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Abstract
Departing from a computational interpretation of compression in infinitary rewriting, we view
compression as a degenerate case of standardisation. The change in perspective comes about via
two observations: (a) no compression property can be recovered for non-left-linear systems and
(b) some standardisation procedures, as a ‘side-effect’, yield compressed reductions.
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1 Introduction

One of the most fundamental properties studied in infinitary rewriting is the so-called
compression property. Roughly, the property states that for every reduction of transfinite
length a ‘similar’ reduction can be found of length at most ω (the first infinite ordinal).
Consider, e.g., the binary function symbol f and the rules a→ g(a) and b→ g(b). We have
the following reduction of length ω + ω:

f(a, b)→ f(g(a), b)→ · · · → f(gn(a), b)→ · · ·
f(gω, b) → f(gω, g(b)) → · · · → f(gω, gn(b)) → · · · f(gω, gω) .

By interleaving the a- and b-steps, we can compress this reduction to obtain a ‘similar’
reduction of length ω:

f(a, b)→ f(g(a), b)→ f(g(a), g(b))→ · · · → f(gn(a), gn(b))→ · · · f(gω, gω) .

This second reduction has a very appealing property: We can obtain an arbitrarily good
approximation of the final term by rewriting f(a, b) a sufficient, finite number of times.
As we are now in the realm of finite rewriting, it can be said that compression gives
computational meaning to infinitary rewriting (see also [8], although room is left there for
other interpretations than a computational one).

There are, however, two problems with the aforementioned computational interpretation.
First, the compression property does not apply to all rewrite systems, while it can be argued
that every rewrite system computes something. In particular, the property can fail for
systems with non-left-linear rules. Consider, e.g., the non-left-linear rule f(x, x)→ c. This
rule, in combination with the rules a→ g(a) and b→ g(b) from above, yields the standard
counterexample to compression for non-left-linear systems [5, 8, 7]; the following reduction is
of length ω + 1 and cannot be compressed:

f(a, b)→ f(g(a), b)→ f(g(a), g(b))→ · · · → f(gn(a), gn(b))→ · · · f(gω, gω)→ c .
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Essentially, we need ω steps to obtain f(gω, gω) before we can rewrite to c.
The second problem with the computational interpretation has to do with the fact that

infinitary rewriting is susceptible to a similar computational treatment [10] as that of the
real numbers in computable analysis [15]. We can think of both terms and reductions as
Turing Machines. As such, any term along every transfinite reduction can be approximated
with arbitrary precision in finite time (by executing the Turing Machines). Of course, such a
computational treatment is not perfect: Although terms and reductions can be represented
by Turning Machines, we cannot compute whether a reduction step that occurs in any such
representation is indeed ‘valid’, as computing the validity of a match would take infinite time
in case a non-left-linear rule is employed. Instead, with each representation of a reduction
one should provide a ‘certificate’ (i.e. a proof) showing the validity of the matches that occur.

In the current paper we address both points of critique regarding the computational
interpretation. To address the first, i.e. the lack of compression in non-left-linear systems,
it would suffice if we could establish a generalised compression property: For each system
a countable ordinal α might exist such that each reduction within that system can be
compressed to one of length at most α [11, 12]. Unfortunately, as we will show, such a
generalised compression property fails even for very simple systems. Hence, and as is also
needed to address the second point of critique, a different interpretation of compression —
one outside the realm of computability — is warranted for.

We reinterpret compression as a degenerate case of standardisation. Such a reinter-
pretation is not unexpected: Likewise to connections that exist between the equivalence of
reductions and standardisation in finite rewriting [14], connections can be drawn between
equivalence and compression in infinitary rewriting [8]. To enable our reinterpretation, we
provide the first ever standardisation procedures for infinitary Term Rewriting Systems
(iTRSs). We will show that these procedures, as a ‘side-effect’, yield compressed reductions.

The paper now proceeds as follows: In Section 2, we state a number of preliminaries
needed in the remainder of the paper. We discuss the generalised compression property and
its failure in Section 3. In Section 4, we formulate two standardisation procedures. Finally,
in Section 5, we conclude.

2 Preliminaries

We briefly review some basic facts regarding infinitary Term Rewriting Systems (iTRSs); see
[8, 7] for more detailed accounts. Throughout, we denote the first infinite ordinal by ω and
arbitrary ordinals by α, β, γ, and so on; [α, β) denotes a left-closed, right-open interval of
ordinals and (α, β] a right-open, left-closed interval. By N we denote the natural numbers
including zero.

Terms. Let Σ be a signature, each element of which has finite arity, and let V be a countably
infinite set of variables. The set of (finite and infinite) terms is commonly defined by metric
completion [2, 8, 7]. Here, we give the shorter, but equivalent, definition from [3, 9].

I Definition 2.1. The set of terms T er(Σ, V ) is defined coinductively such that x is a term
for each x ∈ V and if f(t1, . . . , tn) is a term, then f ∈ Σ is n-ary and t1, . . . , tn are terms.

Substitutions over terms are defined by interpreting the usual definition coinductively [8, 7].
For the root symbol, root(t), of a term t we have root(x) = x and root(f(t1, . . . , tn)) = f .

The set of positions Pos(t) of a term t is a set of finite strings over N representing the
‘locations’ of subterms in t [8, 7]. Denoting the empty string by ε, we have Pos(x) = {ε}
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and Pos(f(t1, . . . , tn)) = {ε} ∪
⋃

1≤i≤n{i · p | p ∈ Pos(ti)}. If p is a position of t, then t|p
denotes the subterm of t at position p; we have t|ε = t and f(t1, . . . , ti, . . . , tn)|i·p = ti|p. By
t[s]p we denote the replacement of the subterm at position p in t by s; we have t[s]ε = s

and f(t1, . . . , ti, . . . , tn)[s]i·p = f(t1, . . . , ti[s]p, . . . , tn). The length of p is denoted |p|. There
exists a well-founded order < on positions: p < q iff p is a proper prefix of q. We write ≤ for
the reflexive closure of <. If neither p ≤ q nor q ≤ p, then p and q are parallel and we write
p ‖ q. The concatenation of positions p and q is denoted by p · q.

