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Abstract
In this paper we deal with verification of safety properties of term-rewriting systems. The veri-
fication problem is translated to a purely logical problem of finding a finite countermodel for a
first-order formula, which is further resolved by a generic finite model finding procedure. A finite
countermodel produced during successful verification provides with a concise description of the
system invariant sufficient to demonstrate a specific safety property.

We show the relative completeness of this approach with respect to the tree automata com-
pletion technique. On a set of examples taken from the literature we demonstrate the efficiency
of finite model finding approach as well as its explanatory power.
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1 Introduction

The development of general automated methods for the verification of infinite-state and
parameterized systems poses a major challenge. In general, such problems are undecidable,
so one can not hope for the ultimate solution and the development should focus on the
restricted classes of systems and properties.

In this paper we deal with a very general method for verification of safety properties of
infinite-state systems which is based on a simple idea. If an evolution of a computational
system is faithfully modelled by a derivation in a classical first-order logic then safety
verification (non-reachability of unsafe states) can be reduced to the disproving of a first-
order formula. The latter task can be (partially, at least) tackled by generic automated
procedures searching for finite countermodels.

Such an approach to verification was originated in the research on formal verification of
security protocols [28, 27, 13] and later has been extended to the wide classes of infinite-state
and parameterised verification tasks. Completeness of the approach for particular classes of
systems (lossy channel systems) and relative completeness with respect to general method of
regular model checking has been established in [20] and [21] respectively.

Here we continue investigation of the boundaries of applicability of finite countermodels
based method and are looking into verification of safety properties of term-rewriting systems
(TRS). Term-rewriting systems provide with a general formalism for specification and
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226 Finite models vs tree automata in safety verification

verification of infinite-state systems. Several general automated methods for verification of
safety properties of term-rewriting systems has been proposed and implemented [12, 9, 10]
with the methods based on tree automata completion [12, 9] playing the major role.

We show that verification via finite countermodels (FCM) approach provides with a viable
alternative to the methods based on the tree automata completion. We show the relative
completeness of FCM with respect to the tree automata completion methods (TAC).

We illustrate it on a simple example taken from [11]. Consider the TRS R = {f(x)→
f(s(s(x)))} and assume that we want to prove that f(a) 6→∗ f(s(a)). In [11] a simple finite-
state abstraction of the set of reachable terms expressed by the equation E = {s(s(x)) = x}
is explicitly added to the TRS and simple analysis of rewriting modulo E is proposed. In
FCM approach, the same problem is translated into disproving of the first-order formula
ϕR := (∀xR(f(x), f(s(s(x)))) → R(f(a), f(s(a)). The intended meaning of the binary
predicate R here is to encode the reachability relation for the TRS. The finite countermodel
of ϕR, having the size 2 (cardinality of the domain) and essentially representing the above
abstraction, i.e. satisfying s(s(x) = x, can be found by an automated model finder, e.g.
Mace4 in a fraction of a second.

On a series examples taken from the literature we demonstrate practical efficiency, the
high degree of automation and the explanatory power of FCM approach using off-the shelf
and state of the art implementation of a finite model finding procedure Mace4 (W. McCune).

The preliminary version of this paper has appeared as the report [22].

2 Preliminaries

In this paper we use standard terminology for first-order predicate logic and term-rewriting
systems, and the for detailed accounts of these areas the reader is referred to [8] and to [2],
respectively. We remind here only the concepts which we are going to use in the paper.

2.1 First-order Logic
The first-order vocabulary is defined as a finite set Σ = F ∪P where F and P are the sets of
functional and predicate symbols, respectively. Each symbol in Σ has an associated arity,
and we have F = ∪i≥0Fi and P = ∪i≥1Pi, where Fi and Pi consist of symbols of arity i.
The elements of F0 are also called constants.

First-order model over vocabulary Σ, or just a model is a pairM = 〈D, [[Σ]]D〉 where D
is a set called domain ofM and [[ΣD]] denotes the interpretations of all symbols from Σ in
D. For a domain D and a function symbol f of arity n ≥ 1 an interpretation of f in D is a
function [[f ]]D : Dn → D. For a constant c its interpretation [[c]]D is an element of D. For a
domain D and a predicate symbol P of arity n an interpretation of P in D is a relation of
arity n on D, that is [[P ]]D ⊆ Dn. The modelM = 〈D, [[Σ]]D〉 is called finite if D is a finite
set.

We assume that the reader is familiar with the standard definitions of first-order for-
mula, first-order sentence, satisfactionM |= ϕ of a formula ϕ in a modelM, deducibility
(derivability) Φ ` ϕ of a formula ϕ from a set of formulae Φ, first-order theory, equational
theory.

2.2 Term-rewriting systems and tree automata
To define a term-rewriting system we fix a finite set of functional symbols F , each associated
with an arity and a set of variables X . T (F ,X ) and T (F) denote the set of terms and ground
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terms, respectively, defined in the standard way using F and X . The set of variables of a term
t is denoted by V ar(t). A substitution is a function σ : X → T (F ,X ), which can be extended
homomorphically in a unique way (and keeping the name) to σ : T (F ,X ) → T (F ,X ).
Application of a substitution σ to a term t we denote by tσ.

