
Turing-Completeness of Polymorphic Stream
Equation Systems
Christian Sattler and Florent Balestrieri

School of Computer Science, University of Nottingham
Nottingham, NG8 1BB, UK
{cvs,fyb}@cs.nott.ac.uk

Abstract
Polymorphic stream functions operate on the structure of streams, infinite sequences of elements,
without inspection of the contained data, having to work on all streams over all signatures
uniformly. A natural, yet restrictive class of polymorphic stream functions comprises those
definable by a system of equations using only stream constructors and destructors and recursive
calls. Using methods reminiscent of prior results in the field, we first show this class consists of
exactly the computable polymorphic stream functions. Using much more intricate techniques,
our main result states this holds true even for unary equations free of mutual recursion, yielding
an elegant model of Turing-completeness in a severely restricted environment and allowing us to
recover previous complexity results in a much more restricted setting.

1998 ACM Subject Classification F.1.1 Models of Computation; F.4.2 Grammars and Other
Rewriting Systems

Keywords and phrases stream functions, Turing-completeness, recursion

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.256

Category Regular Research Paper

1 Introduction

Streams over some set D are the basic example of a polymorphic coinductive data type,
having been forced to serve as case study for almost every technique dealing with infinite data
structures. Although being well-explored coalgebraic objects [5, 3, 19], they have recently
re-emerged in the specific setting of term rewriting [22, 6]. They are usually introduced as
the coinductive data type StrD generated by the constructor · :: · : D× StrD → StrD (cons),
appending an element to the front of a stream, and come with destructors head : StrD → D
and tail : StrD → StrD, selecting and removing the front element, respectively. Algebraically,
they can be characterised as an infinite term model parameterised by the value type D
modulo observational equivalence on D.

Since this work is concerned with computability and partiality, we choose to work in
a semantics of partial streams, adding a bottom element ⊥ to the underlying data type.
Technically, such streams are just functions of type N→ D⊥. Note that with this terminology,
if an element of a stream equals ⊥, further elements can still be proper inhabitants of D.
Also, when speaking of computable (stream) functions, we always mean partial computable
(stream) functions.

One of the simplest classes of functions on streams are the polymorphic stream functions,
being parametric in the data type D. This prohibits any kind of pattern matching or
case distinction on the underlying data type, effectively restricting them to discarding,
duplicating, and reordering of the input stream elements. This defines an indexing function

© Christian Sattler and Florent Balestrieri;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications.
Editor: A. Tiwari; pp. 256–271

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2012.256
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C. Sattler and F. Balestrieri 257

which in the unary case has type N→ N⊥, associating with each output stream index the
corresponding input stream index to copy from, or ⊥ if the output element is ⊥. We can
consider a polymorphic stream function f computable if this indexing function, denoted f ,
is computable. What we call indexing function is a container morphism for streams in the
terminology of Abott et al. [1].

We consider recursive stream equation systems for specifying polymorphic stream functions
involving only stream constructors and destructors. As a representative example, consider
the system

const(s) = head(s) :: const(s),
zip2(s, t) = head(s) :: zip2(t, tail(s)),
hanoi(s) = zip2(hanoi(tail(s)), const(s)).

Through evaluation, which will be elaborated upon in the examples subsection, we find that

hanoi(s) = ⊥ :: s(0) :: s(1) :: s(0) :: s(2) :: s(0) :: s(1) :: s(0) :: s(3) ::

The corresponding indexing function is hanoi(k) = max{v such that 2v divides k} where
max{N} := ⊥. To explain the naming, if D is instantiated with the set of disks of an infinite
Tower of Hanoi and s ∈ StrD is a list of the disks sorted by increasing size, then tail(hanoi(s))
is a walkthrough for coinductively solving the puzzle, the k-th stream element being the disk
to be moved in the k-th step, with the smallest disk always moving in the same direction
[12].

The key point to stress is that polymorphism is a severe restriction. Constructing examples
less trivial than the above seems out of reach: the reader is invited to try to encode the
Fibonacci sequence as the indexing function of an equation in a polymorphic system.

Most proofs of undecidability and complexity results for stream equations, like the ones of
Roşu [18] and Simonsen [20], use straightforward encodings of Turing machines, representing
the infinite band of symbols as two streams, one each for the left and right side of the band
relative to the head, with canonical rewrite rules pattern matching on the current symbol.
This central dispatching mechanism is unavailable in our setting. Still, we are able to recover
all of these results even in the unary setting as direct corollaries of Theorem 14.

As a first taste, Proposition 3 states that our limited systems are nevertheless still sufficient
to define every computable polymorphic stream function. Although the construction requires
some imagination, the simulation of counter machines is quite direct and mainly intended
to give the reader some intuition for the long road towards the proof of our key result,
Theorem 14, which improves upon this by restricting systems to unary stream functions
without mutual recursion. This is the main contribution of our work, which seems surprising
giving the crippled expressiveness of the syntax.

Endrullis et al. [7, 8, 9] strive to decompose rewriting into a stream layer and a data
layer in such a way as to encapsulate just so much complexity into the data layer that the
productivity of streams becomes decidable while still retaining usefulness of computation.
Our work can be seen as a another extreme, eradicating the data layer and showing that
polymorphic unary stream functions attain computational completeness. For example, our
results imply that the lazy stream formats of Endrullis et al. [8] can actually be restricted
to (general) unary stream functions with productivity still retaining Π0

2-completeness (in
the non-unary case, a hint of Proposition 3 can be found in their encoding of fractran-
programs). We note that their notions of lazy stream specifications and data-oblivious
analysis shares some points with our polymorphism restriction: choosing the unit type for
the data type leaves no possibility of analysing the input. We also note that the flat stream

RTA’12

258 Turing-Completeness of Polymorphic Stream Equation Systems

specifications, for which the authors develop an algorithm for semi-deciding productivity,
present an exception: we allow general nested calls.

See Simonsen [20] for a good survey of some of the complexity analysis on stream rewriting
our developments generalise. We hope that our Turing-complete unary recursive systems,
in their simplicity, may be used as a computational model in further reduction proofs (e.g.
of complexity results) not only in rewriting theory. We conclude by remarking that all our
proofs are constructive, i.e. algorithmically implementable.

