
unifiable instance, that there exists a witness of polynomial size verifiable in polynomial
time. In our setting, this witness is an STG generating the unified term and the verification
consists of checking whether such a term is of a certain form.

» Theorem 6.1. One-context unification with STG’s is in NP.

Proof. Let (A, X, F) be a one-context unification instance represented by an STG G and a
nonterminal T' of G such that wg r = term(A). By Lemma 4.2, A has a solution if and only
if there exists a derivation term(A) —% ¢ of length at most 2|X'| + 1 such that ¢ is of the form
o(e(ur,u1), ..., e(ual, uja))). Moreover, by Lemma 5.10, we assume without loss of generality



C. Creus, A. Gascén, and G. Godoy

that this derivation is of the form term(A) —g _t1 =% t2 =k 3 —>%$c ty =%, . t, for
some terms tq,%2,ts, 4.

We first prove that there exists an F-extension G’ of G such that wes r =t and whose
size is polynomially bounded by |G|. By Lemma 3.2, there exists an F-extension G of G such
that wg, r = t1 and whose size is polynomially bounded by |G|. Now we claim that there
exists an F-extension G of Gy such that wg, 7 = t2 and whose size is polynomially bounded
by |G1]. By the conditions on the application of Rpr and by Lemma 5.5, the subcontexts
computed in each step of the subderivation t; =y f2 can be obtained from ¢;. Hence, the
sequence of applications of rules Rpp can be seen as a single application of a substitution
of the form {F — ¢y ...c,F (o)}, where each ¢; is a subcontext of ¢;. By Lemma 3.3, there
exists an F-extension G of G such that wer T =t with a context nonterminal C such that
wgy,c = ¢1...¢, and whose size is polynomially bounded by |G1| and [X|. The STG G»
mentioned above is defined as the F-extension of G} obtained by transforming the context
variable into a context nonterminal generating ¢y ...c,F'(e), where F' is a freshly introduced
terminal symbol standing for the context variable. Again by Lemma 3.2, there exists an

F-extension G5 of G such that wg, r = t3 and whose size is polynomially bounded by |Ga].

At this point, note that the exponent e involved in the application of Rgpc can be at most
exponential with respect to |G| since it is linear with |t3|. Hence, by Lemma 3.5, there exists
an F-extension G4 of G3 such that wg, v = t4 and whose size is polynomially bounded by
|G3|. Hence, by definition of Gy, G2, G3, Gy, it follows that |G4| is polynomially bounded by
|G|. Finally, the existence of the grammar G’ mentioned above follows from Lemma 3.2 and
the fact that |G4| is polynomially bounded by |G|. Note that, as commented in Section 2.2,
the size of the representation of G’ is bounded by |G’| - (2 + m), where m is the maximum
arity of the terminals of G'.

To conclude the proof, note that the property whether the term generated by a certain
nonterminal, in our case by the nonterminal T" of G, is of the form d(e(u1,u1), . . ., e(uja|, ua|))
can be checked in polynomial time with respect to the size of the given grammar. To see
this, first note that checking whether the symbol labeling wgs 1 at position p, with |p| =0
or |[p| =1, is D or e, respectively, can be computed in linear time. Finally, nonterminals
generating wg r|i.1 and wer |2, for i € {1,...,|A]}, can be computed efficiently, and thus,
by Lemma 2.2, checking whether wer r];1 = wer r)i.2 can be solved in polynomial time. <

7 Conclusions and Further Work

We have proved that the one-context unification problem belongs to NP even when the input
is compressed using STG’s. A natural next step is to study whether there exists a polynomial
time algorithm for this problem. However, this is also open when using an uncompressed
term representation. Hence, it seems reasonable to first consider this problem before tackling
the compressed case.

Another option is to study the complexity of particular cases of one-context unification
with STG’s. Concretely, the following one is particularly interesting due to its applications
in term rewriting and querying XML-databases: solving an equation F(s) =t where ¢ is

ground and s does not contain the context variable F' but may contain first-order variables.

As shown in [19], this problem can be solved in polynomial time when the representation of
s is noncompressing. However, it is still open whether the general case is NP-hard or it can
be solved in polynomial time.

163

RTA’'12



164

—— References

1

10

11

12

13

14

15

16

17

18

19

F. Baader and W. Snyder. Unification theory. In Handbook of Automated Reasoning, pages
445-532. Elsevier and MIT Press, 2001.

F. Bry and S. Schaffert. Towards a declarative query and transformation language for xml
and semistructured data: Simulation unification. In ICLP, pages 255-270, 2002.

G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document
trees. Information Systems, 33(4-5):456-474, 2008.

K. Erk and J. Niehren. Dominance constraints in stratified context unification. Information
Processing Letters, 101(4):141-147, 2007.

A. Gascon, G. Godoy, and M. Schmidt-Schaufl. Unification and matching on compressed
terms. ACM Transactions on Computational Logic, 12(4):26, 2011.

A. Gascon, G. Godoy, M. Schmidt-Schauf}, and A. Tiwari. Context unification with one
context variable. Journal of Symbolic Computation, 45(2):173-193, 2010.

A. Gascén, S. Maneth, and L. Ramos. First-order unification on compressed terms. In
RTA, pages 51-60, 2011.

W. D. Goldfarb. The undecidability of the second-order unification problem. Theoretical
Computer Science, 13:225-230, 1981.

S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural analysis.
In ESOP, pages 253-267, 2007.

J. Levy, J. Niehren, and M. Villaret. Well-nested context unification. In CADE, pages
149-163, 2005.

J. Levy, M. Schmidt-Schauf}, and M. Villaret. The complexity of monadic second-order
unification. SIAM Journal on Computing, 38(3):1113-1140, 2008.

J. Levy, M. Schmidt-Schauf}; and M. Villaret. On the complexity of bounded second-order
unification and stratified context unification. Logic Journal of the IGPL, 19(6):763-789,
2011.

Y. Lifshits. Processing compressed texts: A tractability border. In CPM, pages 228-240,
2007.

M. Lohrey and S. Maneth. The complexity of tree automata and XPath on grammar-
compressed trees. Theoretical Computer Science, 363(2):196-210, 2006.

M. Lohrey, S. Maneth, and R. Mennicke. Tree structure compression with RePair. In DCC;
pages 353-362, 2011.

M. Lohrey, S. Maneth, and M. Schmidt-Schauf}. Parameter reduction in grammar-
compressed trees. In FOSSACS, pages 212-226, 2009.

W. Plandowski. Testing equivalence of morphisms on context-free languages. In ESA, pages
460-470, 1994.

K. Sadakane and G. Navarro. Fully-functional succinct trees. In SODA, pages 134-149,
2010.

M. Schmidt-Schaufl. Pattern matching of compressed terms and contexts and polynomial
rewriting. Frank report 43, Institut fiir Informatik. Goethe-Universitdt Frankfurt am Main,
February 2011.



	Introduction
	Preliminaries
	Terms, Contexts and Substitutions
	Singleton Tree Grammars
	Context Unification

	Known Results
	Operations on STG's
	Uncompressed One-Context Unification

	Approach
	Commutation of Substitutions
	Strong Composition
	Subterm Preservation
	Reordering Derivations

	Complexity Analysis
	Conclusions and Further Work