Rewrite Rules and Reductions. Rewrite rules and iTRSs are defined as in the finite case,
except that the finiteness restriction on the right-hand side of rewrite rules is dropped:

I Definition 2.2. A rewrite rule is a pair of terms (l, r), denoted l → r, with l finite and
such all variables that occur in r also occur in l. A rewrite rule is left-linear, if each variable
occurs at most once in l.

An infinitary Term Rewriting System (iTRS) is a pair R = (Σ, R) with Σ a signature
and R a set of rewrite rules over Σ. An iTRS is left-linear if all its rewrite rules are.

Rewrite steps are now defined as usual:

I Definition 2.3. A rewrite step is a pair of terms s→ t adorned with a position p and a
rewrite rule l→ r such that s = s[σ(l)]p and t = s[σ(r)]p for some substitution σ. The term
σ(l) is called an l→ r-redex. The redex occurs at position p and depth |p| in s.

The previous gives sufficient background to define strongly convergent reductions [8, 7]
(the most common notion of reduction in infinitary rewriting; see [6] for further discussion of
notions of reduction in infinitary rewriting).

I Definition 2.4. A strongly convergent reduction of ordinal length α, denoted t0 �α tα, is
a pair consisting of sequence of terms (tβ)β<α+1 and a sequence of steps (pβ , lβ → rβ)β<α
such that for all β < α it holds that (a) tβ → tβ+1 is a rewrite step adorned with the position
pβ and the rewrite rule lβ → rβ , and (b) if β is a limit ordinal, then tγ converges to tβ and
|pγ | tends to infinity when γ approaches β from below.

Here, a sequence of terms (tγ)γ<β is said to converge to a term tβ whenever the depth
up to which tγ and tβ are identical increases as γ approaches β.

In case we are only interested in an upper bound, respectively a lower bound, α on the
length of a strongly convergent reduction we write s�≤α t, respectively s�≥α t. Moreover,
in case the length is irrelevant, respectively finite, we write s� t, respectively s→∗ t. We
say that a reduction s� t is maximal if there does not exist a term t′ such that t→ t′. In
other words, in this case t is a normal form.

I Example 2.5. Consider the rewrite rule a→ g(a) from the introduction. The following is
a strongly convergent, maximal reduction with normal form gω:

a→ g(a)→ g(g(a))→ · · · → gn(a)→ · · · gω .

Replacing the final term of the reduction by a breaks strong convergence, as the sequence
(gn(a))n<ω does not converge to a; it only converges to gω.

Consider now the rule c→ c. We can construct the following reduction of length ω:

c→ c→ · · · → c→ · · · c .

Although a sequence in which all terms are equal to c obviously converges to c, this reduction
is not strongly convergent, as the depth of the contracted redexes does not tend to infinity
along the reduction.

RTA’12
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Compression. Having defined iTRSs and strongly convergent reductions we can now state
the classical compression property for left-linear systems [8, 7]:

I Theorem 2.6. Let R be a left-linear iTRS. For each s� t there exists a reduction s�≤ω t.

Thus, for every reduction in a left-linear iTRS we can find a reduction with the same
initial and final term that is of length at most ω. In the case of orthogonal iTRSs the above
can be strengthened [8]: a reduction s�≤ω t exists which is Lévy equivalent to s� t.

3 Generalised Compression

Assuming compression should hold equally for all reductions within a rewrite system, the
only obvious generalisation of the compression property is the one from [12]:

I Definition 3.1. Let α be a countable ordinal, an iTRS R satisfies the α-compression
property iff it holds for each s� t that there exists a reduction s�≤α t.

Since all strongly convergent reductions have countable length [8, 7], only countable
ordinals make sense in the definition; the property holds trivially for any uncountable ordinal.
By Theorem 2.6, we have that ω-compression holds for every left-linear iTRS.
I Remark. The α-compression property is related to the notion of α-closedness from [5].
The difference between the notions is two-fold: First, α-compression allows for both finite
and infinite terms as the starting terms of reductions, while α-closedness only allows for
finite terms as starting terms. Second, while we consider strongly convergent reductions,
α-closedness is concerned with the more general, but less well-behaved, Cauchy convergent
or weakly convergent reductions (which dispose of the depth requirement that is part of
Definition 2.4 [5, 8]).

Based on the known counterexamples to compression from the literature, one may
conjecture that for every iTRS it is possible to find an ordinal α such that α-compression
holds: With regard to the standard counterexample from the introduction, [5] states without
proof that for finite starting terms all reductions are compressible to length at most ω+ω. A
similar property holds for λβη-calculus — the prototypical higher-order system not satisfying
the compression property. As can be inferred from [12, Lemma 5], all reductions in λβη-
calculus also compress to reductions of length at most ω + ω.

As we will show below, the above conjecture is false: We uncover two systems that do
not satisfy α-compression for any countable α. The first system, discussed in Section 3.1,
is — remarkably enough — the one from the standard counterexample. The second system,
discussed in Section 3.2, refutes the above conjecture in even stronger ways: We exhibit terms
that have unique strongly convergent reductions starting from them which are incompressible:

I Definition 3.2. Let R be an iTRS, a reduction s�α t is incompressible if all reductions
s� t are of length at least α.

Considering incompressible reductions mitigates a possible point of critique regarding the
proof in Section 3.1: We only show that the considered reductions are at least of a certain
length, we do not show that they cannot be compressed precisely up to that length.

3.1 Compression in the Standard Counterexample
Consider the iTRS with as its sole rule f(x, x)→ c, the non-left-linear rule from the standard
counterexample. We have the following:
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f

f f

tµ(0) f c f

tµ(1) f c f

tµ(2) c

Figure 1 A limit term from the proof of Lemma 3.3.

I Lemma 3.3. For every countable ordinal α, there is a term tα such that tα � c exists and
is of length at least α+ 1 and such that no tα � c exists of length less than α+ 1.