2 Syntax and Semantics

2.1 Streams and Indexing Functions
Given a set D, we denote D⊥ := D∪{⊥} the set together with a distinguished bottom element
⊥, which is used to denotate partial or non-terminating computation on the object-level
of stream reduction. We warn that on the meta-level, ⊥ is in quoted form, i.e. treated as
a normal element. Given a function f : A → B⊥, we adopt the convention of implicitly
extending the domain of f to A⊥ by setting f(⊥) = ⊥.

The set of (partial) streams over D is defined as StrD := N→ D⊥. A stream s is total if
s(k) 6= ⊥ for all k ∈ N. A polymorphic stream function is a family of functions

fD : StrD× . . .× StrD → StrD

natural (or parametric) in the domain argument D, i.e. for all sets D1,D2 and functions
g : D1 → (D2)⊥, we have

(map g) ◦ fD1 = fD2 ◦ (map g, . . . ,map g)

where map g : StrD1 → StrD2 , s 7→ g ◦ s. Such a function is called total if total arguments
yield total results.

Even though a polymorphic stream function is an operation on streams, its parametricity
property enables us to express it as a single stream on a particular domain. To see this,
consider a stream function f of arity n. Let In := {0, . . . , n − 1} × N. In the following,
we exploit the fact that the type of the argument of fD is isomorphic to In → D⊥. Define
f : N→ (In)⊥, f := fIn(j 7→ (i, j))i∈{0,...,n−1}. Essentially, this is fIn applied to the identity.
Given an arbitrary domain D and stream arguments s0, . . . , sn−1 ∈ StrD, define g : In → D⊥,
(i, j) 7→ si(j). By parametricity,

fD(s0, . . . , sn−1) = (fD ◦ (map g, . . . ,map g))(j 7→ (i, j))i∈{0,...,n−1}

= ((map g) ◦ fIn)(j 7→ (i, j))i∈{0,...,n−1}

= (map g)(f).

This equation is the reason we call f the indexing function of f : for each k ∈ N, the value of
fD(s0, . . . , sn−1) at stream position k is given by si(j) if f(k) = (i, j), and ⊥ if f(k) = ⊥, i.e.

fD(s0, . . . , sn−1) = sf(0) :: sf(1) :: sf(2) :: . . .

with the convention that s(i,j) := si(j) and s⊥ = ⊥.
From this, it is clear that polymorphic stream functions and indexing functions of the

same arity are in bijective correspondence. A polymorphic stream function is total if and only
if its indexing function is total. We call it computable if its indexing function is a computable
function. In the remainder of the article, we will identify I1 with N.

C. Sattler and F. Balestrieri 259

It is worth noting that indexing functions represent an inversion of the usual notions of
input and output for stream functions. This contravariance is reflected in f ◦ g = g◦f for poly-
morphic fD, gD : StrD → StrD, a fact heavily utilised in the rest of the article. Basic examples
of polymorphic stream functions are the tail operation tailD : StrD → StrD, s 7→ i 7→ s(i+ 1)
with indexing function tail(k) = k + 1 and the combined head-cons operation

(head(·) :: ·)D : StrD×StrD → StrD,

(s, t) 7→ i 7→

{
s(0) if i = 0,
t(i− 1) else

with indexing function

(head(·) :: ·)(k) =
{

(0, 0) if k = 0,
(1, k − 1) else.

2.2 Stream Equation Systems
We now define a simple form of a recursive system of equations for specifying polymorphic
stream functions. A (stream equation) system of size n is a family of stream equations
fk(s0, . . . , smk−1) = σk with k ∈ {0, . . . , n− 1} where each σk is a stream term of the form

σ ::= si stream parameter with i ∈ {0, . . . ,mk − 1},
| tail(σ) stream stripped of its first element,
| head(σ) :: σ′ first element of a stream prepended to stream (head-cons),
| fj(σ0, . . . , σmj−1) recursive stream function call with j ∈ {0, . . . , n− 1}.

We explicitly state that there are no further restrictions such as guardedness on the form of
the stream terms σk since we specifically deal with ill-defined equation using our (domain
theoretic) partiality semantics. A system is called unary if all defined stream functions are
unary, i.e. mk = 1 for all k. By a canonical application of the Kleene fixed-point theorem
[10], each stream equation system of size n gives rise to n corresponding polymorphic stream
functions, the least fixpoint of the given system of equations with respect to the partial
ordering on D⊥ generated by ⊥ < d for d ∈ D when the tail and head-cons operations are
interpreted according to the previous section. An equation in the system is called productive
if the polymorphic stream function it defines is total. In what follows, we will usually use
the same symbols to denote syntactic occurrences and their semantic counterparts as their
meaning is always clear from the context.

We can also view such a system as an executable specification, giving rise to a notion of
operational semantics allowing us to explicitly construct the least fixpoint alluded to above.
For this, we formalise the computation of stream elements using a functional relation → on
pairs σ ! k of stream terms σ and indices k ∈ N by setting

tail(σ) ! k → σ ! k + 1,

head(σ) :: σ′ ! k →
{
σ ! 0 if k = 0,
σ′ ! k − 1 else,

fj(σ0, . . . , σnj−1) ! k → ρ[σi/si]i∈{0,...,nj−1} ! k

where fj(s0, . . . , snj−1) = ρ is an equation in the system. This is effectively equivalent to
introducing a rewriting system on constructs of the form head(tailk(σ)) based on the rules

head(head(σ) :: σ′)→ head(σ),
tail(head(σ) :: σ′)→ σ′

RTA’12

260 Turing-Completeness of Polymorphic Stream Equation Systems

with a deterministic outermost rewriting strategy. For a given domain D, we can now define
fj,D as

fj,D(s0, . . . , smj−1) =
{
sw(i) if fj(s0, . . . , smj−1) ! k →∗ sw ! i,
⊥ else

for j ∈ {0, . . . , n − 1}, verifying that this is indeed the smallest solution to the given
specification and fulfills the parametricity property. From this, we can express the indexing
function as

fj(k) =
{

(w, i) if fj(s0, . . . , smj−1) ! k →∗ sw ! i,
⊥ else.