A term-rewriting system R is a set of rewrite rules l→ r where l, r ∈ T (F ,X ), l 6∈ X and
V ar(r) ⊆ V ar(l). The notion of a subterm is defined in a standard way. One-step rewriting
relation ⇒R⊆ T (F ,X ) × T (F ,X ) is defined as follows: t1 ⇒R t2 holds iff t2 is obtained
from t1 by replacement of a subterm lσ of t1 with a subterm rσ for some rewriting rule
(l→ r) in R and some substitution σ. The reflexive and transitive closure ⇒R is denoted by
⇒∗R.

Given a set E of F-equations, TE denotes a set of equivalent classes of ground F-terms
modulo the equations E. E-equivalence class of a term t is denoted by [t]E . Given a term
rewriting systemR and an equational theory given by a set of equations E we denote by⇒R,E

one step rewriting relation modulo E, that is t⇒R,E t′ iff ∃τ ∈ [t]E ∃τ ′ ∈ [t′]E τ ⇒R τ ′.
Let Q be a finite set of symbols called states which we formally treat as functional symbols

of arity 0 (constants). We assume Q∩F = ∅. Elements of T (F ∪Q) are called configurations.

I Definition 2.1. (Transitions) A transition is a rewrite rule c→ q, where c is a configuration,
i.e. c ∈ T (F ∪ Q), and q ∈ Q. A normalized transition is a transition c → q where
c = f(q1, . . . , qn), f is a functional symbol of arity n from F , q, q1, . . . qn ∈ Q. An ε-transition
c→ q is such that c ∈ Q.

I Definition 2.2. (Tree automata) A (bottom-up, non-deterministic, finite) tree automaton
is a quadruple A = 〈F , Q,Qf ,∆〉, where Qf ⊆ Q is a set of final (accepting) states and ∆
is a set of normalized transitions and of ε-transitions. A tree automaton is deterministic if
there are no two transitions in ∆ with the same left-hand side.

Transitions ∆ of A induce the rewriting relation on T (F ∪Q) which is denoted by ⇒∆
or ⇒A.

I Definition 2.3. (Recognized language) The tree language recognized by A in a state q is
L(A, q) = {t ∈ T (F) | t⇒∗A q}. The language recognized by A is L(A) = ∪q∈Qf

L(A, q).

I Example 2.4. (Tree automaton and recognized language) Let F = {f, a, b} and A =
〈F , Q,Qf ,∆〉, where Q = {q1, q2}, Qf = {q1}, and ∆ = {f(q1) → q1, a → q1, b → q2, q2 →
q1}. Then L(A, q1) = T (f, a, b), that is the set of all terms build on {f, a, b}, and L(A, q2) =
{b}.

Deterministic bottom-up tree automata have the same expressive power as non-determinis-
tic bottom-up tree automata, that is they recognize the same classes of term languages. In
what follows we assume that automata are deterministic, unless otherwise specified.

3 Safety via finite countermodels

3.1 Basic verification problem
The main verification problem we consider in this paper is as follows.

I Problem 1.
Given: Tree automata AI and AU , a term-rewriting system R
Question: Does ∀t1 ∈ L(AI) ∀t2 ∈ L(AU ) t1 6⇒∗R t2 hold?

RTA’12



228 Finite models vs tree automata in safety verification

In applications, we assume that the states of a computational system to be verified are
represented by terms, the system evolution (computation) is represented by R; tree automata
AI and AU provide with finitary specifications of the (infinite, in general) sets of allowed
initial states and the sets of unsafe states, presented by L(AI) and L(AU ), respectively.
Under such assumptions, safety of the system is equivalent to the positive answer on the
question of the Problem 1.

3.2 Translation of the basic verification problem

In this subsection we show how to reduce the basic verification problem to the problem
of disproving of a formula from classical first-order predicate logic.
First, we define the translation ΦR of a term-rewriting system R over T (F ,X ) into a set of
first-order formulae in the vocabulary F ∪ {R}, where R is a new binary predicate symbol.
Let ΦR = Φr

R ∪ ΦF , where Φr
R = {R(l, r) | (l→ r) ∈ R} and ΦF is the set of the following

formulae, which are all assumed to be universally closed and where x1, . . . xi, . . . xn, x
′

i are
distinct variables:

1. R(x, x) reflexivity axiom
2. R(x, y) ∧R(y, z)→ R(x, z) transitivity axiom
3. R(xi, x

′

i)→ R(f(x1, . . . , xi, . . . xn), f(x1, . . . , x
′

i, . . . xn)) for every n-ary functional symbol
f from F and every position i: 1 ≤ i ≤ n congruence axioms

Under such a translation first-order derivability faithfully models rewriting in R as the
following proposition shows.