Proof. We prove the lemma by transfinite induction over the ordinal α. In case α = 0, define
tα = f(c, c). As we have f(c, c)→ c, we are done.

In case α = β + 1, we have by the induction hypothesis that a strongly convergent
reduction exists from tβ to c. Set tα = f(tβ , c). The reduction tα �≥β+1 f(c, c) → c is
obviously strongly convergent, as tβ � c is. Moreover, as the redex at the root is only created
after at least β + 1 steps — for tβ � c consists of at least β + 1 steps — we have that tα � c

is of length at least α+ 1 = β + 2.
In case α is a limit ordinal, choose any bijection µ from N to α and define tα = f(φµ(0), ψ)

(see also Figure 1), where:

φµ(n) = f(tµ(n), φµ(n+ 1))
ψ = f(c, ψ)

By the induction hypothesis we have for every n ∈ N that a strongly convergent reduction
of length at least µ(n) + 1 starts from tµ(n). Reduce each tµ(n) to c, possibly interleaving
the reductions in the different subterms. Doing so, we obtain f(ψ,ψ), which we can further
reduce to c. The reduction to f(ψ,ψ) is strongly convergent, for suppose not, then an
infinite number of reduction steps occurs at a certain fixed depth [7, Exercise 12.3.6]. By the
pigeonhole principle for infinite sets and since the terms tµ(n) occur at increasingly greater
depths, this means there exists an m such that an infinite number of steps occurs in tµ(m) at
a fixed position. Hence, the reduction from tµ(m) is not strongly convergent, contradiction.
As the reductions from the different tµ(n) are independent and as a reduction of length at
least β+ 1 occurs for every ordinal β < α, the constructed reduction has length at least α+ 1.
No reduction of length γ < α exists, otherwise for infinitely many tµ(n) with reductions of
length at least β + 1 > γ there also exist reductions of length at most γ, contradicting the
induction hypothesis. J

Remark that the rules a→ g(a) and b→ g(b) from the standard counterexample do not
affect the above result, as a and b do not occur in the defined terms. Hence, the lemma also
holds for the iTRS from the standard counterexample.

By the above, we immediately have:

I Theorem 3.4. There exists an iTRS such that the α-compression property fails to hold
for every countable ordinal α.

RTA’12
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3.2 Unique Incompressible Reductions
Although the result from the previous section establishes that compression, even in a
generalised form, cannot be carried over to arbitrary iTRSs, the result is not completely
satisfactory: We only uncovered reductions that are of at least a certain length; we did not
show that these reductions cannot be compression at all (up to the provided lower bounds on
their lengths). To rectify this situation, we study a second system with a non-left-linear rule
in the current section. For this second system, we will define for every countable ordinal α
terms tνα with starting from them unique maximal and incompressible reductions of length
at least α. As a corollary we will obtain that each tνα also has a unique incompressible
reduction of length precisely α starting from it.

Before we give the actual proofs, we first describe our second system and give some
examples.

Signature. The signature Σ of our second system consists of five symbols:

Σ = {f, f ′, h, h′, k} ,

where f and f ′ are ternary and such that all other symbols are unary. Of these symbols, f is
the most important and is the root symbol of our unique non-left-linear rule. The symbol h
will be inserted above the redexes we are going to contract to ensure that the redexes occur
at sufficient depth to guarantee strong convergence. Moreover, the symbols f ′ and h′ will
allow us to construct terms that are already of the required ‘shape’, but in which no redexes
occur (due to the presence of the primes). Finally, the function symbol k will help us to
convert ‘primed’ into ‘unprimed’ terms.

Rewrite Rules. Our system has four rewrite rules: One non-left-linear rule and three rules
to convert ‘primed’ into ‘unprimed’ terms. The non-left-linear rule is as follows:

f(x, x, y)→ h(k(y)) (1)

That is, we match the first two arguments of f .
Contracting an f -redex introduces an h to ensure that the term substituted for y will

eventually — after contracting of a number of k-redexes — occur at the same depth as before
contraction of the f -redex.

As already mentioned, the rules associated with k convert ‘primed’ into ‘unprimed’ terms.
The rules are as follows:

k(f ′(x, y, z))→ f(k(x), y, z) (2)
k(h′(x))→ h(k(x)) (3)
k(h(x))→ h(x) (4)

The first two rules remove a prime and then recurse. The third rule ensures that the
conversion terminates once we encounter a non-primed h. Although a similar terminating
rule could be introduced for f , i.e. k(f(x, y, z))→ f(x, y, z), the terms considered below are
such that this rule is never needed and, hence, we prefer omit the rule.
I Remark. Observe that the first two rules associated with k move the k to a lower position and
that the last rule removes the k all together. Hence, if we would instead use f(x, x, y)→ k(y)
as our f -rule, it not longer holds that the (converted) term substituted for y eventually
occurs at the same depth d as before application of the f -rule; it will occur at depth d− 1
instead. The equal depth is, however, needed to ensure that our reductions are strongly
convergent. For this reason the h occurs at the root of the right-hand side of our f -rule.
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f

h hω f ′

f hω hω hω

hω hω hω

(a) Example 3.5.

f

f hω hω

hω hω f ′

hω hω f ′

hω hω

(b) Example 3.6.

Figure 2 The initial terms from Examples 3.5 and 3.6.

Two Examples. Before proving the central result of this section, let us consider two concrete
incompressible reductions that make use of the above rules.

I Example 3.5. Consider the following term (also depicted in Figure 2(a)):

s = f(h(f(hω, hω, hω)), hω, f ′(hω, hω, hω)) .

Underlining contracted redexes, we have precisely one maximal reduction starting from s

(consisting of seven steps):

f(h(f(hω, hω, hω)), hω, f ′(hω, hω, hω))→ f(h(h(k(hω))), hω, f ′(hω, hω, hω))

→ f(hω, hω, f ′(hω, hω, hω))→ h(k(f ′(hω, hω, hω)))

→ h(f(k(hω), hω, hω)) → h(f(hω, hω, hω)) → h(h(k(hω))) → hω .