Retrospectively, this consolidates our definition of productivity with its usual connotation,
namely that each finite prefix of a stream (or the result of a stream function called with
productive arguments) be constructible through finite evaluation. It furthermore shows that
in this restricted settings, what is usually denoted by productivity is equivalent to unique
solvability for instantiations of the parameter D to sets containing more than one element,
i.e. well-definedness. On a side note, this description of indexing functions makes explicit the
obvious fact that the defined stream functions are always computable.

2.3 Examples
Using this syntax, we can specify the interleaving function zipn for n > 0 as

zipn(s0, . . . , sn−1) = head(s0) :: zipn(s1, . . . , sn−1, tail(s0)).

It is productive with indexing function zipn(k) = (k mod n, bk/nc). Let us prove this
statement in detail by induction. In the base case, we have

zipn(s0, . . . , sn−1) ! 0→ head(s0) :: zipn(s1, . . . , sn−1, tail(s0)) ! 0→ s0 ! 0

proving zipn(0) = (0, 0) = (0 mod n, b0/nc). In the induction step, we have

zipn(s0, . . . , sn−1) ! k + 1→ head(s0) :: zipn(s1, . . . , sn−1, tail(s0)) ! k + 1
→ zipn(s1, . . . , sn−1, tail(s0)) ! k

→∗
{

tail(s0) ! bk/nc if k ≡ −1 mod n,

s(k mod n)+1 ! bk/nc else

→∗ s(k+1) mod n ! b(k + 1)/nc,

proving zipn(k) = (k mod n, bk/nc) implies zipn(k) = ((k + 1) mod n, b(k + 1)/nc).
As a kind of inverse to interleaving, the projection function projn is defined as

projn(s) = head(s) :: projn(tailn(s)).

It is easily shown to be productive with indexing function projn(k) = n·k. For convenience, we
also define shifted projections projn,i(s) := projn(taili(s)) for i < n with projn,i(k) = n ·k+ i.
Note that projn,i,D(zipn,D(s0, . . . , sn−1)) = si as well as s = zipn,D

(
(projn,i,D(s))i∈{0,...,n−1}

)
for all domains D and s, s0, . . . , sn−1 ∈ StrD. We also have the constant function const(s) =
head(s) :: const(s), repeating the first stream element of its argument, with const(k) = 0.

We are now ready to return to the example from the introduction. Recall that hanoi(s) =
zip2(hanoi(tail(s)), const(s)). We will prove that hanoi(2v(2m+ 1)) = v by induction on v.
In the base case, we have

hanoi(s) ! 2k + 1→ zip2(hanoi(tail(s)), const(s)) ! 2k + 1→∗ const(s) ! k →∗ s ! 0,

C. Sattler and F. Balestrieri 261

proving hanoi(2k + 1) = 0. In the induction step, we have

hanoi(s) ! 2v+1(2m+ 1)→ zip2(hanoi(tail(s)), const(s)) ! 2v+1(2m+ 1)
→∗ hanoi(tail(s)) ! 2v(2m+ 1)
→∗ tail(s) ! v → s ! v + 1,

proving hanoi(2v(2m+ 1)) = v implies hanoi(2v+1(2m+ 1)) = v + 1. Now, the interesting
artifact is the first stream position,

hanoi(s) ! 0→ zip2(hanoi(tail(s)), const(s)) ! 0→+ hanoi(tail(s)) ! 0,

leading to an infinite loop

hanoi(s) ! 0→+ hanoi(tail(s)) ! 0→+ hanoi(tail2(s)) ! 0→+ . . . ,

showing that hanoi(0) = ⊥.
After having established some intuition for computing indexing functions, let us prove a

lemma which will be of much use further on.

I Lemma 1. Given h ≥ 1 and a stream equation of the form

f(s) = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)),

then f(k) = vbk/hc(ak mod h) for k ∈ N.

Proof. Since this is our first technical result about indexing functions, we will be explicit in
every detail. The proof is by induction on k ∈ N. For k < h, we have

f(s) ! k = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)) ! k
→k tailak (s) ! 0→ak s ! ak,

yielding f(k) = ak = v0(ak) = vbk/hc(ak mod h). For k ≥ h, we have

f(s) ! k = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)) ! k →h f(v(s)) ! k − h.

By induction hypothesis, it follows that

f(k) = (f ◦ v)(k − h) = v(f(k − h))

= v(vb(k−h)/hc(a(k−h) mod h))

= v(vbk/hc−1(ak mod h)) = vbk/hc(ak mod h),

where we exploited contravariance of the indexing operation in the second step. J

3 Definability

Our first result consists of the insight that the above stream equations of simple form,
incorporating only the stream constructor and destructors and recursion, already allow for
the definition of every computable polymorphic stream function. In the following, we will
only consider single argument functions since we can easily fuse multiple arguments into a
single one using instances of zip and proj. The argument can be seen as a generalization
of the idea expressed in the proof of Theorem 4.4 in an article by Endrullis et. al. [8]
that recognising productivity of a form of system similar to ours (with a unit stream data

RTA’12

262 Turing-Completeness of Polymorphic Stream Equation Systems

type instead of abstract polymorphism) is of complexity Π0
2. Since our key contribution

concerns the even more general result of unary definability, the main purpose of the following
exposition is to serve as a contrast to the next section.

Recall that for a single argument stream function, the indexing function has type N→ N⊥.
We will give our proof in the form of a reduction, transforming a counter machine [16]
representing an arbitrary computable function φ : N→ N⊥ into a corresponding system with
an equation having φ as indexing function.

I Definition 2. A counter machine is given by a tuple (L, I) where L is the length of the
program and I is a list I0, . . . , IL−1 of instructions inc(r) with r ∈ N, denoting increment of
register r, and jzdec(r, l) with r ∈ N and l ∈ {0, . . . , L}, denoting a jump to instruction l if
register r is zero and a decrement of r otherwise.