I Proposition 3.1. For ground terms t1, t2 ∈ T (F) if t1 ⇒∗R t2 then ΦR ` R(t1, t2).

Proof. Due to the transitivity of R specified in ΦR it is sufficient to show that if t1 ⇒R t2
then ΦR ` R(t1, t2). Assume t1 ⇒ t2 then t2 is obtained from t1 by the replacement of some
subterm lσ of t1 with a subterm rσ for some (l→ r) ∈ R and some substitution σ. Consider
two sequences of subterms τ0 = lσ, τ1, . . . , τk = t1 and ρ0 = rσ, ρ1, . . . , ρk = t2 with the
property that τi is an immediate subterm of τi+1 within t1 and ρi is an immediate subterm
of ρi+1 within t2, i = 0, . . . , k. Then we show by easy induction on i that ΦR ` R(τi, ρi)
for i = 0, . . . , k. Indeed, for i = 0 we have R(τ0, ρ0) ≡ R(lσ, rσ) is a ground instance of
R(l, r) ∈ Φr

R and therefore ΦR ` R(τ0, ρ0). For the step of induction, assume ΦR ` R(τi, ρi).
Notice that by construction of sequences of τ ’s and ρ’s τi+1 and ρi+1 should have the same
outermost functional symbol f and coincide everywhere apart of subterms τi and ρi. Let
τi+1 = f(. . . , τi, . . .) and ρi+1 = f(. . . , ρi, . . .). Then we have R(τi, ρi)→ R(τi+1, ρi+1) is a
ground instance of one of the formulae in Φr

R. So we have ΦR ` R(τi, ρi) → R(τi+1, ρi+1)
and by inductive assumption ΦR ` R(τi, ρi). It follows ΦR ` R(τi+1, ρi+1). The induction
step is completed. We have ΦR ` R(τk, ρk), which is ΦR ` R(t1, t2)

J

Now we define a first-order translation of a tree automaton.
Let A = 〈F , QI , Qf ,∆〉 be a tree automaton. let ΣA be the following first-order vocabu-

lary:

constants for all elements of Q;
all functional symbols from F ;
a binary predicate symbol R;
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Let ΦA to be the set of first-order formulae in vocabulary ΣA defined as ΦA = Φ∆ ∪ ΦF ,
where Φ∆ = {R(c, q) | (c→ q) ∈ ∆} and ΦF is as defined above.

As the following proposition shows first-order logic derivations from ΦA faithfully simulate
the work of the automaton A

I Proposition 3.2. (Adequacy of automata translation)
If t ∈ LA then ΦA ` ∨q∈Qf

R(t, q)

Proof. The statement of the proposition follows immediately from Definitions 2.2 and 2.3
and Proposition 3.1.

J

Now we are ready to define the translation of the basic verification problem. Assume we
are given an instance P = 〈AI ,R,AU 〉 of Problem 1, with a term-rewriting system R over
T (F ,X ) and tree automata AI = 〈F , QI , QfI

,∆I〉, AU = 〈F , QU , QfU
,∆U 〉. Assume also

(without loss of generality) that sets F , QI and QU are disjoint.
We define translation of P as ΦP = ΦAI

∪ΦAU
∪ΦR. By the above definitions we then also

have ΦP = ΦF∪Φ∆I
∪Φ∆U

∪Φr
R. We further define the translation of (negation of) correctness

condition from P as a formula ψP = ∃x∃y ∨qi∈QI ,qu∈QU
R(x, qi) ∧R(x, y) ∧R(y, qu).

The following proposition and corollary serves as a formal underpinning of the proposed
verification method.

I Proposition 3.3. (Correctness of the translation)
Let P be an instance of the basic verification problem as detailed above. Then if P has a

negative answer then ΦP ` ψP

Proof. The statement of the proposition immediately follows from Definitions 2.2 and 2.3
and Propositions 3.1 and 3.2. J

By contraposition we have the following

I Corollary 3.4. If ΦP 6` ψP the instance P has a positive answer and the safety property
holds.

3.3 FCM method
By FCM (finite countermodels) verification method we understand the following. Given
an instance P = 〈AI ,R,AU 〉 of the basic verification problem, translate it into a set of
first-order formulae ΦP and a formula ψP as described above. Then apply a generic finite
model finding procedure to find a countermodel for ΦP → ψP . If a countermodel is found
the safety property is established and the instance P has got a positive answer.

3.4 Relative completeness
In this section we show the relative completeness of FCM with respect to verification methods
based on tree automata completion techniques (TAC). More precisely, we show that if safety
of TRS can be demonstrated by TAC, it can be demonstrated by FCM too.

Given an instance P of basic verification problem (Problem 1) verification by TAC
approach would proceed as follows. Starting from AI and R completion procedure yields an
automaton A∗ wich describes, in general, an overapproximation of the set of terms reachable
in R from L(AI)), that is L(A∗) ⊇ {t | ∃t0 ∈ L(AI) t0 →∗R t}. Further, the check of
whether L(A∗) ∩ L(AU ) = ∅ is performed and, if it holds, the safety is established.