This reduction cannot be compressed to a reduction of less than seven steps: For each step
the redex contracted in that step is created in the step immediately preceding it.

With regard to the above example, note that, if we fix the ordinal α to be 3, we obtain a
bijection ν−1

α between α and the depths of the α (= 3) f -steps in the reduction: ν−1
α (0) = 2,

ν−1
α (1) = 0, and ν−1

α (2) = 1; the first f -step occurs at depth 2, the second at depth 0, and
the third at depth 1. Bijections like ν−1

α will be central in the construction of reductions
such as the above. As the inverse of the bijection will be more important below, we choose
to write ν−1

α here instead of να.

I Example 3.6. Consider the following system of recursive equations, with the solution of s
depicted in Figure 2(b):

s = f(f(hω, hω, t), hω, hω)
t = f ′(hω, hω, t)

As in the previous example, we have exactly one maximal reduction starting from s (in this
case one of length ω + 2):

f(f(hω, hω, t), hω, hω)→ f(h(k(t)), hω, hω)→ f(h(f(k(hω), hω, t)), hω, hω)

→ f(h(f(hω, hω, t)), hω, hω)→ f(h2(k(t)), hω, hω)→ · · ·

→ f(hn(k(t)), hω, hω) → · · · f(hω, hω, hω) → h(k(hω)) → hω .

RTA’12
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Like the reduction from the previous example, the above reduction cannot be compressed, as
each contracted redex is created in the step immediately preceding it.

As before, we have with regard to the above example that a bijection ν−1
α exists from an

ordinal α (in this case ω + 1) to the depths of the α f -steps that occur along the reduction:
ν−1
α (i) = i+ 1 for all i < ω and ν−1

α (ω) = 0.

Initial Term Construction. Following the above examples, our incompressible reductions
will be defined by specifying initial terms and showing that each of these initial terms allows
for exactly one maximal reduction (which cannot be compressed).

To define the initial terms, we first introduce a function ρ : T er(Σ, V ) → T er(Σ, V )
which maps ‘unprimed’ terms to ‘primed’ ones:

ρ(f(s1, s2, s3)) = f ′(ρ(s1), s2, s3)

ρ(h(s)) =
{
h′(ρ(s)) if s 6= hω

hω if s = hω

for all s1, s2, s3, s ∈ T er(Σ, V ).
The rewrite rules for k ‘cancel out’ ρ:

I Lemma 3.7. Let t ∈ T er(Σ, V ). It holds that k(ρ(t))�≤ω t. Moreover, if t|1n = hω for
some n ∈ N, then k(ρ(t))�≤n t.

Proof. By definition of ρ, we have that exactly one maximal strongly convergent reduc-
tion can be defined starting from ρ(t) and employing only k-rules. Also by definition
of ρ, the reduction is finite in case t|1n = hω for some n ∈ N. That the final term of
the reduction is t follows by structural induction over the positions of t, observing that
k(ρ(f(s1, s2, s3)))→ f(k(ρ(s1)), s2, s3) and that, moreover, k(ρ(h(s)))→ h(k(ρ(s))) in case
s 6= hω, and k(ρ(h(s)))→ hω in case s = hω. J

We can now define the initial terms of our incompressible reductions, where it is strongly
suggested that the reader satisfies him- or herself of the fact that the initial terms from
Examples 3.5 and 3.6 can be constructed by employing this definition.

I Definition 3.8. Let α be a countable ordinal and να : D → α a bijection with D ⊆ N.
The term tνα is defined by τνα(0, 0, α) where τνα : N× (α+ 1)2 → T er(Σ, V ) is such that:

τνα(d, δ, γ) =


f(τνα(d+ 1, δ, να(d)),

hω, ρ ◦ τνα(d+ 1, να(d) + 1, γ))
if d ∈ D and να(d) ∈ [δ, γ)

h(τνα(d+ 1, δ, γ)) otherwise

With regard to the f -steps from the reductions we will be constructing, ν−1
α indicates

the depth at which each of these steps occurs. The first parameter of τνα specifies the depth
of the subterm of tνα we are currently constructing; the second and third parameter indicate
the range of f -steps that will occur within this subterm.

The first clause of τνα defines a subterm at depth d with an f at the root in case an
f -step should occur at depth d and is within the current range (i.e. να(d) ∈ [δ, γ)). Moreover,
the range is split over the two occurrences of τνα : All earlier f -steps at greater depths occur
in the first argument of f and all later f -steps at greater depths occur in the third argument.
Note that the second argument of f is always hω and, hence, f is not the root of a redex
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unless the first argument is also equal to hω. Moreover, note that no redexes occur in the
third argument of f due to the occurrence of ρ.

The second clause of τνα defines a subterm at depth d with h at the root in case no f -step
from within the current (possibly empty) range occurs at d.

Every subterm τνα(d, δ, γ), in particular tνα = τνα(0, 0, α), satisfies the following property.

I Lemma 3.9. Suppose τνα(d, δ, γ) is such that for all d′ ≥ d it holds that either d′ 6∈ D or
να(d′) 6∈ [δ, γ), then τνα(d, δ, γ) = hω.

Proof. By induction on d′ ≥ d, where we have for every d′ ≥ d that the second clause from
the definition of τνα applies. J

We also have:

I Lemma 3.10. For every τνα(0, δ, γ) with να(d) ∈ [δ, γ) for some d ∈ D there exists an
n ∈ N such that τνα(0, δ, γ)|1n = f(hω, hω, t) for some term t.

Proof. Suppose not, then either τνα(0, δ, γ) = hω or eventually always the first clause from the
definition of τνα applies. In the first case, no d exists such that να(d) ∈ [δ, γ), contradiction.
In the second case, there exists an infinite chain of depths d1 < d2 < . . . < dn < . . . with
[δ, να(d1)) ) [δ, να(d2)) ) . . . ) [δ, να(dn)) ) . . . Hence, να(d1) > να(d2) > . . . > να(dn) >
. . . However, this is an infinite descending chain of ordinals, which cannot exist, again a
contradiction. J

Incompressible Reductions. Having introduced all necessary ingredients, we can now prove
the central theorem of this section.