The semantics of such a machine is as follows: The state (P,R) ∈ S := {0, . . . , L} × N(N)

consists of the value P of its instruction pointer and the values R of its registers, where N(N)

denotes the set of functions N→ N with finite support, i.e. with only finitely many values
non-zero. Such a tuple is called terminal if P = L, denoting the machine has exited with
output R(1). For R ∈ N(N) and r, v ∈ N, the result of replacing the r-th entry of R with v
will be denoted R[r ← v]. Representing execution, We define a functional next relation →
on S on non-terminal elements by

(P,R)→


(P + 1, R[r ← R(r) + 1]) if IP = inc(r),
(P + 1, R[r ← R(r)− 1]) if IP = jzdec(r, l), R(r) 6= 0,
(l, R) if IP = jzdec(r, l), R(r) = 0.

The result function result(L,I) : S → N⊥ is defined as

result(L,I)(t) =
{
R(1) for t→∗ (L,R) terminal,
⊥ else.

The initial state for a given input i ∈ N is given by init(i) := (0, (i, 0, . . .)). With this
machinery, we can now define the associated computable function of the counter machine as
φ(L,I) = result(L,I) ◦ init : N→ N⊥.

I Proposition 3. Given a computable function represented as a counter machine (L, I),
there is a stream equation system defining a unary stream function with indexing function
φ(L,I).

I Definition 4. Let p0 < p1 < . . . be all the primes. We encode a register state R ∈ N(N) as
a single positive integer using R̂ :=

∏
r∈N,R(r)6=0 p

R(r)
r .

Proof of Proposition 3. Our goal is to mutually define unary stream functions f0, . . . , fL−1
such that for a sequence of machine states (P,R)→ (P ′, R′), we have fP ! R̂→+ fP ′ ! R̂′,
effectively simulating the execution of the counter machine. It follows that whenever the
counter machine terminates with (P,R)→∗ (L,R′) terminal, then fP ! R̂→∗ fL ! R̂′, and
fP (R̂) = ⊥ otherwise. Defining fL to extract the value of register 1, i.e. the exponent of
p1 = 3, from the encoding we set

fL(s) = zip3(fL(tail(s)), const(s), const(s)).

A straightforward induction on R(1) shows that fL(R̂) = R(1) = result(L,I)(L,R) 6= ⊥ for
R ∈ N(N). Together, this means fP (R̂) = result(L,I)(P,R) for any state (P,R) ∈ S.

C. Sattler and F. Balestrieri 263

For each instruction IP with P ∈ {0, . . . , L − 1}, we mutually define a corresponding
stream function fP reproducing the action of IP on the register encoding. If IP = inc(r), let

fP (s) = projpr
(fP+1(s))

and note that fP ! R̂→+ fP+1 ! prR̂ = fP+1 ! ̂R[r ← R(r) + 1] for R ∈ N(N), simulating
an increment. If IP = jzdec(r, l), let

fP (s) = zippr

({
fP+1(s) if i = 0,
projpr,i(fl(s)) else

)
i∈{0,...,pr−1}

.

Given R ∈ N(N) with R(r) 6= 0, we know R(r) is divisible by pr and hence fP ! R̂ →+

fP+1 ! R̂/pr = fP+1 ! ̂R[r ← R(r)− 1], simulating a decrement. For R(r) = 0, we have
fP ! R̂ →+ fl ! prbR̂/prc+ (R̂ mod pr) = fl ! R̂, simulating a jump. Here, we exploited
properties of the indexing functions of proj and zip noted earlier.

Finally, we need a stream function to produce the initial register encoding. This will
be accomplished by u(s) = head(tail(s)) :: u(projp0(s)). By Lemma 1, we have u(i) =
projp0

i(1) = pi0 = ̂(i, 0, . . .). Defining q(s) = u(f0(s)), we have q(i) = f0(̂(i, 0, . . .)) =
result(L,I)(init(i)) for i ∈ N, and thus q = φ(L,I). The equations for the stream functions
f0, . . . , fL, u, q, const plus finitely many instances of zip and proj hence represent a stream
equation system with the denotation of q having φ(L,I) as indexing function. J

Note that Minsky [16] shows that counter machines with only two registers are enough
to achieve Turing-completeness. However, when representing computable functions, this
requires an extra level of encoding of input values and decoding of output values, which can
also be achieved by defining suitable stream functions.

4 Unary Definability

The defining feature of the previous construction was its reliance on interleaving for im-
plementing conditional execution, effectively dispatching different cases, identified by their
residues of the register encoding modulo a prime, to arbitrarily different handlers. Noting
that zipp with p prime were the only non-unary stream functions in the construction, we are
left to reflect on the computational consequences of only allowing unary stream functions
to be defined. Note that allowing interleaving is synonymous to allowing non-unary stream
functions since we can use interleaving to merge any number of stream arguments into a
single one. In order to prove an even more general definability result in the unary setting,
entirely different techniques need to be developed, separating conditional execution and
unbounded looping into orthogonal concepts.

4.1 Collatz Functions and If-Programs
I Definition 5. A function g : N → N is called a Collatz function if there is n > 0 such
that g is affine on each equivalence class modulo n, i.e. there are coefficients ai, bi ∈ N for
i = 0, . . . , n− 1 such that g(n · q+ i) = ai · q+ bi for q ∈ N. In this case, n is called a modulus
of g.

The naming stems from the famous conjecture first proposed by Collatz in 1937, asking
whether the function collatz : N→ N, n 7→ n/2 for n even, n 7→ 3n+ 1 for n odd, will map
each positive integer to 1 after finitely many applications. Despite its deceivingly simple

RTA’12

264 Turing-Completeness of Polymorphic Stream Equation Systems

form, it has been resisting all attempts of resolution [15]. In recent years, the equivalent
of this conjecture for the above generalised notion of Collatz functions has been proved
(algorithmically) undecidable [14].

I Lemma 6. Given a Collatz function g, we can construct a non-mutually recursive unary
system defining a stream function v such that v = g.

Before going into the details of the proof, note that, although it is quite clear that the
above encoding of Collatz functions already enables an embedding of full computational
power into unary stream equations, what is not at all obvious is whether we can actually
define every computable unary stream function through a purely unary system.