RTA’12



230 Finite models vs tree automata in safety verification

Exact description of the set of all reachable terms in a term-rewriting system by a tree
automaton is not always possible. The main direction in the development of TAC methods
is a development of more efficient and more precise approximations methods.

I Theorem 3.5. Let P = 〈AI ,AU ,R〉 be a basic verification problem and there exists a
tree automaton A∗ = 〈F , Q∗, Q∗f ,∆∗〉 such that L(A∗) ⊇ {t | ∃t0 ∈ L(AI) t0 →∗R t} and
L(A∗) ∩ L(AU ) = ∅. Then there exists a finite modelM such thatM |= ΦP ∧ ¬ψP (i.eM
is a countermodel for ΦP → ψP ).

Proof. Assume the conditions of the theorem hold. Define the domain D of the required
model: D = Q⊥I ×Q⊥∗ ×Q⊥U , where Q⊥I = QI ∪ {⊥}.

Define interpretations of constants [[c]] = 〈aI , a∗, aU 〉, where ax = q if (c, q) ∈ ∆x, or
ax = ⊥ otherwise, x ∈ {I, ∗, U}. For a functional symbol f of arity n ≥ 1 define its
interpretation [[f ]] : Dn → D as [[f ]](〈a1

I , a
1
∗, a

1
U 〉, . . . , 〈an

I , a
n
∗ , a

n
U 〉) = 〈aI , a∗, aU 〉, where for

all x ∈ {I, ∗, U}, either (f(a1
x, a

2
x, . . . a

n
x)→ ax) ∈ ∆x, or ax = ⊥, otherwise.

Once we defined the interpretations of all functional symbols (including constants) any
ground term t gets its interpretation [[t]] ∈ D in a standard way. Then it is an easy consequence
of definitions that [[t]] is a triple of states of automata AI , A∗, AU , respectively, into which
they get working on the input t. More formally, if [[t]] = 〈aI , a∗, aU 〉, then for all x ∈ {I, ∗, U}
either t⇒∗x ax ∈ Qx, or there is no such q ∈ Qx that t⇒∗x q, and then t⇒∗x ax = ⊥.

Define the interpretation [[R]] ⊆ D ×D of R as follows.

[[R]] = {〈[[t1]], [[t2]]〉 | t1, t2 are ground in D, t1 ⇒∗ t2}

where ⇒ denotes ⇒R ∪ ⇒∆I
∪ ⇒∆U

.
Now we are going to show that in a such defined modelM we have ΦP ∧ ¬ψP satisfied.

Recall ΦP = ΦF ∪ Φ∆I
∪ Φ∆U

∪ Φr
R.

We have
M |= ΦF (by definition of rewriting and definition of [R])
M |= Φ∆I

∪ Φ∆U
∪ Φr

R (by definition of [R])

To showM |= ¬ψP assume the opposite i.eM |= ψP that isM |= ∃x∃y ∨qi∈QI ,qu∈QU

R(x, qi) ∧ R(x, y) ∧ R(y, qu). That means there are a, b ∈ D such that (a, [[qi]]) ∈ [[R]],
(a, b) ∈ [[R]], (b, [[qu]]) ∈ [[R]]. Consider the ground terms τ1 and τ2 such that [[τ1]] = a and
[[τ2]] = b. We have τ1 ∈ L(AI), τ1 ⇒∗ τ2, τ2 ∈ L(AU ). It follows that τ2 ∈ L(A∗) ∩ L(AU )
which contradicts to the assumption of the theorem on emptiness of L(A∗) ∩ L(AU ). J

I Note 1. The above model construction serves only the purpose of proof and it is not
efficient in practical use of the method. Instead we assume that the task of model construction
is delegated to a generic finite model building procedure.

3.5 Finite models as invariants
Assume that for a basic verification problem P = 〈AI ,AU ,R〉, a model M such that
M |= ΦP ∧ ¬ψP is found. Then not only the safety is established, the model itself provides
with a finite description of an invariant of a TRS sufficient to prove the safety. Define the
following subsets of a domain D ofM.

I = {[[t]] | t ∈ L(AI)}
U = {[[t]] | t ∈ L(AU )}
Reach = {[[t]] | ∃t0 ∈ L(AI) t0 →∗R t}
I • [[R]] = {y | ∃x ∈ I ∧ (x, y) ∈ [[R]]} (where [[R]] is an interpretation of R inM)
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Then it is easy consequence of definitions of ΦP and ψP that Reach ⊆ I • [[R]] and
I • [[R]] ∩ U = ∅. Thus I • [[R]] is a finite invariant set which subsumes the interpretations
of all reachable terms and at the same time is disjoint with the set of interpretations of all
unsafe terms. For a finite model M both conditions can be verified by a straightforward
induction, providing thereby the translation of FCM verification into an inductive proof of a
safety property.

3.6 Variations on a theme

Theorem 3.5 provides with a lower bound for the verifying power of FCM method applied to a
basic verification problem. In this section we consider practically important variations of the
basic verification problem which allow simplified translations and more efficient verification.