I Theorem 3.11. For every να, the term tνα has an unique maximal strongly convergent
reduction starting from it which is incompressible and of length at least length α.

Proof. We prove by transfinite induction that tνα = τνα(0, 0, α) reduces to τνα(0, κ, α) with
κ ≤ α in at least κ rewrite steps. In case κ = 0, the result is immediate.

In case κ = λ+ 1, we have by the induction hypothesis that tνα reduces to τνα(0, λ, α) in
at least λ steps. Hence, it suffices to show that τνα(0, λ, α) reduces to τνα(0, κ, α) in at least
one step. As λ < α, we have να(d) ∈ [λ, α) for some d ∈ D and, hence, by Lemma 3.10, a
redex occurs at a position 1n for some n ∈ N. In fact, by definition of τνα , n = ν−1

α (λ). There
are now two cases to consider depending on the value of ν−1

α (κ): We either have ν−1
α (κ) < n

or ν−1
α (κ) > n (equality is impossible, as να is a bijection). We consider each of these cases

in turn.
In case ν−1

α (κ) < n, the redex at position 1n is defined by τνα(n, λ, κ). Hence, since
κ = λ+ 1, it follows by definition of τνα and Lemma 3.9 that τνα(n, λ, κ) = f(hω, hω, hω).
We have:

f(hω, hω, hω)→ h(k(hω))→ hω .

Thus, τνα(n, λ, κ) reduces to τνα(n, κ, κ) = hω in two steps and the result follows by
observing that τνα(0, λ, α) and τνα(0, κ, α) are identical except for the subterm at 1n.
In case ν−1

α (κ) > n, the redex at position 1n is defined by τνα(n, λ, ι) for some ι > κ.
Hence, the subterm at position 1n is of the form f(hω, hω, ρ ◦ τνα(n+ 1, κ, ι)). We have

f(hω, hω, ρ ◦ τνα(n+ 1, κ, ι)→ h(k(ρ ◦ τνα(n+ 1, κ, ι)))

and by Lemma 3.7, this further reduces to h(τνα(n+ 1, κ, ι)) = τνα(n, κ, ι). By these facts
and the observation that τνα(0, λ, α) and τνα(0, κ, α) are identical except for the subterm
at position 1n, the result follows.
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In case κ is a limit ordinal, observe that whenever λ approaches κ from below, we have
that the redexes occur at increasingly greater depths. In case of the f -redexes, this follows
as the position at which the λth f -redex occurs is equal to 1ν−1

α (λ) and as να is a bijection.
In case of the k-redexes, we have that only finitely many of these redexes are contracted
after each f -step. Moreover, all these redexes occur at depths greater than ν−1

α (λ). Hence,
as the redexes occur at increasingly greater depths, it follows by the induction hypothesis
that we have a strongly convergent reduction which passes through each τνα(0, λ, α) with
λ < κ. As τνα(0, λ, α) and τνα(0, κ, α) are identical except for some subterm at a position
1n, where n eventually increases as λ increases (as να is a bijection), τνα(0, κ, α) is the final
term of the strongly convergent reduction, concluding this case.

Our theorem follows once we observe that each redex contracted in the constructed
reduction (of length at least α) is created in the step immediately preceding it. J

We now immediately have:

I Corollary 3.12. For every countable ordinal α, there exists a strongly convergent reduction
of length at least α that is incompressible.

In fact, as each prefix of each of the above reductions is also incompressible, we obtain
the following by the same reasoning regarding redex creation:

I Corollary 3.13. For every countable ordinal α, there exists a strongly convergent reduction
of length precisely α that is incompressible.

4 Standardisation

Having established that compression does not generalise to systems with non-left-linear
rules, we will next reinterpret compression in left-linear systems as a degenerate case of
standardisation. To be able to do this, we first need to define standard reductions.

Starting from finite rewriting, we could define a standard reduction as one that contracts
redexes in leftmost-outermost order [14, Section 8.5], where a position p1 is said to occur to
the left of a position p2 if p1 = q · n1 · p′1 and p2 = q · n2 · p′2 with n1 < n2 for some q (note
that p1 ‖ p2). However, this notion of standardisation is ill-suited to our purposes, as infinite
terms exist that do not have a leftmost redex.

I Example 4.1. Consider the term which is the unique solution of the equation s = f(s, a)
and suppose we have at our disposal the rewrite rule a → b. The term s does not have a
leftmost-outermost redex: For each n ∈ N, an outermost redex occurs at position 1n · 2.
However, no redex is leftmost, as also for each n ∈ N the redex at position 1n+1 · 2 occurs to
the left of the redex at position 1n · 2.

Dropping the requirement that the order in standard reductions should be leftmost, we can
alternatively consider parallel standard reductions [14, Definition 8.5.6], which allow for more
freedom with regard to redexes that occur at parallel positions. The definition is as follows,
where we make explicit the case distinction that implicitly occurs in [14, Definition 8.5.6]:

I Definition 4.2. Let t0 � tα with (pβ , lβ → rβ)β<α the sequence of rewrite steps of t0 � tα.
The reduction t0 � tα is parallel standard iff for every β < α either:

pβ ‖ pκ or pβ ≤ pκ for all β < κ < α, or
pβ = pκ · p′β with p′β ∈ {q ∈ Pos(lκ) | root(lκ|q) ∈ Σ} and κ = min{γ ∈ (β, α) | pβ > pγ}.
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Hence, either (a) every step after the βth step should occur parallel to or below pβ , or
(b) the position pβ should occur either in the redex pattern of the first redex that occurs at
a position pκ above pβ (i.e. pβ = pκ · q with q a non-variable position of lκ). Thus, in the
second case, contracting the redex in the βth step helps to create the redex pattern of the
redex contracted in the κth step.