Proof. Let modulus n > 0 and coefficients ai, bi ∈ N be as in the above definition. Define a
stream function

add(s) = head(tailn·a0+0(s)) :: . . . :: head(tailn·an−1+(n−1)(s)) :: add(tailn(s)).

Lemma 1 shows that add(k) = b knc · n + (n · ak mod n + (k mod n)) = k + n · ak mod n
for k ∈ N. The role of this function is to act as a crude replacement conditional for the
unavailable zip, adding different constants depending on the equivalence class of the stream
index modulo n.

Next, define a stream function

u(s) = head(tailn·b0+0(s)) :: . . . :: head(tailn·bn−1+(n−1)(s)) :: u(add(s)).

Using Lemma 1, we derive u(n · q+ i) = addq(n · bi + i) = (n · bi + i) + q · (n · ai) = n · g(k) + i

for q ∈ N. This function is an approximation to g, the only difference being that the output
indices come pre-multiplied by n.

We fix this by defining a stream function

div(s) = head(s) :: . . . :: head(s)︸ ︷︷ ︸
n times

:: div(tail(s)).

A trivial application of Lemma 1 verifies that div(k) = b knc for k ∈ N. Finally defining
v(s) = u(div(s)) yields the Collatz function semantics we want in that v = div ◦ u = g. J

For instance, the original Collatz function would be encoded as collatz = v as follows:

add(s) = head(tail2(s)) :: head(tail13(s)) :: add(tail2(s)),
u(s) = head(s) :: head(tail9(s)) :: u(add(s)),

div(s) = head(s) :: head(s) :: div(tail(s)),
v(s) = u(div(s)).

For further illustration, let us evaluate stream position 3 of v(s):

v(s) ! 3→∗ u(div(s)) ! 3→∗ u(add(div(s))) ! 1→∗ add(div(s)) ! 9
→∗ add(tail2(div(s))) ! 7→∗ . . .→∗ add(tail8(div(s))) ! 1
→∗ div(s) ! 21→∗ div(tail(s)) ! 19→∗ . . .→∗ div(tail10(s)) ! 1
→∗ s ! 10.

This is consistent with collatz(3) = 3 · 3 + 1 = 10.

C. Sattler and F. Balestrieri 265

Note that this encoding is fundamentally different from the encoding of Collatz functions
or Fractran program iterations used by Endrullis et al. [8], the essential difference being
the unavailability of zip in the unary setting. The dispatch mechanism of interleaving,
enabling differing treatment of stream positions based on the residue of their indices, makes
the implementation of Collatz-like constructs rather straightforward. Since we are lacking
even such basic conditional control flow mechanisms, we have to resort to highly indirect
constructions such as the above.

The role of Collatz functions in our setting is to serve as an intermediate between indexing
functions and the known world of computability. To make the latter link clearer, we will
show how Collatz functions relate semantically to different register machine models under
the prime factorization register encoding introduced in the previous section.

I Definition 7. The inductive set of if-programs is generated by concatenation A0 . . .An−1,
increments inc(r), decrements dec(r), and conditional clauses ifz(r,A,B), where n ∈ N,
r ∈ N designates a register, and A0, . . . ,An−1,A,B are if-programs.

Although it is quite clear intuitively what the semantic effects of running an if-program
A on some register state R ∈ N(N) are, we will formally introduce an associated semantics
function χA : N(N) → N(N) defined structurally as follows:

χA0...An−1 = χAn−1 ◦ . . . ◦ χA0 ,

χinc(r)(R) = R[r ← R(r) + 1],

χdec(r)(R) = R[r ← max(R(r)− 1, 0)],

χifz(r,A,B)(R) =
{
χA(R) if R(r) = 0,
χB(R) else.

Note that a decrement on a zero-valued register is ignored.
We will reuse the prime factorization register encoding ·̂ : N(N) → N \ {0}, R̂ 7→ R̂ =∏

r∈N,R(r) 6=0 p
R(r)
r from the previous section. Translated to this setting, the semantics function

of an if-program A takes the form χ̂A := ·̂ ◦ χA ◦ ·̂
−1. Although this is an endofunction

on the positive integers, to make the following treatment more uniform, we will extend it to
the natural numbers by setting χ̂A(0) := 0.

I Lemma 8. Given an if-program A, its semantics χ̂A : N→ N on the register encoding is
a Collatz function.

Proof. By induction on the structure of A, noting that:
The concatenation of finitely many Collatz functions of moduli m0 · . . . ·mn−1 is a Collatz
function of modulus m0 · . . . ·mn−1.
Given a register state R ∈ N(N), increment of register r corresponds to multiplication of
R̂ with pr, a Collatz function of modulus 1.
Decrement of register r corresponds to division of R̂ by pr if the former is divisible by pr,
and no change otherwise. This is a Collatz function of modulus pr.
Let χ̂A and χ̂B be Collatz functions of moduli mA and mB, respectively. A conditional
clause ifz(r,A,B) corresponds first to case distinction depending on whether R̂ is divisible
by pr and subsequent application of either χ̂A or χ̂B. This is a Collatz function of modulus
the least common multiple of pr,mA,mB.

J

RTA’12

266 Turing-Completeness of Polymorphic Stream Equation Systems

We note that the Collatz function χ̂A in the previous lemma is special in that it is
linear on each of its equivalence classes in the strict sense, i.e. with vanishing ordinate,
corresponding to single multiplication with a fraction. Even though we do not make use of
this fact in our developments, it shows the connection between if-programs and the iteration
steps of the fractran-programs of Conway [4], which are of equivalent expressive power.

4.2 Iteration-Programs and Their Encoding
Unsurprisingly, the expressive power of if-programs by themselves is quite limited. To
achieve computational completeness, we need an unbounded looping construct. The following
definition intends to provide a minimal such model, enabling us to concentrate on the essential
details of the conversion from Turing-complete programs to stream equation systems.

I Definition 9. An iteration-program P is a tuple (BodyP, inputP, outputP, loopP) con-
sisting of an if-program BodyP called the body of P and designated and mutually distinct
input, output and loop registers inputP, outputP, loopP ∈ N.