3.6.1 Finitely based sets of terms

In many cases of safety verification tasks for TRS the sets of initial and/or unsafe terms are
given not by tree automata, but rather described as the sets of ground instances of terms
from a given finite set of terms. More precisely, let B be a finite set of terms in a vocabulary
F and g(B) = {τ | ∃t ∈ B ∧ τ = tθ; θ is ground }. It is easy to see that for the finite B g(B)
is a regular set.

Consider the following modification of the basic verification problem.

I Problem 2.
Given: Finite sets of terms BI and BU , a term-rewriting system R
Question: Does ∀t1 ∈ g(BI) ∀t2 ∈ g(BU ) t1 6⇒∗R t2 hold?

Let P = 〈BI ,R, BU 〉 be an instance of the Problem 2.
The translation ΦR of the term rewriting system R is defined in 3.2.
The translation of (negation of) correctness condition from P is defined as ψP =

∃x̄ ∨t1∈g(BI),t2∈g(BU ) R(t1, t2).
Now we have the following analogue of Proposition 3.3

I Proposition 3.6. (Correctness of the translation)
Let P be an instance of the basic verification problem as detailed above. Then if P has a

negative answer then ΦR ` ψP

3.6.2 Outermost rewriting

Another simplification of the translation may come from the restrictions on the rewriting
strategies in TRSs. If rewriting can only be applied at the outer level, i.e. redex can be
only the whole term, not its proper subterm, then the first-order translation of an TRS
can be simplified by using unary reachability predicate R(−) instead of binary R(−,−).
The intended meaning of R(t) is “term t is reachable from some of the initial terms (using
outermost rewriting)”. The translation of a term rewriting system R becomes especially
simple in this case: ΦR = {R(t)→ R(t′) | (t→ t′) ∈ R}.

We omit the obvious further details of translation (e.g. on specification of the sets of
initial and unsafe terms) as well as the statement on its correctness and rather refer the
reader to the Example 6.2.

RTA’12



232 Finite models vs tree automata in safety verification

4 Rewriting modulo theories

Proposed FCM method is very flexible and can be naturally extended to the rewriting
modulo equational theories. We consider here only the case of basic verification problem.
The extensions of other variants (such as Problem 2, or as in subsection 3.6.2) can be dealt
with in a similar way.

I Problem 3.
Given: Tree automata AI and AU , a term-rewriting system R, and a set of equations E
Question: Does ∀t1 ∈ L(AI) ∀t2 ∈ L(AU ) [t1] 6⇒∗R,E [t2] hold?

Using notation introduced in subsection 3.2 we now have

I Proposition 4.1. For ground terms t1, t2 ∈ T (F) if [t1]⇒∗R,E [t2] then ΦR∪E ` R(t1, t2).

Proof. (Hint) The proof follows the proof of Proposition 3.1 using the following straightfor-
ward statement. If for some ground terms t1, t2 ΦR ∪E ` R(t1, t2) then for any t′1 ∈ [t1] and
t′2 ∈ [t2] ΦR ∪ E ` R(t′1, t′2).

J

Based on that we have an equational analogue of Proposition 3.3 supporting applicability
of FCM for proving the safety of TRS modulo equational theories:

I Proposition 4.2. For the instance P of the above verification problem if P has a negative
answer then ΦAI

∪ ΦAU
∪ ΦR ∪ E ` ψP

Example 6.3 illustrates the use of FCM for equational rewriting. Since the outermost
rewriting strategy is assumed in this Example the simplified translation with unary reachability
predicate R is used.

5 Approximation by symmetric closure

In theory the application of FCM method is simple - apply finite model builder to the
first-order encoding of the problem and wait. If there is a finite countermodel it will be
eventually found if a complete model builder is used. In practice, however, it may take a
long time to find a countermodel. To accelerate the search one may use the approximation of
reachability relation ⇒R (⇒R,E) by its symmetric closure ⇔R (⇔R,E). It is obvious that if
the safety holds for the original problem, it may be lost after the symmetric closure is applied.
If however the safety is shown for the problem with the symmetric closure it holds for the
original problem too. To take an account of the symmetric closure it is sufficient to add to the
first-order translation of the basic verification problem just one formula R(x, y)→ R(y, x).
Notice that after such a modification an interpretation of R in any model is an equivalence
relation which is a congruence. It follows that if a countermodel searched in FCM method
exists then there exists a countermodel where R is interpreted by the equality relation. This
observation allows to simplify the translation of such modified problem further. Assuming
that a sound model finder procedure for the first-order logic with equality is used, in the
first-order translation all occurrences of R can be replaced with equality and reflexivity,
transitivity and congruence axioms can be dropped. Example 6.4 demonstrates the use of
such a technique.
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6 Experiments

In this section we present four examples of application of FCM method for safety verification
and compare the results with the results of alternative methods reported in the literature.