As in the finite case, parallel standard reductions are not necessarily unique: Given
the rule a → h(a), we have that both f(a, a) → f(h(a), a) → f(h(a), h(a)) and f(a, a) →
f(a, h(a))→ f(h(a), h(a)) are parallel standard reductions from f(a, a) to f(h(a), h(a)). We
will further discuss the issue of uniqueness in Section 4.2.
I Remark. Compressed reductions do not need to be parallel standard: Consider the rules
a → h(a) and f(x) → g(x). The reduction f(a) → f(h(a)) → g(h(a)) is compressed, as it
has length ≤ ω. However, it is not parallel standard, as the a-redex that is being contracted
occurs below the contracted f -redex, while it is not part of the redex pattern of the f -redex.

Although Definition 4.2 alleviates the problem with leftmost redexes as exhibited in
Example 4.1, it does allow for standard reductions of length greater than ω.

I Example 4.3. Consider the term f(a, a) and the rewrite rule a→ h(a) from above. We
have the following reduction of length ω + ω:

f(a, a)→ f(h(a), a)→ · · · → f(hn(a), a)→ f(hn+1(a), a)→ · · · f(hω, a)
→ f(hω, h(a))→ · · · → f(hω, hn(a))→ f(hω, hn+1(a))→ · · · f(hω, hω) .

The reduction is parallel standard, as the first argument of f is parallel to its second argument.

The situation in the above example can be mitigated by strengthening Definition 4.2. One
possibility with regard to the first clause of the definition is to not only consider pβ ‖ pκ and
pβ ≤ pκ, but additionally |pβ | ≤ |pκ|, which when combined reduces to simply |pβ | ≤ |pκ|.
With this restriction the reduction from the above example is no longer valid: contraction of
a-redexes in the second argument is postponed even though we are contracting redexes at
greater depths in the first argument.

We prefer not to introduce the above strengthening as part of the definition of parallel
standard reductions as we wish to stay as close as possible to the definition from finite
rewriting. Our standardisation procedure does, however, implicitly use the strengthening.

4.1 Parallel Standardisation
To show that reductions in left-linear systems can be transformed into parallel standard form,
we first introduce a variant of parallel standard reduction which is limited to a certain depth.

I Definition 4.4. Let t0 � tα with (pβ , lβ → rβ)β<α the sequence of rewrite steps of
t0 � tα. The reduction t0 � tα is parallel standard up to depth d ∈ N iff for every β < λ

with λ = max{γ | |pγ | < d} either:
|pβ | ≤ |pκ| for all β < κ ≤ λ, or
pβ = pκ · p′β with p′β ∈ {q ∈ Pos(lκ) | root(lκ|q) ∈ Σ} and κ = min{γ ∈ (β, λ] | pβ > pγ}.

Thus, a reduction is parallel standard up to depth d if (a) the reduction is parallel
standard up to and including the last step in t0 � tα contracting a redex at depth less than d
and (b) it incorporates the depth requirement on parallel redexes as mentioned immediately
below Example 4.3.

Our standardisation procedure works on a depth-by-depth basis and per depth follows
the inversion procedure from [14, Section 8.5.3]. Effectively, this means that per depth,
standardisation will be achieved by permuting redexes that are not parallel standard.
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Permutation. Write s →‖ t for a reduction contracting (an infinite number of) parallel
redexes; such a reduction can always be transformed into a strongly convergent reduction,
e.g. by contracting the parallel redexes in order of least depth. We have the following lemma,
assuming left-linearity.

I Lemma 4.5 (Step Permutation). Let d ∈ N. If s→‖ t→ s′ is such that all steps in s→‖ t
occur at depth > d and such that t→ s′ occurs at a position p with |p| ≥ d, then there exists
a reduction s →∗ t′ →‖ s′ which is parallel standard up to depth d + 1 such that all steps
occur at depth ≥ d and such that the final step of s→∗ t′ occurs at position p.

Proof. As left-hand sides of rewrite rules are finite, only finitely many steps from s →‖ t
are required to create the redex at position p contracted in t→ s′ and to guarantee parallel
standardness; the required steps are those at positions q such that either q ≤ p or q = p · q′
with q′( 6= ε) occurring in the redex pattern of the redex contracted in t→ s′. Define s→∗ t′′
by first contracting all the required redexes in order of least depth and next contracting the
redex at position p, which exists by contraction of the required redexes and left-linearity.

Project the remaining redexes from s →‖ t over s →∗ t′′. By left-linearity and since
the original set of redexes is parallel, this projection yields a set of redexes all of which are
parallel and occur at depth > d, possibly, with exception of a unique redex occurring at
position p with |p| = d (in which case t→ s′ is collapsing). In this latter case define t′ to be
the result of contracting the parallel redex at position p in t′′, otherwise define t′ to be t′′.
Contracting the remaining parallel redexes yields s′, as a projection argument similar to the
Strip Lemma for orthogonal iTRSs [8, 7] shows.

It is easily seen that all steps in s→∗ t′ →‖ s′ occur at depth ≥ d and that the final step
of s→∗ t′ occurs at position p (and depth d in case |p| = d). Moreover, by construction it
also immediately follows that the reduction is parallel standard up to depth d+ 1. J

Write s→∗‖ t for a finite sequence of parallel steps, we can now use the previous result to
permute steps in finite reductions, again assuming left-linearity.

I Lemma 4.6 (Reduction Permutation). Let n ≥ 1 and d ∈ N. If s0 →∗ sn is such that all
steps in s0 →∗ sn−1 occur at depth > d and such that sn−1 → sn contracts a redex at a
position p with |p| = d, then there exists a reduction s0 →∗ t→∗‖ sn which is parallel standard
up to depth d+ 1 such that all steps occur at depth ≥ d and such that the last step of s0 →∗ t
is the last step that occurs at position p and depth d.

Proof. The proof is by induction on the number of steps in s0 →∗ sn, where in addition we
show that the second clause of Definition 4.4 applies to every step at depth > d in s0 →∗ t.
In case n = 1, the reduction consists of a single step and the result is immediate.