The semantics of such a program is a computable function φP : N → N⊥ defined as
follows: given an input i ∈ N, the register state R0 ∈ N(N) is initialised with R0(inputP) := i,
R0(loopP := 1, and R0(r) := 0 for r 6= inputP, loopP. We iteratively execute the body of P,
yielding Rn+1 := χBodyP

(Rn) for n ∈ N. If there is n minimal such that Rn(loopP) = 0, then
P is called terminating with iteration count countP (i) := n and output φP(i) := Rn(outputP)
for input i. Otherwise, countP(i) := ⊥ and φP(i) := ⊥.

Intuitively, an iteration-program is just a while-program [17] with a single top-level
loop, a well-studied concept in theoretical computer science bearing resemblance to the
normal form theorem for µ-recursive functions [13], [21] except that we do not even allow
primitive recursion inside the loop.

I Theorem 10. Given a computable function φ : N→ N⊥, there is an iteration-program
P with semantics φP = φ.

Proof. This is a folklore theorem [11], see Böhm and Jacopini [2] and Perkowska [17] for
more details. J

The reason behind our choice for this computationally complete machine model is that
we already have the machinery to simulate a single execution of the body of such a machine
via Collatz functions as indexing functions of stream equations using our prime factorization
exponential encoding on the register state. In fact, another option would have been the
fractran-programs of Conway [4], but we are in need of a more conceptual representation
in light of what lies ahead of us.

We will now investigate how to translate a top-level unbounded looping construct into
the recursive stream equation setting.

I Lemma 11. Let h ≥ 1 be given with a stream equation

f(s) = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: tailh(u(f(v(s)))).

Fix k ∈ N and choose c(k) ∈ N minimal such that d(k) := uc(k)(k) ∈ {⊥, 0, . . . , h − 1}. If
such a c(k) exists and d(k) 6= ⊥, then f(k) = vc(k)(ad(k)), otherwise f(k) = ⊥.

Proof. The proof is by induction on c(k) if existent. At the base, c(k) = 0 is equivalent to
k < h. In this case, f(s) ! k →k tailak (s) ! 0→ak s ! ak, i.e. f(k) = ak = vc(k)(ad(k)).

C. Sattler and F. Balestrieri 267

Now assume k ≥ h. Note that

f(s) ! k →h tailh(u(f(v(s)))) ! k − h→h u(f(v(s))) ! k.

If u(k) = ⊥, then c(k) = 1, d(k) = ⊥, and f(k) = ⊥. In the remainder, we will assume
u(k) 6= ⊥. Then, f(s) ! k →+ f(v(s)) ! u(k), and f(k) = v(f(u(k))).

If c(k) is defined, then c(k) = c(u(k)) + 1 and we can apply the induction hypothesis: if
d(k) = d(u(k)) 6= ⊥, then v(f(u(k))) = v(vc(u(k))ad(k)) = vc(k)(ad(k)), otherwise v(f(u(k))) =
v(⊥) = ⊥.

If c(k) is undefined, then so is c(u(k)), and with a second induction we can construct
an infinite sequence f(s) ! k →+ f(v(s)) ! u(k) →+ f(v2(s)) ! u2(k) →+ . . . showing
non-termination and f(k) = ⊥. J

The inquiring reader will notice that this lemma can be seen as a generalization of
Lemma 1 with u defined in a particular way, namely

u(s) = head(s) :: . . . :: head(s)︸ ︷︷ ︸
h times

:: s.

Using Lemmata 8 and 6, we can translate the encoded iteration step function χ̂BodyP
:

N→ N of an iteration-program P to an indexing function of a stream equation for some
u. We would like to use this stream function u as it appears in Lemma 11 in a way such
that the minimal choice of c(k) corresponds to the iteration count of P. Unfortunately, the
equivalent of the stopping condition in the lemma, that the index be smaller than some
constant h, corresponds to R̂ < h for the register state R ∈ N(N), a statement which does not
have a natural meaning for the registers of R individually, forestalling us from expressing
the condition ploopP | R̂ corresponding to the termination condition R(loopP) = 0. A second
problem comes from our desire to somehow extract the value of R(outputP) after termination.
But since at this point of time R̂ is limited to a finite set of values, there is no direct way of
realising this.

What we can do is extract the iteration count for particularly nicely behaving programs.

I Lemma 12. Given an iteration-program Q such that whenever Q terminates, all its
registers are zero-valued, i.e. χcountQ(i)

BodyQ
= (0, 0, . . .) for terminating input i ∈ N, there is a

non-mutually recursive unary system defining a stream function w such that w = countQ.

Proof. In anticipation of applying Lemma 11, we extend this system with a new equation

q(s) = head(s) :: head(s) :: tail2(v(q(tail(s))).

Given an input i ∈ N and corresponding initial register state R ∈ N(N), the termination
condition in Lemma 11 can equivalently be expressed as follows:

vc(R̂)(R̂) < 2 ⇐⇒ χ̂
c(R̂)
BodyQ

(R̂) = 1 ⇐⇒ χ
c(R̂)
BodyQ

(R) = (0, 0, . . .).

Now, by our assumption on the behaviour of Q, the first point in time all registers are
zero equals the first point in time the loop register attains zero. But by our definition
of the iteration count, this just means that c(R̂) = countQ(i), and Lemma 11 shows that

q(R̂) = tailc(R̂)(0) = c(R̂) = countQ(i).
All that remains is to produce the initial register state R(i) with only R(i)(inputQ) = i

and R(i)(loopQ) = 1 non-zero. For this, we define

r(s) = head(tailploopQ (s)) :: r(projpinputQ
(s))

RTA’12

268 Turing-Completeness of Polymorphic Stream Equation Systems

and utilise Lemma 1 to prove that r(i) = projpinputQ

i(ploopQ) = piinputQ
· ploopQ = R̂(i). Defining

w(s) = r(q(s)), we verify that w(i) = q(r(i)) = q(R̂(i)) = countQ(R(i)). J

Unfortunately, the set of possible iteration count functions constitutes only a small part
of the set of all computable functions. Intuitively, this is because even very small values can
be the result of prohibitively expensive operations. However, this range can still be seen
as containing Turing-complete fragments under certain encodings. This is what we exploit
in the next step by shifting the role of the output register to the iteration count under a
particular such encoding. The trick is to have each possible output value correspond to
infinitely many iteration counts in a controlled way such that after having computed the
result, by being self-aware of the current iteration count, we can consciously terminate the
loop at one of these infinitely many counts, no matter how long the computation took.