In the experiments we used the finite model finder Mace4[24] within the package Prover9-
Mace4, Version 0.5, December 2007. The system configuration used in the experiments:
Microsoft Windows XP Professional, Version 2002, Intel(R) Core(TM)2 Duo CPU, T7100 @
1.8Ghz 1.79Ghz, 1.00 GB of RAM. The time measurements are done by Mace4 itself, upon
completion of the model search it communicates the CPU time used.

6.1 Parity of n2

I Example 6.1.
The following verification task is taken from [12, 10].
Let Pn2 = 〈AI ,R,AU 〉 be an instance of basic verification task. Term rewriting system

R consists of the following rewriting rules

plus(0, x)→ x

plus(s(x), y)→ s(plus(x, y))
times(0, x)→ 0
times(s(x), y)→ plus(y, times(x, y))
square(x)→ times(x, x)
even(0)→ true

even(s(0))→ false

even(s(x))→ odd(x))
odd(0)→ false

odd(s(0))→ true

odd(s(x))→ even(x)
even(square(x))→ odd(square(s(x)))
odd(square(x))→ even(square(s(x)))

The tree automaton AI recognizes the set of initial terms. It has the set of states
QI = {s0, s1, s2}, the set

of the final states QIf
= {s0} and the set of rewriting rules ∆I = {even(s1) →

s0, square(s2)→ s1, 0→ s2} It is easy to see that L(AI) = {even(square(0))}
The tree automaton AU recognizes the set of unsafe terms. It has the set of states

QU = QUf
= {q0} and the set of rewriting rules ∆U = {false→ q0}.

So the question of the verification problem Pn2 is whether false is reachable from
even(square(0)).

Denote by ΦP the first-order translation of Pnn as defined in Section 3.2. The formula
ψP : ∃x∃y(R(x, s0) ∧R(x, y) ∧R(y, q0) expresses the negation of correctness condition.

The finite model finder Mace4 has found a finite countermodel for ΦP → ψP (i.e a finite
model for ΦP ∧ ¬ψP ) in 0.03s. The domain D of the model is a two element set {0, 1}.
Interpretations of constants: [[f ]] = [[q0]] = [[s1]] = [[s2]] = 0; [[s0]] = [[t]] = 1. Interpretations
of functions: [[even]](0) = 1, [[even]](1) = 0; [[odd]](0) = 0, [[odd]](1) = 1; [[s]](0) = 1, [[s]](1)
= 0; [[square]](0) = 0; [[square]](1) = 1; [[plus]](x,y) = (x + y)mod2; [[times]](x,y) = x × y.
Interpretation of reachability relation: [[R]] = {(0, 0), (1, 1)}.

Notice that verification is done here automatically. This can be contrasted with the
verification of the same system by a tree completion algorithm implemented in Timbuk system
[9], where an user interaction was required to add an approximation equation s(s(x)) = x
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manually. In [10] an automated verification of the same system was reported using Horn
Clause approximation technique. The system was specified as a Horn Clause program and
the verification followed by producing a model for the program which contained 53 elements.
The above model produced by Mace4 within FCM approach provides with much more concise
explanation of why the safety holds: interpretation of any ground term (0 or 1) is an invariant
for reachability in TRS, [[even(square(0))]] = 1 and [[f ]] = 0.

6.2 Readers-writers system verification
In this subsection we consider the example of a readers-writers system verification taken
from [6, 11].

I Example 6.2.
In the TRS specifying the system the only outermost rewriting is possible, so for the

translation we use monadic reachability predicate. Furthermore, both the set of initial terms
and the set of unsafe terms are finitely based. The vocabulary consists the constant 0, unary
functional symbol s (for successor) and binary functional symbol state.

The rules are as follows

state(0, 0)→ state(0, s(0))
state(x, 0)→ state(s(x), 0)
state(x, s(y))→ state(x, y)
state(s(x), y)→ state(x, y)

The set of initial terms is I = {state(0, 0)}. The set of unsafe terms U is finitely based
with the base B = {state(s(x), s(y)), state(x, s(s(y)))}. The first-order translation Φ consists
the conjunction of the following formulae

R(state(0, 0))
R(state(0, 0))→ R(state(0, s(0)))
R(state(x, 0))→ R(state(s(x), 0))
R(state(x, s(y)))→ R(state(x, y))
R(state(s(x), y))→ R(state(x, y))

The formula ψ ≡ ∃x∃yR(s(x), s(y)) ∨R(x, s(s(y))) expresses the negation of the correct-
ness condition.

The system can be then successfully verified by an FCM method. The search for the
countermodel for Φ→ ψ took 0.01s and the model found is as follows.

The domain D of the model is a three element set {0, 1, 2}; [[s]](0) = 1, [[s]](1) = 2, [[s]](2)
= 2; [[R]] = {(0, 0), (0, 1), (1, 0), (2, 0)}.

Notice that no additional information is needed for FCM method to automatically verify
the reader-writer system. That may be contrasted with the verification using tree automata
completion approach (Timbuk 3.0 system), reported in [11] where an equational abstraction
rule s(s(x)) = s(s(0)) should be manually added to the TRS for the successful verification.