In case n > 1, write s0 → s1 →∗ sn. By the induction hypothesis there exists a reduction
s1 →∗ t′ →∗‖ sn which is parallel standard up to d + 1 and which satisfies the required
properties. We construct s0 →∗ t by permuting a set of parallel redexes such that at any
point during the permutation we have a reduction of the form s0 →∗ t1 →‖ t2 →∗ t′. Initially,
define s0 →∗ t1 to be empty, t1 →‖ t2 equal to s0 → s1, and t2 →∗ t′ equal to s1 →∗ t′. For
each permutation step, write t2 →∗ t′ as t2 → t′2 →∗ t′ and apply Lemma 4.5 to t1 →‖ t2 and
t2 → t′2 to obtain t1 →∗ t′1 →‖ t′2. In the following permutation step assume that s0 →∗ t1 is
equal to s0 →∗ t′1, that t1 →‖ t2 is equal to t′1 →‖ t′2, and that t2 →∗ t′ is equal to t′2 →∗ t′.
Continue until t2 →∗ t′ is empty and then define t to be t1 and t→∗‖ sn to be t1 →‖ t′ →∗‖ sn.

By the permutation procedure and Lemma 4.5, we have that all steps in s0 →∗ t→∗‖ sn
occur at depth ≥ d and that the last step of s0 →∗ t is the last step that occurs at position
p and depth d. Hence, this leaves to show that s0 →∗ t is parallel standard up to depth d+ 1
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such that the second clause of Definition 4.4 applies to any step at depth > d: Since all
steps occur at depth ≥ d, the first clause of Definition 4.4 immediately applies to any step at
depth d. For any other step it follows by the construction in the proof of Lemma 4.5 and the
permutation procedure that any such step either (a) occurs in the redex pattern of a step
following it or (b) occurs above it. In the first case, the second clause holds immediately; in
the second case, observe that there must be some later step in whose redex pattern the step
under consideration occurs (thus implying the second clause), otherwise, tracing usage of
redex patterns in contracted redexes, it follows that the second clause does not apply to some
of the reduction steps at depth > d in s1 →∗ t′, contradicting the induction hypothesis. J

Needed Rewrite Steps. To work on a depth by depth basis in our standardisation theorem,
we require a way to establish which redexes are needed for the creation of a redex at a certain
depth. To this end we extend from finite rewriting [4] the notion of origins (roughly the
inverse of descendants) and we define the related notion of needed steps.

I Definition 4.7. Let s→ t be adorned with (p, l→ r). If q ∈ Pos(t), then the set of origins
of q across s→ t, denoted (s→ t)0q, is the set of positions of s defined as follows:
{q} if q ‖ p or q < p,
{p · q′ | root(l|q′) ∈ Σ} if q = p · p′ with root(r|p′) ∈ Σ, and
{p · q′ · p′′ | l|q′ = r|p′} ∪ {p · q′ | l|q′ ∈ Σ and r|ε ∈ V } if q = p · p′ · p′′ with r|p′ ∈ V .

If Q is a finite set of positions, then (s → t)0Q =
⋃
q∈Q(s → t)0q; if t0 →∗ tn is a finite

reduction, then (t0 →∗ tn)0Q = (t0 →∗ tn−1)0((tn−1 → tn)0Q). Moreover, if t0 � tα, then
(t0 � tα)0Q = (t0 � tγ)0((tγ →∗ tβ)0Q) with γ the largest limit ordinal smaller than or
equal to β (and γ = 0 if no such ordinal exists) and β such that each step in tβ � tα occurs
at a position p with |p| > |q| for all q ∈ Q.

Remark that the set of origins of a finite set Q is finite, as left-hand sides of rewrite rules
are finite. Moreover, if Q is prefix-closed (i.e. p < q ∈ Q implies p ∈ Q), then the set of
origins is also prefix-closed.

I Example 4.8. Consider the reduction rules f(x)→ h(x, x) and g(x)→ x. We have

(f(g(a))→ h(g(a), g(a))→ h(a, g(a)))0{ε, 1, 2, 21}
= (f(g(a)) → h(g(a), g(a)))0{ε, 1, 11, 2, 21} = {ε, 1, 11} .

We now define needed steps.

I Definition 4.9. Let t0 � tα and let Q be a finite, prefix-closed subset of positions of tα.
A step (pβ , lβ → rβ) is needed for Q iff pβ ∈ (tβ � tα)0Q.

Observe by strong convergence and the definition of origins that only finitely many redexes
are needed for finite, prefix-closed subsets of positions of tα. In case of Example 4.8 both the
first and second step are needed for {ε, 1}; only the first step is needed for {ε} and {ε, 2, 21}.

Standardisation. Employing neededness, we can now prove our standardisation theorem for
left-linear iTRSs; the argument derives from the compression argument in [10]. It is, however,
necessarily more complicated due to added complexity of standardisation over compression.

I Theorem 4.10. Let s� t in a left-linear iTRS. There exists a parallel standard reduction
of length at most ω from s to t.
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Proof. We prove by induction over the depth d ∈ N that there exists a reduction s→∗ sd � t

which is parallel standard up to depth d and such that all steps in sd � t occur at depth
≥ d. In case d = 0, define s0 = s. The result is immediate in this case.

In case d > 0, it follows by the induction hypothesis that there exists a reduction
s→∗ sd−1 � t which is parallel standard up to depth d− 1 such that all steps in sd−1 � t

occur at depth ≥ d− 1. There are now two cases to consider, either no redex in the reduction
sd−1 � t occurs at depth d or there are such redexes. In the first case, s →∗ sd−1 is also
parallel standard up to depth d and it suffices to define sd = sd−1. In the remainder of the
proof we consider the second case.