I Lemma 13. Given an iteration-program P, there is an iteration-program Q such that
for every input i natural, Q terminates if and only if P terminates, and furthermore if P
terminates with output o ∈ N, then Q terminates after exactly (3m+ 1) · 3o+1 iterations with
all registers zero-valued where m ∈ N depends on i.

Proof. Let r0, . . . , rk−1 ∈ N denote all the registers occurring in BodyP except for outputP
and loopP (but including inputP). We choose loopQ as a fresh natural number distinct from
all previously mentioned registers. Both programs will have the same input register, i.e.
inputQ := inputP. The output register of Q is irrelevant since we aim to have all registers
reset at termination.

The body of Q is listed in Exhibit A. Note that the body of P is textually inserted at line
14. Register names main-phase, run-time, mod-three, swap-phase, copy also designate fresh
natural numbers. To enhance readability, we used some lyrical freedom with the syntax: for
example, if R(outputP) 6= 0 then A else B end if translates to ifz(outputP,B,A). Since
the program is somewhat complex, we will describe its function in great detail.

Execution of Q, i.e. iterated execution of BodyQ until decrement of loopQ, is split
into two main phases, as signalled by the flag register main-phase. The first phase, when
main-phase has value 0 (lines 2–22), is dedicated to simulating the original program P while
keeping track of the total iteration count in a dedicated register run-time. At the end of this
phase, after P has exited with result o ∈ N in register outputP, we want the total iteration
count to equal 3m + 1 for some arbitrary m ∈ N. The second phase, when main-phase
has value 1 (lines 23–44) is dedicated to tripling the total iteration count o times, plus an
additional tripling to reset run-time, so that the total iteration count becomes (3m+ 1) · 3o+1.

In detail, the first phase (lines 2–22) contains three separate components:
Lines 3–4 are executed only at the beginning of the first iteration and initialise the
loop register of P (note that the input register of P does not need to be initialised as
inputP = inputQ) and mod-three (see below).
Lines 6-12 keep track not only of the current iteration count by incrementing run-time
once per iteration, but also of how many iterations modulo 3 we are afar from meeting
the (3m+ 1)-condition in a dedicated register mod-three.
Lines 13–22 execute the body of P once per iteration until termination is signalled by
loopP being set to zero (lines 13–14). In subsequent iterations, the registers used in P are
incrementally reset (lines 15–19). Finally, we wait up to two iterations for the iteration
count (including the current iteration) to have the proper remainder modulo 3 (line 20),
and proceed to the second phase (lines 21).

C. Sattler and F. Balestrieri 269

Exhibit A The body of Q from Lemma 13
1. if R(main-phase) = 0 then
2. if R(run-time) = 0 then
3. inc(loopP)
4. inc(mod-three)
5. end if
6. inc(run-time)
7. if R(mod-three) = 0 then
8. inc(mod-three)
9. inc(mod-three)

10. inc(mod-three)
11. end if
12. dec(mod-three)
13. if R(loopP) 6= 0 then
14. BodyP
15. else if R(r0) 6= 0 then
16. dec(r0)
17. [...]
18. else if R(rn−1) 6= 0 then
19. dec(rn−1)
20. else if R(mod-three) = 0 then
21. inc(main-phase)
22. end if

23. else if R(swap-phase) = 0 then
24. dec(run-time)
25. inc(copy)
26. if R(run-time) = 0 then
27. inc(swap-phase)
28. end if
29. else
30. dec(copy)
31. if R(outputP) 6= 0 then
32. inc(run-time)
33. inc(run-time)
34. inc(run-time)
35. if R(copy) = 0 then
36. dec(swap-phase)
37. dec(outputP)
38. end if
39. else if R(copy) = 0 then
40. dec(swap-phase)
41. dec(main-phase)
42. dec(loopQ)
43. end if
44. end if

After the final iteration of this phase, the iteration count is 3m + 1 for some m ∈ N and
the only possibly non-zero registers are main-phase and swap-phase of value 1 and outputP of
value o. We duly note that if P does not terminate, then neither does Q.

In similar detail, the second phase (lines 23–44) contains two alternately executed
subphases (lines 24–28 and 30–43) responsible for shifting the iteration count back and
forth between the registers run-time and copy. The current subphase is indicated by the flag
register swap-phase:

The first subphase in lines 24–28 started with register values [swap-phase : 1, run-time : x ≥
1, copy : 0] will end, after x iterations, with values [swap-phase : 0, run-time : 0, copy : x].
The second subphase in lines 30–43 started with register values [swap-phase : 0, run-time :
0, copy : x ≥ 1] will end, after x iterations, depending on the value of register outputP,

if non-zero, with [swap-phase : 1, run-time : 3x, copy : 0] and outputP decremented,
if zero, with all registers zero and loopQ decremented to zero in the last iteration.

Taken together, we deduce that starting (the first subphase) with [swap-phase : 1, run-time :
x ≥ 1, copy : 0] and outputP non-zero, after 2x iterations, the effective changes will be tripling
of run-time and decrement of outputP. In particular, if x and hence run-time denoted the
iteration count before these iterations, run-time will again denote the iteration count after
these iterations. After following this reasoning o times, the iteration count and value of
run-time will be (3m+ 1) · 3o while outputP attains zero. One last instance of each phase,
costing 2 · (3m+ 1) · 3o iterations, yield a total iteration count of (3m+ 1) · 3o+1 with all
registers having been cleared. J

RTA’12

270 Turing-Completeness of Polymorphic Stream Equation Systems

4.3 Proof of the Main Result
I Theorem 14. A unary polymorphic stream function is definable by a non-mutually recursive
unary system if and only if its indexing function is computable.