6.3 Glass replacement puzzle
I Example 6.3.

The following verification example is taken from [17], where it has been formalized
using higher-order rewriting by simply-typed term rewriting systems (STRS) and solved by
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using higher-order Knuth-Bendix completion procedure. We use first-order term rewriting
formalization of the same problem .

Assume a sequence of sake, whisky and beer glasses. The sequence can be modified by
application of the following glass-replacement rules.

A sake glass may be inserted to the left of a beer glass. A sake glass having a beer glass
to its right may be removed.
A sake glass and whisky glass may be added to the left and right, respectively, of
an arbitrary contiguou s subsequence of glasses. The reverse operation may also be
performed.

The verification problem is to show that starting from sake-whisky-whisky-whisky sequence
and applying the replacement rules above one can not reach the sequence sake-whisky-whisky-
beer.

We formalize the problem by the term-rewriting system R consisting the following
rewriting rule

x ∗ (sake ∗ (beer ∗ y))→ x ∗ (beer ∗ y)
x ∗ (beer ∗ y)→ x ∗ (sake ∗ (beer ∗ y))
v ∗ (sake ∗ (x ∗ (whisky ∗ y)))→ v ∗ (x ∗ y)
v ∗ (x ∗ y)→ (v ∗ (sake ∗ (x ∗ (whisky ∗ y)))

where sake, beer, whisky are constants, and ∗ is a binary associative term constructor
(we use it in infix notation). Associativity of ∗ means we consider rewriting modulo equational
theory E = {(x ∗ y) ∗ z = x ∗ (y ∗ z)}.

First-order translation Φ consists the following formulae:

(x ∗ y) ∗ z = x ∗ (y ∗ z)
P (x ∗ (sake ∗ (beer ∗ y)))→ P (x ∗ (beer ∗ y))
P (x ∗ (beer ∗ y))→ P (x ∗ (sake ∗ (beer ∗ y)))
P ((v ∗ (sake ∗ (x ∗ (whisky ∗ y))))→ P (v ∗ (x ∗ y))
P (v ∗ (x ∗ y))→ P (v ∗ (sake ∗ (x ∗ (whisky ∗ y))))

Now, to resolve the puzzle it is sufficient to show Φ ∧ P (sake ∗ (whisky ∗ (whisky ∗
whisky))) 6` P (sake ∗ (whisky ∗ (whisky ∗ beer))). A countermodel of size 2 is found by
finite model finder MACE4 in 0.01sec.

6.4 Reverse function
In this section we consider a verification problem from [12]. The problem here is to show
that list reverse function satisfies the following property: if in a list all symbols ‘a’ are before
all symbols ‘b’ then after reversing there are no ‘a’ before ‘b‘.

I Example 6.4.
Vocabulary F consists of one 0-ary functional (constant) symbol 0 and three binary

symbols app, cons, rev.
The automaton recognizing is initial terms is defined as AI = 〈F , QI , QfI

,∆I〉, where F
is as defined above; QI = {qrev, qlab, qlb, qa, qb}; QfI

= {qrev}; ∆I contains

rev(qlab)→ qrev

cons(qa, qlab)→ qlab

0→ qlb
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a→ qa

0→ qlab

cons(qa, qlb)→ qlab

cons(qb, qlb)→ qlb

b→ qb

The automaton recognizing unsafe terms is defined as AU = 〈F , QU , QfU
,∆U 〉, where F

is as above; QU = {qlab1, qlb1, q1, qa, qb}, QfU
= {qlab1}; ∆U contains

cons(qa, qlab1)→ qlab1
cons(qa, qlb1)→ qlab1
cons(qa, q1)→ q1
a→ qa

0→ q1
cons(qb, qlab1)→ qlab1
cons(qb, q1)→ qlb1
cons(qb, q1)→ q1
b→ qb

The term-rewriting system R consists of the following rules

app(0, x)→ x

app(cons(x, y), z)→ cons(x, app(y, z))
rev(0)→ 0
rev(cons(x, y))→ app(rev(y), cons(x, 0))

First-order translation ΦP consists of the following formulae.

R(rev(qlab), qrev)
R(cons(qa, qlab), qlab)
R(0, qlb)
R(a, qa)
R(0, qlab)
R(cons(qa, qlb), qlab)
R(cons(qb, qlb), qlb)
R(b, qb)
R(cons(qa, qlab1), qlab1)
R(cons(qa, qlb1), qlab1)
R(cons(qa, q1), q1)
R(0, q1)
R(cons(qb, qlab1), qlab1)
R(cons(qb, q1), qlb1)
R(cons(qb, q1), q1)
R(b, qb)
R(app(0, x), x)
R(app(cons(x, y), z), cons(x, app(y, z)))
R(rev(0), 0)
R(rev(cons(x, y)), app(rev(y), cons(x, 0)))
(R(x, y) ∧R(y, z))→ R(x, z)
R(x, x)
R(x, y)→ R(rev(x), rev(y))
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R(x, y)→ R(cons(z, x), cons(z, y))
R(x, y)→ R(cons(x, z), cons(y, z))
R(x, y)→ R(app(z, x), app(z, y))
R(x, y)→ R(app(x, z), app(y, z))

The formula ψP : ∃x∃y((R(rev(x), qrev) ∧ R(y, qlab1)) ∧ R(rev(x), y) expresses the
negation of the correctness condition.