Consider the first redex in sd−1 � t which occurs at depth d and suppose that the step in
which the redex is contracted is s′ → t′. Let Q be the smallest prefix-closed set of positions
in s′ which includes the positions in the redex pattern of the redex contracted in s′ → t′.
By definition of neededness, finitely many steps from sd−1 � s′ are needed for Q, all of
which occur at depth > d by definition of sd−1 � t. Moreover, by definition of origins,
these needed steps (in their original order) together with the redex contracted in s′ → t′

form a finite reduction from sd−1 to some term t′′. By a projection argument, similar to
the Strip Lemma for orthogonal iTRSs [8, 7], it follows that sd−1 →∗ t′′ � t, where the
steps at depth d are identical to those of sd−1 � t. Observe now that Lemma 4.6 can be
applied to sd−1 →∗ t′′, as all steps needed for Q occur at depth > d and as s′ → t′ occurs
at depth d. Let sd−1 →∗ s′d−1 � t′′ be the result of applying Lemma 4.6. By definition
of sd−1 →∗ s′d−1 � t′′ and the observation that the second clause of Definition 4.4 applies
to all steps in sd−1 →∗ s′d−1 at depth > d (see the proof of Lemma 4.6), it follows that
s→∗ sd−1 →∗ s′d−1 is parallel standard up to depth d+ 1 and that the number of redexes
at depth d in s′d−1 � t′′ � t is equal to the number of redexes at depth d in t′ � t (i.e.
one less than the number of redexes at depth d in s′ � t). Hence, we can now repeat the
argument with s′d−1 � t until no redexes are left at depth d, at which point we have obtained
a reduction s→∗ sd � t which is parallel standard up to depth d+ 1.

As the redexes considered above occur at increasingly greater depths, we have that the
constructed reduction is strongly convergent. Moreover, the reduction is of length at most ω,
as s→∗ sd is finite for each d ∈ N. Finally, the reduction is parallel standard, as it is parallel
standard up to every depth d ∈ N. J

As the above proof applies to arbitrary reductions, the following is now immediate.

I Corollary 4.11. There exists a standardisation procedure which transforms every reduction
of every left-linear iTRS into a parallel standard reduction of length at most ω.

Hence, standardisation can be used to obtain a compressed reduction. Turning this
around and observing that the proof of the compression theorem is also based on permutation
of redexes [8, 7], we can also see the compression theorem as a degenerate instance of a
standardisation procedure. It is degenerate, as compression is less strict with respect to the
order in which redexes are contracted. As such, we have arrived at our reinterpretation of
compression.

4.2 Approximating Leftmost-Outermost Standardisation
Although it is not always possible to obtain a reduction which is standard in the sense of the
leftmost-outermost order (see Example 4.1), we would still like to approximate this order to
ensure that there is a unique standard reduction as in the finite case (see Theorem 8.5.51
and Lemma 8.5.52 in [14]). The natural idea in the context of infinitary rewriting, as also
mentioned in [1], is to take into account depth next to the left-to-right order.
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I Definition 4.12. Let t0 � tα with (pβ , lβ → rβ)β<α the sequence of rewrite steps of
t0 � tα. The reduction t0 � tα is depth leftmost standard iff for all β < λ < α:

if pι < pβ for some β < ι ≤ λ, then pβ = pκ · p′β with p′β ∈ {q ∈ Pos(lκ) | root(lκ|q) ∈ Σ}
and κ = min{γ ∈ (β, ι] | pβ > pγ}, and otherwise
either |pβ | < |pλ| or |pβ | = |pλ| and pβ occurs to the left of or is equal to pλ.

Roughly, the above states that the position pβ should either (a) occur in the redex pattern
of the first redex that occurs at a position above it or (b) occur above or to the left of any
redex that is contracted later.

I Example 4.13. Consider the term f(a, a) and the rewrite rule a→ h(a) from Example 4.3.
The following reduction is depth standard:

f(a, a)→ f(h(a), a)→ f(h(a), h(a))→ · · · → f(hn(a), hn(a))
→ f(hn+1(a), hn(a)) → f(hn+1(a), hn+1(a)) → · · · f(hω, hω) .

Note that the second clause of Definition 4.12 induces a total order on positions: We
first order by depth and next we order from left to right. Hence, as the definition considers
every initial t0 � tλ, it follows for each s� t that there exists at most one depth leftmost
standard reduction from s to t. Moreover, we have the following.

I Lemma 4.14. Every depth leftmost standard reduction is parallel standard.

Proof. Immediate by transfinite induction over the steps from the depth leftmost standard
reduction, where the first clause of Definition 4.12 implies the second clause of Definition 4.2
and where the second clause of Definition 4.12 implies the first clause of Definition 4.2. J

Finally, we have:

I Theorem 4.15. Let s � t in a left-linear iTRS. There exists a depth leftmost standard
reduction of length at most ω from s to t.

Proof (Sketch). By Theorem 4.10, there exists a parallel standard reduction from s to t.
This parallel standard reduction is not necessarily depth leftmost standard, as certain redexes
may violate the second clause of Definition 4.12. However, all these redexes will be parallel
to each other and, hence, can be permuted without reservation (as long as we ensure that
the finitely many redexes needed to create each redex are also permuted). The resulting
reduction will be strongly convergent, as the second clause of Definition 4.12 only requires us
to permute redexes that occur at lesser or equal depth than the redexes preceding them. J

5 Conclusion and Proposed Research

As shown, the obvious generalisation of the compression property — replacing ω by an
arbitrary countable ordinal — does in principle not apply to iTRSs with non-left-linear
rules. This result might be considered rather unexpected, as the standard counterexample to
compression does satisfy such a property, albeit only for finite starting terms [5], and as does
λβη-calculus, the standard counterexample in the higher-order case [12].

Given the above observation and noting that infinitary rewriting is susceptible to a similar
computational treatment as the real numbers in computable analysis [10], it seems we can
no longer maintain a computational view of the compression property. Hence, we provide a
reinterpretation, viz. that compression is a degenerate case of standardisation.
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Given that compression and standardisation are closely related and that both have strong
ties with notions related to the equivalence of reductions [8, 14], a further study of reduction
equivalence in infinitary rewriting seems warranted for. Moreover, a pertinent question is
whether our standardisation results can be used to simplify existing proofs in infinitary
rewriting, e.g., the proof of confluence modulo hypercollapsing subterms [8, 7]. Finally, it
would be interesting to investigate whether both the counterexamples to α-compression
and the standardisation theorem extend to infinitary higher-order systems [11], where any
counterexample to α-compression then employs a non-fully-extended rule instead of a non-
left-linear rule.
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