Proof. We need only consider the reverse implication. Let a computable function φ : N→ N⊥
be represented as an iteration-program P, i.e. φ = φP , and let Q be the modified iteration-
program as defined in Lemma 13. By Lemma 12, there is a non-mutually recursive unary
system defining a stream function w such that w(i) = countQ(i) = (3m+ 1) · 3φP(i)+1 for all
i ∈ N and some m ∈ N depending on i. As stated at the beginning, the latter expression is
taken to mean ⊥ if φP(i) = ⊥.

Our strategy for extracting the final output value φP(i) from this expression is by iterating
a second program, adding a tail for each time the stream index is divisible by 3. In particular,
from Lemma 6, it is clear how to give a non-mutually recursive unary system defining u such
that

u(k) =
{
k/3 if 3 | k,
0 else

since this is a Collatz function. But note that we can alternatively directly define

u(s) = head(s) :: head(s) :: head(s) ::
head(tail(s)) :: head(s) :: head(s) :: tail3(u(head(s) :: tail2(s)))

using only a single equation. For either choice, we define v(s) = head(s) :: tail(u(v(tail(s)))).
A second application of Lemma 11 shows that v((3m+ 1) · 3i+1) = i+ 1 for i,m ∈ N. This
function is of almost as critical importance as w as it repeats each natural number output
infinitely many times in a controlled way and reverses the iteration count result encoding of
program Q.

We now have all the parts necessary for concluding our venture. Defining f(s) =
w(v(head(s) :: s)), we see that

f(i) = max(v(w(i))− 1, 0)

= max(v((3m+ 1) · 3φP(i)+1)− 1, 0)
= max((φP(i) + 1)− 1, 0) = φP(i)

with our usual convention regarding ⊥, proving f = φP. J

Further Work

A thorough inquisition of the proofs in the previous section shows that, in total, ten equations
were defined for proving the main result, two of which can be inlined. It is natural to ask:
what is the minimum number of unary equations required to define an arbitrary computable
indexing function? The answer is four (and still being free of mutual recursion), but space
constrains prevent us from presenting the rather involved proof.

Furthermore, we can show that recognising productivity is undecidable with complexity
Π0

2 even for unary systems with only two non-mutually recursive equations. Interestingly, we
can prove that productivity is decidable for a singleton unary system. Again, the proof of
this positive result is quite complex and in need of more space to be presented.

Altogether, this amounts to an exhaustive classification of definability and complexity of
recognising productivity based on unary system size. However, it would be euphemistic to
say that the proofs involved are not very abstract, making them even more unsuitable for
exposition in a conference article.

C. Sattler and F. Balestrieri 271

Acknowledgements

The authors would like to thank Venanzio Capretta for introducing us to the definability
problem for polymorphic stream equations and spending much time with proof checking and
helpful discussions, Nicolai Kraus for proofreading, the Functional Programming Laboratory
at the University of Nottingham for the encouraging research environment, and the anonymous
referees for providing helpful suggestions regarding the exposition of our results.

References
1 Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers - constructing strictly

positive types. Theor. Comp. Sci., 342:3–27, 2005.
2 Corrado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines and languages

with only two formation rules. Commun. ACM, 9(5):366–371, 1966.
3 Wilfried Buchholz. A term calculus for (co-)recursive definitions on streamlike data struc-

tures. Ann. Pure Appl. Logic, 136(1-2):75–90, 2005.
4 John H. Conway. Fractran: A simple universal programming language for arithmetic. In

T. M. Cover and B. Gopinath, editors, Open Problems in Communication and Computation,
chapter 2, pages 4–26. Springer, 1987.

5 Edgar W. Dijkstra. On the producitivity of recursive definitions. EWD749, 1980.
6 Jörg Endrullis, Herman Geuvers, Jacob G. Simonses, and Hans Zantema. Levels of unde-

cidability in rewriting. Inf. Comput., 209(2):227–245, 2011.
7 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Data-oblivious stream pro-

ductivity. In Proc. 15th Int. Conf. on LPAR, LPAR ’08, pages 79–96. Springer, 2008.
8 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Complexity of Fractran and

productivity. In CADE, pages 371–387, 2009.
9 Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara, and Jan Willem

Klop. Productivity of stream definitions. In Proc. FCT 2007, volume 4639 of LNCS, pages
274–287. Springer, 2007.

10 Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael Mis-
love, and Dana S. Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2003.

11 David Harel. On folk theorems. SIGACT News, 12:68–80, 1980.
12 Andreas M. Hinz. The Tower of Hanoi. Enseign. Math., 35(2):289–321, 1989.
13 Stephen C. Kleene. Recursive predicates and quantifiers. Trans. AMS, 53(1):41–73, 1943.
14 Stuart A. Kurtz and Janos Simon. The undecidability of the generalized Collatz problem.

In TAMS, volume 4484 of LNCS, pages 542–553. Springer, 2007.
15 Jeffery C. Lagarias. The Ultimate Challenge: The 3x+ 1 Problem. AMS, 2010.
16 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
17 Eleonora Perkowska. Theorem on the normal form of a program. Bull. Acad. Pol. Sci.,

Ser. Sci. Math. Astr. Phys., 22(4):439–442, 1974.
18 Grigore Roşu. Equality of streams is a Π0

2-complete problem. In ICFP. ACM, 2006.
19 Jan M. Rutten. Behavioural differential equations: a coinductive calculus of streams, auto-

mata, and power series. Theor. Comp. Sci., 308(1-3):1–53, 2003.
20 Jakob Grue Simonsen. The Π0

2-completeness of most of the properties of rewriting systems
you care about (and productivity). In Proc. 20th Int. Conf. on RTA, RTA ’09, pages
335–349. Springer, 2009.

21 Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic. Springer, 1987.

22 Hans Zantema. Well-definedness of streams by transformation and termination. LMCS,
6(3), 2010. paper 21.

RTA’12

	Introduction
	Syntax and Semantics
	Streams and Indexing Functions
	Stream Equation Systems
	Examples

	Definability
	Unary Definability
	Collatz Functions and If-Programs
	Iteration-Programs and Their Encoding
	Proof of the Main Result