For this standard encoding Mace4 has failed to find a countermodel for ΦP → ψP

within 250000s. However after removing the congruence axiom R(x, y)→ R(rev(x), rev(y))
Mace4 has found the model of size 3 (cardinality of the domain) in 0.06s. (see further
details in [18]. The absence of such a congruence axiom means that no rewriting of proper
subterms of rev(. . .) is allowed. One can either easily argue that in TRS given above no
such rewriting possible anyway, or, remaining in a pure automated verification scenario, just
accept verification modulo restrictions on the rewriting strategy. Alternatively one can apply
an approximation by symmetric closure, in which case Mace4 finds the model of size 3 in
0.1s.

Notice that the verification of the same system in [12] has been done using tree automata
completion technique, which required interactive approximation.

7 Related work and further directions

As mentioned Section 1 the approach to verification using the modeling of protocol executions
by first-order derivations and together with countermodel finding for disproving was intro-
duced within the research on the formal analysis of cryptographic protocols [28, 27, 13, 16, 14].

In [27], apparently for the first time, explicit building of finite countermodels has been
proposed as a tool to establish correctness of cryptographic protocols. It has been illustrated
by an example, where a countermodel was produced manually, and the automation of the
process has not been discussed. The later work [13] has shown how a countermodel produced
during the verification of cryptographic protocols can be converted into a formal induction
proof.

Later FCM approach has been applied to the various problems of infinite-state and
parameterized system [18, 19, 20, 21, 23]. In [20] it was shown that FCM provides a decision
procedure for the verification of safety properties of lossy channel systems and applications
to the verification of parameterized cache coherence protocols are presented . In [21, 23] the
relative completeness of FCM with respect to regular model checking and regular tree model
checking, respectively, has been established. Despite its simplicity, in many cases FCM has
turned out to be very efficient and comparable with or even outperforming (e.g. in [23]) the
best reported alternative methods.

From the viewpoint of this paper the verification problems considered in the above papers
can be seen as safety problems for the specific classes of (conditional) TRS modulo equational
theories.

The verification of safety properties for general term-rewriting systems using tree automata
completion techniques has been addressed in [12, 9, 11]. The paper [10] presents a method
based on encoding both term-rewriting system and tree automata into Horn logic and
application of the static analysis techniques. The main conceptual difference between these
approaches and FCM presented in this paper, is that in [12, 9, 11, 10] the safety verification
is performed in two stages: first, a tree automaton approximating all reachable terms is
obtained and it depends only on TRS but not on the safety property, and, second, an
intersection of the language of this automaton with the language of unsafe states is computed.
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FCM method we presented here operates in one stage and computing regular approximations
or invariants (in terms of finite countermodels) is done for concrete safety properties. It
has its disadvantage that the results of the verification of a TRS can not be re-used for
the verification of different safety properties for the same TRS. On the other hand this
disadvantage is compensated by a higher degree of automation and higher explanatory power
of FCM method as our experimental results suggest. Furthermore, as the Example 6.1 has
demonstrated the invariants for specific safety properties might be much simpler than the
approximations of all reachable terms. That raises hope that the scalability, which is a
potential issue for FCM applications, can be dealt with. Tree automata completion has
shown that it scales well on very large TRS and large tree automata (with thousands of
rewrite rules and automata states) [3]. The applicability of FCM for the verification of
specific safety properties of the large systems requires further investigation.

Another feature of FCM approach which makes it different from tree automata completion
techniques is that it does not depend on linearity of TRS.

Perhaps, conceptually closest work to that reported in this paper has appeared very
recently in [4]. In the context of safety verification the computation of the overapproximation
of the set of reachable terms is reduced in [4] to the problem of instantiation of a symbolic
tree automaton, which in turn is reduced to the satisfiability testing of a boolean combination
of equalities and inequalities between variables. The latter task is then delegated to the
second-order satisfiability checker Mona. Similar to FCM and unlike to the methods reported
in [12, 9, 11, 10] approximations of reachable terms are computed there with respect to a
particular safety property. Theoretical and practical comparisons of FCM and the method of
[4] is a very interesting topic for future work.

Finally, we would like to notice that the translations we have defined in this paper can be
seen as the axiomatizations of rewriting theories in a sense of rewriting logic [25] within the
standard first-order logic, where binary predicate R represents the entailment ` for rewriting
theory. Rewriting logic formalizing conditional and modulo theory rewriting may serve as
an unifying formalism for representing all applications of FCM. Development of such an
approach is another direction for future work.
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